| Efficient SVDD sampling with approximation guarantees for the decision boundary | Adrian Englhardt, Holger Trittenbach, Daniel Kottke, Bernhard Sick, Klemens Böhm | Machine Learning Journal, 2022 | 
    
        | An overview and a benchmark of active learning for outlier detection with one-class classifiers | Holger Trittenbach, Adrian Englhardt, Klemens Böhm | Expert Systems with Applications (2021). DOI: 10.1016/j.eswa.2020.114372 | 
        
        | Finding the Sweet Spot: Batch Selection for One-Class Active Learning | Adrian Englhardt, Holger Trittenbach, Dennis Vetter, Klemens Böhm | 2020 SIAM International Conference on Data Mining (SDM 2020). DOI: 10.1137/1.9781611976236.14 | 
    
        | Exploring the Unknown - Query Synthesis in One-Class Active Learning | Adrian Englhardt, Klemens Böhm | 2020 SIAM International Conference on Data Mining (SDM 2020). DOI: 10.1137/1.9781611976236.17 | 
        
        | Validating One-Class Active Learning with User Studies - a Prototype and Open Challenges | Holger Trittenbach, Adrian Englhardt, Klemens Böhm | 3rd International Workshop on Interactive Adaptive Learning (IAL 2019). URL: https://ceur-ws.org/Vol-2444/ialatecml_paper2.pdf   | 
    
        | Energy Time-Series Features for Emerging Applications on the Basis of Human-Readable Machine Descriptions | Michael Vollmer, Holger Trittenbach, Shahab Karrari, Adrian Englhardt, Pawel Bielski, Klemens Böhm | 2nd International Workshop on Energy Data and Analytics (EDA 2019). DOI: 10.1145/3307772.3331022 | 
        
        | Improving Semantic Change Analysis by Combining Word  Embeddings and Word Frequencies | Adrian Englhardt, Jens Willkomm, Martin Schäler, Klemens Böhm | International Journal on Digital Libraries (2020). DOI: 10.1007/s00799-019-00271-6 | 
    
        | Resources to Examine the Quality of Word Embedding Models Trained on n-Gram Data | Ábel Elekes, Adrian Englhardt, Martin Schäler, Klemens Böhm | 22nd Conference on Computational Natural Language Learning (CoNLL 2018). DOI: 10.18653/v1/K18-1041 | 
        
        | Towards More Meaningful Notions of Similarity in NLP Embedding Models | Ábel Elekes, Adrian Englhardt, Martin Schäler, Klemens Böhm | International Journal on Digital Libraries (2020). DOI: 10.1007/s00799-018-0237-y | 
    
        | How to Quantify the Impact of Lossy Transformations on Event Detection | Pavel Efros, Erik Buchmann, Adrian Englhardt, Klemens Böhm | Big Data Research, special issue on Online Forecasting and Proactive Analytics in the Big Data Era, Elsevier Science Publisher, 2017 | 
        
        | An Evaluation of Combinations of Lossy Compression and Change-Detection Approaches for Time-Series Data | Gregor Hollmig, Matthias Horne, Simon Leimkühler, Frederik Schöll, Carsten Strunk, Adrian Englhardt, Pavel Efros, Erik Buchmann, Klemens Böhm | Information Systems | 
    
        | How to Quantify the Impact of Lossy Transformations on Change Detection | Pavel Efros, Erik Buchmann, Adrian Englhardt, Klemens Böhm | Proceedings of 27th International Conference on Scientific and Statistical Database Management (SSDBM 2015 ), San Diego, CA, USA |