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ABSTRACT

Outlier ranking aims at the distinction between exceptional
outliers and regular objects by measuring deviation of indi-
vidual objects. In graphs with multiple numeric attributes,
not all the attributes are relevant or show dependencies with
the graph structure. Considering both graph structure and
all given attributes, one cannot measure a clear deviation of
objects. This is because the existence of irrelevant attributes
clearly hinders the detection of outliers. Thus, one has to
select local outlier contexts including only those attributes
showing a high contrast between regular and deviating ob-
jects. It is an open challenge to detect meaningful local
contexts for each node in attributed graphs.

In this work, we propose a novel local outlier ranking
model for graphs with multiple numeric node attributes. For
each object, our technique determines its subgraph and its
statistically relevant subset of attributes locally. This con-
text selection enables a high contrast between an outlier and
the regular objects. Out of this context, we compute the
outlierness score by incorporating both the attribute value
deviation and the graph structure. In our evaluation on real
and synthetic data, we show that our approach is able to
detect contextual outliers that are missed by other outlier
models.

1. INTRODUCTION

Outlier mining is an important task in the field of data
management and knowledge discovery. It identifies unex-
pected, erroneous, rare, and suspicious data. Outlier rank-
ing algorithms sort the objects according to their degree of
deviation, instead of coming only to a binary decision for
each object. This ranking eases a user-driven exploration
of outliers, by looking at the most deviating objects first.
In the past, outlier mining techniques have focused on vec-
tor data or graph data separately [1]. However, more and
more applications such as network intrusion, rare protein in-
teractions, financial fraud, or data cleaning demand outlier
analysis on combinations of both. They store relationships
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between objects represented as a graph and additional at-
tributes for each node, and mine outliers in this combined
data space.

In particular, we consider electronic platforms as exem-
plary application of outlier mining on attributed graphs.
Electronic marketplaces try to detect and delete fraudulent
product placements since their reputation is highly affected
by such fraud. Fake products, overpriced products, or ma-
nipulated reviews are examples for outliers that have to be
detected. Such electronic platforms provide a large num-
ber of descriptive attributes for each product (e.g., prices
of all sellers, ratings, and product reviews) and the prod-
uct relations stored in the graph of frequently co-purchased
products. All of this publicly available information can pro-
vide more information for the detection of outliers. However,
with more and more information (attributes, nodes, edges)
becoming available, not all of it is relevant for data analysis.
For instance, an object may be an outlier only w.r.t. a se-
lection of the attributes and a local graph neighborhood. We
call this the context of an outlier, in line with publications
on contextual outliers and community outliers [14, 30].

In Figure 1 we have illustrated a compact version of this
problem setting on an electronic marketplace with both graph
and attribute information. Product 8 is an outlier for the
following reason: It has an exceptionally high number of Re-
views, in contrast to all of its co-purchased Products 6, 7, 9,
10, and 11. Although high values in this attribute are nor-
mal over the entire database, it is exceptional for this specific
context (i.e., set of co-purchased products). Furthermore,
Product 8 belongs to a global graph partition described by
products with similar prices (e.g., Books community). How-
ever, only the local context selection of Product 8 (subgraph:
{6, 7, 9, 10, 11}, { Reviews, Price}) in both graph and at-
tributes reveals the local deviation of this outlier. With this
work, we focus on the selection of such local contexts for
each node in order to detect contextual outliers.

Traditional contextual outlier mining [30, 7] only consider
the numeric attribute space neglecting the graph structure.
On the other hand, current techniques [21, 15, 23, 29] com-
bining both graph structure and multiple node attributes are
not able to do an individual selection of the graph neighbor-
hood and its relevant attributes for each node. Thus, they
are not able to provide local contexts for each node in the
database in order to compute accurately the outlierness of
an object w.r.t. its own neighborhood. In the search for lo-
cal contexts, one open challenge is the increasing number
of attributes in today’s applications. Not all the attributes
show dependencies with the graph structure and they have



product sales reviews price
1 262 76 25
2 25 30 30
4 69 105 20
5 80 8 35
6 182 7 15
7 22 5 8
9 102 8 5
10 248 6 13
11 10 4 10

community outlier

Books community

—
local outlier

co-purchase network

Figure 1: Toy Example: local contextual outlier

almost random values for the residual attributes [29]. In
particular, only some attributes are relevant for a certain
graph cluster [21, 15, 4]. A core problem is that, even if one
has selected a specific graph neighborhood, some irrelevant
attributes will scatter the full attribute space [6], and out-
lier detection is hindered [23, 29]. The outlierness measure
is a further challenge, as both the graph structure as well as
numeric deviation in the attribute space have to be consid-
ered. The definition of a scoring function poses challenges
regarding the unification of these two properties.

We propose ConOut, the first statistical attribute selec-
tion, which enables the detection of contextual outliers in
graphs with multiple node attributes. Our context selec-
tion allows a good distinction of outliers w.r.t. both the se-
lected attributes and the local graph neighborhood. With
this model we select relevant attributes that show similar at-
tribute values for the selected graph neighborhood. Thus, we
can discern outliers from regular objects even in the presence
of many irrelevant attributes. This context selection allows
the detection of local outliers that would not be detectable
considering the entire graph or a global partition. Finally,
we measure outlierness of each object by unifying structural
and numeric information. With ConOut, we make the fol-
lowing contributions:

e Local context definition for outlier ranking

e A statistical context selection locally for each node
combining both attribute values and graph structure

e Qutlierness scoring unifying graph and attribute prop-
erties

In our experimental evaluation, we compare against several
baselines [38, 7, 2] on either graph or numeric data and

recent competitors using both graph and numeric data [14,
23, 29]. Finally, the results highlight the benefit of context
selection in graphs with multiple numeric node attributes.

