Florian Kalinke, M.Sc.
- Wissenschaftlicher Mitarbeiter
- Raum: CS
- florian kalinke ∂does-not-exist.kit edu
- Am Fasanengarten 5
76131 Karlsruhe
Artikel
Maximum Mean Discrepancy on Exponential Windows for Online Change Detection
Kalinke, F.; Heyden, M.; Gntuni, G.; Fouché, E.; Böhm, K.
2025. Transactions on Machine Learning Research, 2025
Kalinke, F.; Heyden, M.; Gntuni, G.; Fouché, E.; Böhm, K.
2025. Transactions on Machine Learning Research, 2025
Adaptive Bernstein change detector for high-dimensional data streams
Heyden, M.; Fouché, E.; Arzamasov, V.; Fenn, T.; Kalinke, F.; Böhm, K.
2024. Data Mining and Knowledge Discovery, 38 (3), 1334–1363. doi:10.1007/s10618-023-00999-5
Heyden, M.; Fouché, E.; Arzamasov, V.; Fenn, T.; Kalinke, F.; Böhm, K.
2024. Data Mining and Knowledge Discovery, 38 (3), 1334–1363. doi:10.1007/s10618-023-00999-5
Multi-kernel Times Series Outlier Detection
Kalinke, F.; Fouché, E.; Thiessen, H.; Böhm, K.
2023. Discovery Science. DS 2023. Eds.: A. Bifet, A.C. Lorena, R.P. Ribeiro, J. Gama, P.H. Abreu, 688 – 702, Springer Nature Switzerland. doi:10.1007/978-3-031-45275-8_46
Kalinke, F.; Fouché, E.; Thiessen, H.; Böhm, K.
2023. Discovery Science. DS 2023. Eds.: A. Bifet, A.C. Lorena, R.P. Ribeiro, J. Gama, P.H. Abreu, 688 – 702, Springer Nature Switzerland. doi:10.1007/978-3-031-45275-8_46
Nyström -Hilbert-Schmidt Independence Criterion
Kalinke, F.; Szabó, Z.
2023. Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI 2023, 1005 – 1015, Machine Learning Research Press (ML Research Press)
Kalinke, F.; Szabó, Z.
2023. Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI 2023, 1005 – 1015, Machine Learning Research Press (ML Research Press)
Efficient subspace search in data streams
Fouché, E.; Kalinke, F.; Böhm, K.
2021. Information systems, 97, Art.-Nr. 101705. doi:10.1016/j.is.2020.101705
Fouché, E.; Kalinke, F.; Böhm, K.
2021. Information systems, 97, Art.-Nr. 101705. doi:10.1016/j.is.2020.101705
An Evaluation of NILM Approaches on Industrial Energy-Consumption Data
Kalinke, F.; Bielski, P.; Singh, S.; Fouché, E.; Böhm, K.
2021. e-Energy ’21: Proceedings of the Twelfth ACM International Conference on Future Energy Systems, 239–243, Association for Computing Machinery (ACM). doi:10.1145/3447555.3464863
Kalinke, F.; Bielski, P.; Singh, S.; Fouché, E.; Böhm, K.
2021. e-Energy ’21: Proceedings of the Twelfth ACM International Conference on Future Energy Systems, 239–243, Association for Computing Machinery (ACM). doi:10.1145/3447555.3464863
A framework for dependency estimation in heterogeneous data streams
Fouché, E.; Mazankiewicz, A.; Kalinke, F.; Böhm, K.
2021. Distributed and parallel databases, 39, 415–444. doi:10.1007/s10619-020-07295-x
Fouché, E.; Mazankiewicz, A.; Kalinke, F.; Böhm, K.
2021. Distributed and parallel databases, 39, 415–444. doi:10.1007/s10619-020-07295-x
Assistance system for an automated log-quality and assortment estimation based on data-driven approaches using hydraulic signals of forestry machines
Geiger, C.; Maier, N.; Kalinke, F.; Geimer, M.
2020. Fluid Power Future Technology! Vol. 3, 83–92, Technische Universität Dresden (TU Dresden). doi:10.25368/2020.97
Geiger, C.; Maier, N.; Kalinke, F.; Geimer, M.
2020. Fluid Power Future Technology! Vol. 3, 83–92, Technische Universität Dresden (TU Dresden). doi:10.25368/2020.97