2. RELATED WORK

We discuss outlier mining in (1) vector data, (2) graphs,
(3) combinations of both, and open challenges not yet ad-
dressed in literature:

Outlier Mining in Vector Data: For several decades, vec-
tor data has been studied [9], with different paradigms such
as supervised [36], deviation-based [28], distance-based [18]
or density-based methods [7]. In this work, we focus on
density-based outlier ranking, which proposes scores to mea-
sure the deviation of each object w.r.t. the object’s local
neighborhood. More recent developments focus on subspaces
[2, 19, 24, 17]. They rank objects based on any possible at-
tribute combination. However, all of these approaches con-
sider vector data only and do not address relations between
objects given in graph databases.

Anomalous Nodes in Graph Structures: This work focuses
on outlier nodes, and does not consider anomalous edges, ir-
regular subgraphs, and other suspicious structural anomalies
[26, 8, 13]. Recent research in the detection of anomalous
nodes can be categorized by the underlying graph types and
by the different anomaly models. Some approaches are lim-
ited to bipartite graphs [33, 35]. Others use the node neigh-
borhood and its power law characteristics [3]. Graph clus-
tering algorithms detect outliers as a byproduct [38, 32]. All
these approaches succeed in the detection of outlier nodes
based on the graph structure. However, they ignore infor-
mation at each node such as numeric feature vectors.

Mining Graphs with Node Attributes: An emerging re-
search field considers both graph and vector data. First,
a variant of graph clustering that combines node attributes
and graph structure has been proposed to obtain better clus-
tering results [39]. However, it does not consider selection of
relevant attributes. Although general approaches have been
proposed as pre-processing step for the selection of relevant
attributes [34, 29|, they do not consider a local selection
of the attributes w.r.t. the node neighborhood. Some clus-
tering techniques have focused on a local selection of the
attributes [21, 15]. In particular, they address the selec-
tion of multiple subspaces on the cluster level. In contrast
to this, partitioning algorithms locally select a single pro-
jection of the attributes for each cluster [4, 16]. Neverthe-
less, they do not focus on a single and individual projection
for each node for outlier mining. Regarding outlier min-
ing, only few approaches consider attributed graphs. Some
use semi-supervised learning in order to label nodes before
searching for suspicious nodes [10]. Others aim at unsu-
pervised mining. One algorithm [12] searches for irregular
subgraphs within a graph with numeric node attributes, but
it does not consider individual nodes. The work proposed
in [14] detects outlier nodes that deviate from communities
in attributed graphs (e.g., social networks). However, all at-
tributes are considered for each community without locally
excluding the irrelevant ones. To avoid this, an approach
for subspace selection has been proposed as a pre-processing
step for outlier mining on attributed graphs [29]. It extracts
subsets of the attributes that are correlated with the entire
graph structure. In contrast, ConOut selects the relevant at-
tributes for each node neighborhood locally. Furthermore,



outlier ranking based on subspace clustering techniques has
been introduced [22, 23]. The main drawback of all these ap-
proaches based on the subspace selection paradigm is their
time complexity, as there is an exponential number of possi-
ble subspaces. Overall, it remains an open issue to efficiently
select a local projection of the relevant attributes w.r.t. the
individual graph neighborhood for each node.

3. CONOUT MODEL

Our general idea is to measure locally the outlierness of
each object in a projection of the given attributes. Both
outlierness measure and projection are determined within
the local graph neighborhood of each object. In contrast
to other graph mining approaches, we do not consider a
global partitioning of nodes. This is because we aim to com-
pute accurate ranking values w.r.t. the local neighborhood
of each node. For each node neighborhood, our approach se-
lects carefully only the subset of attributes showing similar
attribute values. Hence, each object determines its own lo-
cal neighborhood in conjunction with its relevant attributes.
This local context selection for each node ensures a high con-
trast in this projection between an outlier and its neighbors,
that serves as a basis for computing the deviation. In the
following, we describe the problem overview in more detail
before we propose our statistical selection of attributes in lo-
cal graph neighborhoods and our novel outlierness measure.

3.1 Problem Overview

The aim of outlier ranking is to provide a sorting of all
objects o given in a database DB. In our case, we model
the database DB as an attributed graph formed by its graph
structure G = (V, E) and its attribute information A as
follows:

(1) Each object o is a graph vertex o € V and connected by
edges (0,p) € E to other nodes p € V'\{o} in the graph struc-
ture. We assume edges to be undirected and unweighted.
(2) Each object o is described by a vector ¢ = (z1, ..., zq) €
R? where the attributes are named A = {A,..., Aq}.
Outlier rankings score each object according to the degree
of deviation measured by a function score : DB — R. This
score provides a real-valued measure of the objects’ outlier-
ness.

Local Context Selection.

Local approaches for outlier ranking have shown to im-
prove the quality w.r.t. global approaches as they are able
to compare carefully each object with its own neighborhood.
Thus, they are able to detect hidden outliers which can-
not be detected if one considers the whole database [7, 3].
However, these traditional local approaches have focused on
vector [7] or graph data [3]. Thus, they are not able to
detect community outliers that appear in combination of
the graph structure and the node attributes. For example,
Product 3 shown in Figure 1 is such a community outlier.
It belongs to a community of related products (e.g., Books)
with similar price values and it shows highly deviating val-
ues in the attribute price. Only a context selection combin-
ing both the graph structure with node attributes enables
the detection of such outliers [14]. However, with more and
more attributes describing these nodes in such attributed
graphs, not all the attributes have to depend on the un-
derlying graph structure. Hence, they have almost random
values for the residual attributes (e.g., attribute sales). This

effect hinders the clear distinction of outliers from regular
objects as all nodes seem to be outliers if one considers all
attributes [25, 29]. Product 3 is only deviating w.r.t. the
attribute price. It is essential for outlier ranking to consider
only these relevant attributes for an accurate measurement
of the deviation. In order to avoid this, pre-propressing tech-
niques have been proposed for the selection of the relevant
attributes [29]. Nevertheless, to ensure the correlation of
the attributes with the entire graph structure is a global
perspective of the database which does not allow the local
extraction of the relevant attributes for each community.
Following our previous example, related Books have similar
prices if one only considers this community in a co-purchase
network, but this attribute may be not relevant for other
communities (e.g., Hardware products). To achieve this,
one can use graph clustering techniques [21, 15, 4] in order
to exploit local selections of attributes in each community
for outlier ranking [22, 23]. Overall, all these techniques
provide a global perspective on the database as they extract
the relevant attributes from a global clustering result instead
of analyzing the neighborhood of each node. So, these ap-
proaches are not able to detect local outliers in graphs with
multiple node attributes as they are not able to provide a lo-
cal context selection for each node. Product 8 is an example
of such a local outlier. It belongs to the global community
of Books and it also shows a similar price w.r.t. them. How-
ever, its own local context consists of more specific products
(e.g., Tolkien’s books) that show not only similar prices but
also similar number of reviews. Only such a local context
selection allows us to detect this product as a local outlier.
It highly deviates in a relevant attribute (e.g., number of
reviews) of its own neighborhood. We define this as local
context of an object o which consists of a tuple formed by a
selected subgraph and its relevant attribute projection:

DEerFINITION 1. Local Context
Given an object o, we define its local context as the tuple
(C(0), R(0)) consisting of the graph context C(0) = (V', E'),
V! CV and E' C E and its relevant attribute projection
R(o) C A.

Please note, that for our problem setting we do not consider
isolated nodes. This is because they do not have a neigh-
borhood regarding the graph structure. Thus, the set of
relevant attributes based on their local graph neighborhood
and their outlierness w.r.t. their local neighborhood cannot
be determined. Given Definition 1, two main questions re-
main: (1) how to define the graph context showing similar
graph structure between the nodes and (2) how to model
the relevance of an attribute given this graph context. We
address these questions in Section 3.2. Based on this careful
selection of a local context, the ranking function is able to
compute accurately the deviation of each object w.r.t. its
neighborhood.

Context based Ranking.

Traditional scoring functions in the vector space [7, 1] are
only based on the object attributes 0, while graph methods
[3, 8] consider only the graph structure G = (V,E) for
the scoring function. In contrast to these traditional rank-
ings, we propose a score that incorporates information of
both resources based on a previous local context selection.
The vector space provide essential information about the
deviation of an object regarding the attribute values. On



the other hand, the graph structure can enrich this with
valuable information about the affinity between the objects
as observed in several studies [20, 11]. A strong connected
subgraph of nodes is an evidence that they share some sim-
ilarities in contrast to isolated nodes that can be the result
of a casual relation. Thus, an object showing high devia-
tion in a selected set of attributes within a highly connected
subgraph should be ranked first in the result compared to
an object low connected w.r.t. its local neighborhood. For
this reason, the score has to integrate the information from
the deviation within the relevant attributes w.r.t. the con-
nections in its local context. This score gives way to new
challenges, as one has to unify the information from both
components defined in Definition 1: the deviation in the rel-
evant attribute values and the connections within the graph
context. We give more details on an instantiation of such
score in Section 3.3.

3.2 Local Context Selection

In the following, we explain the local context selection
of each object o formed by its graph context C(o0) and its
relevant attribute projection R(0) (cf. Definition 1).

Graph Context.

For each object o we select a subgraph C(o) C V. It
represents its local context, which shows high similarity in
the graph structure between nodes belonging to this context.
Intuitively a context C'(0) has the following property:

Vp,q € C(0) : p is structurally similar to g

As graph similarity, we rely on the shared nearest neigh-
borhood (SNN) [38, 32]. Based on this similarity we define
formally the graph context C'(0).

DEFINITION 2. Graph Context C(v)
Given two objects v,p € DB and a threshold € € [0, 1], the
structural similarity is defined as:

|Adj(v) N Adj(p)|
V(IAdi()]) - (1Adj(p)])
where Adj(v) = {p € V | 3(v,p) € E}U{v}. It forms the
basis for the transitive closure of similar nodes in the graph
context C(0), as defined by:

C(v,e)={peV| 3Faq,...,qx € DB,
sim(qi, gi+1) > €
with v =q1 and p = qi}

sim(v,p) =

Overall, we define the context of an object o as the re-
flexive transitive closure of adjacent nodes with high simi-
larity. It restricts the object neighborhood by a similarity
threshold e, which controls the structural similarity of the
context. This selection of the local neighborhood is only a
first step in the context selection and it can be also achieved
by other local graph context definitions (e.g., extensions of
local PageRank [5]). Outliers show up if one focuses on a
context of nodes which share common properties, both in
structure and in attribute values. Hence, this selection of
the local neighborhood is only a first step in the context
selection. Further restrictions are defined by the attribute
context.

Relevant Attribute Selection.
In addition to the graph context C'(0), we require a subset
of the attributes R(0) C A where the attributes show similar

values. For many attributes the values show almost random
distribution with high variance. These scattered attributes
(i.e., showing high variance) are not relevant for the selected
graph context. We propose a statistical test to exclude such
irrelevant and scattered attributes for each individual object
in the database. The idea is to include only attributes that
show significantly lower variance in C(o0) than the overall
data distribution.

DEFINITION 3. Attribute Context R(0)

A; has significantly lower variance )

Rlo)={4: e 4| in C(o0) than the overall database

As basic properties we have to compute the mean pu;(0)
and variance o7 (0) of a given graph context C(0), as follows:

o) = 3 g oho) =

peC (o)

Zpec(o) (pi — Ni)2
|C(o)] -1

Similarly we compute the overall mean fi; and variance o2
for attribute A; in the entire database. Both the local dis-
tribution and the global distribution are compared to each
other.

Our test is based on a statistical significance test aim-
ing at reducing the probability that an irrelevant attribute
passes into the set of relevant attributes. We test against the
null hypothesis that objects are distributed with the same
local and global distribution, i.e., 07 (0) = 02. We expect a
relevant attribute to show significantly lower variance in a
local context C'(0) when compared to the entire database.
This means that the structural context has selected a sub-
graph with very similar attribute values in A;. We exclude
scattered attributes that do not fulfill this requirement. Fur-
thermore, by setting a very low significance value a = 0.05,
we ensure that irrelevant attributes pass the test with a very
low probability.

DEFINITION 4. Attribute Context Test
For the global variance o? and the local variance o2 (o) in
context C(o) we define hypotheses Hy and Hi:

Hy : C(0) with similar distribution to DB, i.e., 02(0) = 02

Hy: C(o) with individual distribution, i.e., o7(0) < o2
ensuring a significance level:

P(Hy is rejected |[Ho = TRUE) <

Depending on the data characteristics, different statistical
tests can be applied for our novel attribute selection in graph
contexts. In this work, we examine two different statistical
tests and evaluate them in Section 5.

First, we use the F-Test as a statistical tool to analyze two
Gaussian distributions by the comparison of their variances
[27]. The F-test derives the threshold required for rejecting
Hy out of the degrees of freedom, i.e., the size of the context
and the size of the database. As test statistic, this test uses
the quotient of the two variances observed. Formally,

2
_ T

(o)

is the observed test statistic and Fj1 k2 is the critical value of
a F-distribution with the degrees of freedom: k1 = |DB| —1



and k2 = |C(o)| — 1. Hy is rejected when P(Fji,p2 > F)
is under the significance level o. The F-Test ensures that
R(0) contains only attributes A; with low variance in C(o).
In particular, we limit the probability of having an attribute
with high variance in R(o) by «. Let us illustrate this test
with our toy example in Figure 1 and Product 8 with its
local context C'(o) = {6,7,8,9,10,11}. Testing attribute
sales means to check if the local variance is lower than the
variance of the entire database (e.g., the entire co-purchase
network with size |DB| = 36). With P(F35,5 > 0.7) = 0.76,
this attribute is clearly above the significance threshold «
and is considered irrelevant. In contrast to this, price ob-
viously shows low local variance in C(o0). In particular,
P(F355 > 5.2) = 0,01. In general, attributes with p-values
under the significance level will be selected as relevant at-
tributes.

Second, we also analyze our approach with the two sample
Kolmogorov Smirnov test that does not require any underly-
ing assumption of the data distribution [31]. This test does
not only consider variations in the variance to determine if
two samples significantly differ, but it also considers mean
variations. To achieve this, it considers the absolute dis-
tance between two empirical distribution functions, i.e., the
empirical distribution functions of attribute A; considering
the whole database Fpg and the individual context Feo)-
The calculated test statistic is defined as the maximal dif-
ference:

D =sup |[Fpp(za;) — Foeo)(za,)

TA;

If the calculated test statistic D is larger than the critical
value K|pB|,c(o0)|; the null hypothesis is rejected with a sig-
nificance level a with P(K > Dpp c(0)) < .

In general, A; is only relevant when the Ho hypothesis is
rejected. Without a selection of the attributes by a statisti-
cal test, scores are blurred by the high variance of irrelevant
attributes. So, it ensures a high contrast between outliers
and regular objects. This provides the basic means for the
outlierness scores in the following Section. Regarding the
use of a statistical test, other tests for the comparison of
samples can be found in the literature. Some of them are
non-parametric and aim to be more robust w.r.t. the pres-
ence of outliers (e.g., Wilcoxon signed-rank test [37]). Ad-
ditionally, existing tests can also be modified to avoid an
impact of the outliers on the test without assuming high ho-
mogeneity in the context (e.g., using the median instead of
the mean to compute the variance). However, the focus of
this work is not to analyze or improve the statistical tests
for the selection of the attributes. We have only selected two
well-established representatives to evaluate our framework.
We do not expect any difficulty when instantiating the sta-
tistical test used with any other statistical test possible.

3.3 Context Based Outlier Ranking

As an essential property of our scoring, we measure out-
lierness locally for each object. We ensure an adaptive scor-
ing in local contexts and aim at the local deviation of each
object. So, we follow the well-established paradigm of local
outlier ranking [7, 24]. Based on this general idea of local
outliers we compare each object with its local neighborhood
and measure its outlierness locally in contrast to this set
of objects. Furthermore, one intrinsic challenge behind this

intuitive outlier notion is that one has to ensure that out-
lier scores remain comparable. Using one scoring function
for different subgraphs and different attribute sets will be
biased (e.g., w.r.t. the context size). Hence, we have to nor-
malize the score accordingly for each object. We propose
such a normalized and unified score in the following. Before
we introduce our novel contextual score to integrate the in-
formation of both node attributes and graph structure, we
present first the measure to extract the deviation of an ob-
ject in the vector space and the measure to calculate the
edge density of an object w.r.t. its neighborhood.

Attribute-Based Score.

As attribute-based score we consider the deviation of each
selected attribute A; € R(0). We measure the deviation of
an object o w.r.t. the local mean pu;(0) in its graph context.
We formalize the attribute-based deviation of a node in the
following definition.

DEFINITION 5. Local Attribute Deviation LAD (o)
Given an object o and its relevant attributes R(o), we define
its LAD as:

. . 2
S neney Zo)
i o ai%(0)
LAD() = \/ |R(o)|

where p;(0) and o;(0) are the mean and standard deviation
of attribute A; in the graph context C (o).

Regular objects with no deviation in their attribute values
are clearly separated from outliers, i.e., a regular object o
has a low deviation (LAD(0) ~ 0). We apply this definition
within the local context of each node and we do not apply it
for the entire database. Thus, we assume a normal distribu-
tion within the local contexts representing the inliers, and
outliers are assumed to deviate from the mean of the distri-
bution. These objects are regular observations and should
end up at the bottom of our ranking. In contrast, highly
deviating objects that are observed will be scored with high
outlierness (1 < LAD(0) < c0). Comparability is achieved
by our normalization: It is neither biased by the number of
selected attributes |R(0)| nor by the different local densities
resulting in highly different variance values ;2(0).

Graph-Based Score.

Second, we define the structural properties that compare
the object connections to the ones of its local graph context.
We follow the local adaptation in the attribute-based score
and extend this idea to local graph densities.

DEFINITION 6. Local Graph Density LGD(o)
Given an object o and its graph context C(o0), we define its
LGD as:
con(o)

Zpec(o) con(p)
1C(0)]

LGD(o0) =

with the average connectivity con(p) at node p as:

1 .
con(p) = W ’ Z sim(p, q)

(p,9)EE

With con(p) we describe the average connectivity to nodes
belonging to the same context. It is based on the same no-
tion of SNN as the one used in our graph context definition.



For comparability (i.e., outlier scores in different contexts)
we normalize connectivity of each object w.r.t. the connec-
tivity of its neighborhood. For the local node density, we
compare the connectivity of o with the average connectivity
in its graph context C(0). Low density (0 < LGD(o) < 1)
highlights a node with only low connectivity in comparison
to its local graph context. In these cases, o should get lower
weights as a contextual outlier and should be ranked lower in
comparison to highly connected nodes (1 < LGD(0) < o0).
With LGD(o) = 1, we have a baseline for the structural
connectivity. In such cases, we consider only the attribute
deviation.

Contextual Outlier Score.

Finally, we integrate graph-based and attribute-based mea-
sures to form a unified scoring function, which aims at con-
textual outliers combining the information from graph struc-
ture and attribute values. Our score aims to consider both
attribute and graph properties: A local outlier may have a
small attribute deviation from a densely clustered neighbor-
hood, or it may have high deviation from a weakly connected
neighborhood. Both cases get a high outlierness score. Over-
all, our outlier score aims to detect local deviation consider-
ing both graph and attribute properties.

DEFINITION 7. Contextual Outlier Score

Given an object o with |C(0)| > 2 and |R(o)| > 0 we define
its contextual outlier score as:

score(o) = LGD(o0) - LAD(o)

Please note that the product LG D(0)- LAD(o) achieves bet-
ter outlier detection than its individual factors LGD(0) and
LAD(0). It covers several cases of contextual outliers w.r.t.
both structural and attribute information that cannot be
detected by the individual measures in one of the two infor-
mation sources. In addition to this, our contextual outlier
score exploits the zero property of the multiplication ensur-
ing that regular objects (e.g., objects LAD = 0) appear at
the bottom of the ranking. In the following, we discuss some
of these contextual outlier properties here, and show an em-
pirical comparison to the individual measures and other ag-
gregation functions such as minimum, maximum, and sum
in Section 5.

LGD >1& LAD > 1

Strong structural connections and high deviation of attributes
in this graph context is the most prominent case of a con-
textual outlier. Such an outlier will be scored extremely
high. It shows high attribute deviation although the struc-
tural similarity gives way to the expectation of very similar
attribute values.

LGD =1& LAD > 1

Average connectivity (similar to its local neighborhood) and
high attribute deviation are scored with high outlierness
as there is a graph context. However, attribute values are
highly deviating from the residual objects in the context.
LGD ~0& LAD > 1

Low structural density is an indicator for a weak graph con-
text and lowers the overall score of the object.

LGD~0& LAD =0

Lower attribute deviation and lower structural similarity is
the other extreme case. In such cases there is no indication
for a contextual outlier at all. These objects will be ranked

last.

We also include the special case with those objects being
hubs in the graph. These nodes belong to multiple contexts
as they do not have high structural similarity to a single
graph neighborhood and share different properties with dif-
ferent communities. In these cases, we score based on their
adjacent neighbors and all relevant attributes of their neigh-
bors.7 i.e.., Q(o) = Adj(o0) and R(o.) = Upe adj(o) R(p.). Henpe,
scoring is simply the average deviation from the neighboring
contexts.

Summarizing the ConOut model, we have proposed a lo-
cal context definition, a statistical selection of relevant at-
tributes, and a scoring function for contextual outliers. Based
on this formal model, we will sketch the algorithmic com-
putation in the following section and examine the quality
enhancement for outlier detection in Section 5.

4. ALGORITHM

In this section, we describe the ConOut algorithm. It
computes the outlierness of each node in three steps: (1)
compute the local graph context, (2) select its relevant at-
tributes, and (3) compute the local outlierness. Finally, all
nodes are sorted by their scores.

As parameter, we require only the threshold € that states
how similar objects have to be in the graph structure. In
the first step, nodes v adjacent to o, which satisfy the struc-
tural similarity, are inserted into a queue. For each of these
nodes, we recursively expand the local context with its ad-
jacent nodes until no further nodes can be added into its
context and we mark them as visited in the boolean vec-
tor (Lines 4-13). As the structural similarity is symmetric
(Mv,0 € DB, sim(o,v) = sim(v,0)), all nodes fulfilling this
condition have the same context (Line 8). In the second step,
we compare the distribution of attribute values in the local
context to the distribution in the entire database. A sta-
tistical test for this comparison is applied to each attribute
(Lines 14-19). Finally, we compute the outlierness of each
object based on its local context and its relevant attributes
(Lines 20-26).

Complexity Analysis.

Overall we have to iterate over all objects in our database
|[DB| = n. In the first step, we access the graph by means
of an adjacency list for each node. This has a cost propor-
tional to the degree of each node. Thus, the cost is linear
with the number of edges m for each iteration (Line 5-13).
In the worst case, when the whole graph represents the lo-
cal context, it is |V| + |E| = n + m. In this case, all nodes
are marked as visited in the first iteration of the main loop
(context[o] = true), and the algorithm iterates only over the
boolean vector without searching for new contexts. This is
a rare case for a complete graph, or for a parametrization
that is too permissive (e.g., ¢ = 0). In the second step, the
computational cost is linear with the number of dimensions
d = |A| and the number of nodes of the context. Each at-
tribute is tested once for each local context. To compute
the outlierness, we iterate over each node of the local con-
text, and the runtime of scoring is constant in each iteration,
since we have pre-computed all values required for the scor-
ing function. In the worst case, the local context is the whole
graph, and we must compute the ranking for each node. Fi-
nally, the nodes are sorted by the score values. Overall, the
runtime of ConOut depends on the local context selection,



Algorithm 1 ConOut

Input: DB : (V, E)&A, and parameter €
Output: Ranking of all o € DB
1: Initialize boolean vector context for all o € DB: false
2: for all o € DB where context[o] = false do
3:  Mark context|o] as true
4:  insert all {p | (0,p) € E} into queue Q
5. while (Q # 0) do
6: if p is similar (cf. Def. 1) then
7.
8
9

Insert p into C(o)
Mark context[p] as true
: Insert non-visited ¢ with (p,q) € E into Q
10: end if
11: Label p as visited and remove p from Q
12:  end while
13: for all A; € A do

14: Compare distribution of A; in C(o0)
with the distribution of 4; in DB

15: if A; relevant (cf. Def. 3) then

16: Add A; to R(o)

17: end if

18:  end for

19:  for all v € C(0) do

20: if (|]C(o)| > 2) A (|R(0)| > 0) then

21: Compute score based on C(0), R(0) (cf. Def. 7)

22: else

23: Compute score based on Adj(v), A

24: end if

25:  end for

26: end for

27: Sort all 0o € DB by score(o)

the statistical test of relevant attributes and the sorting of
the nodes. Thus, the worst case cost is O(m+d+n-log(n)).

S. EXPERIMENTS

We evaluate the quality, runtime, parametrization and dif-
ferent scoring functions on synthetic and real world datasets.
We compare ConQOut to several competitors:

1. The clustering algorithm SCAN [38], which considers
only the graph structure. It allows the detection of
structural outliers.

2. Different paradigms considering only vector data: the
full dimensional approach LOF [7] and the subspace
outlier approach SOF [2] that analyzes the relevant
subspaces in order to exclude irrelevant attributes that
hinder outlier detection.

3. As full dimensional approach for attributed graphs,
the community outlier mining algorithm CODA [14],
which considers all the node attributes and the graph
structure.

4. Two related algorithms based on the subspace selec-
tion paradigm that combine both resources: (1) outlier
ranking on attributed graphs based on subspace clus-
ter analysis GOutRank [23] and (2) a global subspace
selection algorithm as pre-processing step ConSub for
mining attributed graphs [29].

The quality of the obtained outlier ranking has been de-
termined by the area under the ROC curve (AUC). For
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Figure 2: Quality w.r.t. number of attributes

each position in the ranking, we compute the ratio of preci-
sion/recall and compute the AUC value as commonly used
for the evaluation of outlier rankings [1]. We have imple-
mented all algorithms in Java and performed experiments
on an Intel CoreDuo running 1,8 GHz and 4 GB memory.
To facilitate comparability of our experiments, we provide
code, datasets, and parameter settings online on our project
website!.

5.1 Synthetic Data

Generation of the Synthetic DataSet.

We have based our generator on the graph generator de-
scribed in [38]. It allows to generate structural outliers as
well as hubs connected to multiple clusters. We have ex-
tended this generator with numeric node attributes. We gen-
erate graph clusters with intra-cluster connectivity of prob-
ability P;,, and inter-cluster probability of edges Pou:. In
our setup, P, is higher than P,,:. For each graph cluster,
we randomly select = € (1, d] relevant attributes and choose
their attribute values based on a Gaussian distribution. In
contrast to this, all other attributes get values out of a uni-
form random distribution. The attribute values for hubs
and structural outliers are chosen depending on the distri-
butions of their direct neighborhood. In addition to hubs
and structural outliers, we insert context outliers that are
hard to identify. They are generated by selecting clustered
nodes and manipulating a random number of their relevant
attribute values. As ground truth for each object, we have
marked the outliers generated with a respective label.

Experiment Configuration.

We generate different graphs with an increasing number
of attributes. For each dimensionality, we generate three
graphs to average over random effects in the generation pro-
cess. Additionally, we generate one-dimensional datasets
varying the number of nodes and edges for the runtime eval-
uation. On each of these datasets, we configure the different
algorithms as follows: For the algorithm CODA, we set the
exact value of the outlier ratio and the number of clusters
since these parameters are known for each dataset generated.

"http://www.ipd.kit.edu/ muellere/ConOut/



Additionally, we used 10 different initializations for CODA
and used only the best result. Regarding the unknown pa-
rameters for the other algorithms, we try several parameter
combinations. Finally, we use the results of the parameter
combination showing the best quality results. Detailed in-
formation about the exact ranges of each parameter can be
found in our website. In particular, ConOut achieves the
best results with values of € between 0.5 and 0.7.

Quality evaluation.

First, we evaluate the outlier detection quality w.r.t. the
number of node attributes. We depict average AUC val-
ues for all competitors in Figure 2. For each algorithm, we
have tried to find optimal parameter settings. In particular,
for CODA we have tested 10 different initializations and
have used only the best result. In addition, we evaluate two
statistical tests for our approach. Experiments show that
the selection of relevant attributes using the Kolgomorov-
Smirnov test (ConOut_KT) achieves better results than the
F-Test (ConOut_FT). This is because it is more robust by
mean variations w.r.t. the global distribution. Not depend-
ing on this choice of statistical tests, our approach outper-
forms all competitors. It is the only algorithm that can
detect the context outliers hidden in the graph. Due to our
statistical selection of relevant attributes, we achieve high
quality even for a large number of attributes. In contrast,
traditional competitors tend to miss some hidden outliers as
they only consider one data source (graph structure (SCAN)
or vector data (LOF, SOF)). A detailed analysis of the de-
tected outliers in Figure 2 reveals that SCAN is performing
well on structural outliers having deviating attribute values.
Regarding the local approach LOF), it neglects the informa-
tion of the graph structure and it does also not select the
relevant attributes for each neighborhood. Thus, its perfor-
mance decreases with increasing dimensionality. Similar to
this, CODA uses all the given attributes and fails because
of the irrelevant attributes. Although ConSub selects the
relevant attributes for the graph structure, this selection is
done globally (for the whole graph). Thus, it is not able
to select locally the relevant attributes for each neighbor-
hood. Finally, the ranking functions of GOutRank heavily
depend on the underlying subspace cluster definition and do
not consider the local neighborhood of each node. Over-
all, we have shown that ConQOut achieves significant quality
improvement in the detection of context outliers.

Runtime Evaluation.

As explained in Section 4, the runtime of our algorithm
depends on the database size |V|, number of edges |E|, and
the number of attributes |A|. In Figure 3, we depict scal-
ability results w.r.t. all of these properties in comparison
to our competitors. Figure 3(a) shows the scalability with
increasing number of attributes. The runtime scalability is
slightly higher in comparison to traditional approaches due
to the combination of both information sources (graph struc-
ture and vector data). We deem this tolerable due to the
significant quality improvements shown in Figure 2. Com-
pared to CODA, we show better scalability, as its runtime is
quadratic in the number of attributes, due to matrix opera-
tions for the multi-variate likelihood function of the under-
lying Gaussian distribution. Additionally, approaches based
on subspace selection show much higher runtimes w.r.t. the
number of attributes in contrast to the linear time com-
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plexity of ConOut. In particular, GOutRank does not scale
with high dimensionality (up to 30 attributes). Further-
more, we analyze runtimes w.r.t. the database size and the
number of edges in Figure 3(b) and Figure 3(c). In con-
trast to our approach, CODA and GOutRank do not scale
with dense graphs over 2.5 million of edges as shown in
Figure 3(b). Overall, ConOut scales well with increasing
graph size (|V], |E|, and |A]). Although CODA, GOutRank
and ConSub consider both graph and attribute information,
ConQOut achieves both better quality and runtime perfor-
mance.

Parameters.

ConOut uses the parameter £ to specify the local con-
text of each node depending on its connectivity. To eval-
uate the sensitivity of our parameter we run experiments
with different density characteristics (i.e., highly connected
Graph 1 and weaker connected Graph 2). Figure 4 shows
the AUC quality measure w.r.t. the value of . We see that
parametrization is robust for a range of top quality results,
and there is the expected shift of optima w.r.t. the under-
lying graph density. Only extreme cases show significant
decrease in quality: On the one hand, if the value of ¢ is
too permissive (e.g., values between 0...0.2), more nodes
are part of the local context, and ConOut is hindered in its
selection of relevant attributes in this large context. On the
other hand, a restrictive setting of ¢ (e.g., 0.5...1) causes
very small contexts in which no outliers can be found.

Ranking Functions.

The scoring function of ConOut unifies the information
from the local graph density (LGD) with the attribute de-
viation (LAD) in order to obtain accurate rankings for the
contextual outliers. For the quality evaluation of our scoring
function (cf. Definition 7), we compare it to different base-
line aggregation functions (MIN, MAX, SUM) and the raw
measures LAD and LGD. We measure the median AUC
values obtained by different scoring functions on the 36 syn-
thetic graphs used for the previous quality evaluation. In
Figure 1 shows the quality results for the different scoring
functions. Local graph density (LGD) and local attribute
deviation (LAD) are not able to accurately detect contex-
tual outliers. They fall prey to the information loss as they
use only one of the information sources. Aggregation func-

tions such as MAX and MIN use both sources. However,
they are dominated by one of the measures. The score is
not able to make a clear distinction of contextual outliers.
For example, two nodes with high local graph densities can
have the same score although the attribute deviation is dif-
ferent for each node. The best quality results for contextual
outliers are obtained by sum and product which combine
both values. However, due to the design of LAD and LGD
(cf. Section 3.3), we achieve best results by weighting LAD
with a LGD factor. Our proposed scoring function shows
overall highest quality results in comparison with all other
scores.

Ranking Function

AUC[%)]

LAD - LGD 93.3
LAD + LGD 90.44
LAD 90.63

LGD 51.4
Max(LGD,LAD) 75.45
Min(LGD, LAD) ~ 87.82

Table 1: Results of the different ranking functions

5.2 Real World Data

We use two networks from different domains to evaluate
our approach on real world datasets. First, we perform a
thorough evaluation of our approach in a subgraph of the
co-purchase Amazon network. On this dataset, we have the
ground truth for objective quality assessment from a bench-
mark proposed in [23]. Second, we use the bibliographic
repository provided by DBLP for the evaluation of our ap-
proach in a larger attributed graph.

5.2.1 Amazon Network

The dataset is a subgraph of the Amazon co-purchase net-
work. It consists of of 124 nodes and 334 edges. Each prod-
uct in the graph is described by attributes such as product
prices, review ratings, and several more (30 attributes) [23].
Figure 5 shows the Disney network with three outlier ex-
amples and their connectivity to the co-purchase network.
Additionally, we also provide their Amazon Standard Iden-
tification Number for manual verification 2. In this real-
world dataset, each object has been labeled manually by
high school students, providing us the ground truth (object
is an outlier or not) for quality assessment.

Table 2 gives an overview of quality results. Considering
only one source of information — only attributes or graph
structure — clearly misses some of the outliers. In particu-
lar, the full space technique (LOF) is hindered by the high
dimensionality of the product features. On the other hand,
subspace analysis (SOF) allows the detection of subspace
outliers (e.g., O2), which is a structural outlier found by
graph-based techniques (SCAN) as well. However, none of
the paradigms is able to reveal contextual outliers such as
O1 and Os (cf. Figure 5). For example, product O; is one
of the contextual outliers that corresponds to the overpriced
film The Jungle Book (199/4) of Rudyard Kipling’s hidden in
a group of Read-Along Disney films. Its local context is not
only characterized by the strong connectivity between the
nodes in its graph context, but it is also has following rele-
vant attributes: number of reviews and price private seller.

*http://www.amazon.com/dp/ASIN_VALUE




Used data Paradigm Algorithm Parameters AUC Runtime Speedup
. full space LOF [7] MinPts:20 56.85 41 0.20

(1) attributes subspace selection SOF [2] ¢ : 10, population : 20 65.88 825 4

(2) graph graph clustering SCAN [38] nw:2,e:0.5 52.68 4 0.02
full space CODA [14] K:871:15:,X:01 50.56 2596 13

(3) both subspace cluster analysis GOutRank [23] configuration in [23] 86.86 26648 134
global subspace selection ~ ConSub [29] configuration in [29]  81.77 8930 45
context selection ConOQut €:0.5, FT test 81.21 199 1

Table 2: AUC[%] values, Runtime[ms] results and ConOut’s speedup w.r.t all competitors on the Amazon

database [Disney DVD selection].

These outliers can only be detected if graph structure and
attributes are combined. CODA considers both data types,
but it fails due to the existence of irrelevant attributes. Re-
garding approaches doing a selection of the attributes, the
subspace selection techniques (GOutRank and ConSub) ob-
tain high quality results, but at much higher runtimes. In
contrast, ConQOut selects a projection of relevant attributes
in the local graph neighborhoods. Thus, it allows to iden-
tify highly deviating values. It is the most efficient approach
in these graph and attribute contexts. As shown in Table
2, ConOut shows a 6.5% decrease w.r.t. the best algorithm
(GOutRank) while being 134 times faster in the runtime.
Therefore, it shows the best performance considering both
quality and runtime results. It invests some extra runtime
compared to traditional approaches for a significant quality
improvement. On the other hand, it loses some quality com-
pared to subspace techniques [29, 23], but is more efficient.
Thus, it can be applicable for larger networks.

In the following, we discuss the ranking positions between
these outliers considering its graph connectivity. These have
been ranked at top positions by ConOut. Our approach as-
signs the fourth position to O1, which is a local outlier with
highly deviating attribute values in a strongly connected
neighborhood. Second is object O3 in the ranking, which is
weakly connected to its neighborhood and deviates strongly
in the rating values from the other co-purchased products.
As our ranking function combines the graph and attribute
information (cf. Def. 7), O1 and O3 have higher scores than
the isolated co-purchased product Os2. Regarding the rank-
ing functions, Figure 3 shows the outlier detection quality for
each of them. The best AUC values are highlighted in bold,
and high quality results that are within 2% are not grayed
out. Results show that the unification of both information
sources: local graph density and the attribute deviation ob-
tains the highest results. However, the proposed ranking
function (cf. Def. 7) outperforms the others. Overall, the
evaluation on this real data set demonstrates the existence
of local outliers hidden in combinations of the graph struc-
ture and the attribute values. We have shown that ConQOut
is more effective than existing algorithms and ranks local
outliers accurately according to their degree of deviation in
attributed graphs.

5.2.2 DBLP Network

In our second evaluation we use a larger database. We
have extracted a part of the DBLP graph with authors rep-
resented as nodes and co-authorship as edges. In addition,
we describe each author by a scientific profile containing 46
numeric attributes. These attributes provide information on

Figure 5: Visualization of 3 hidden outliers on Ama-
zon database

the author’s publication ratio at major database, data min-
ing, artificial intelligence, and statistics conferences. The
extracted graph consists of 44808 nodes with 119053 edges.
In this graph, ConOut achieves a runtime of 11.26 seconds.
We discuss the outlierness of individual authors w.r.t. their
local context in DBLP. Note that we are not looking for
truly extraordinary individuals, e.g., with an exceptionally
high number of publications in DBLP. Hidden outliers are
more local exceptions, e.g., deviating significantly from their
co-authors. Let us discuss some of the top-ranked authors
found by ConOut.

Pavan Vatturi: He is a structural outlier as Pavan has
published only together with one author. He has also high
deviating attribute values. His local context is identical to
the one of his advisors’ Weng-Keen Wong. Weng-Keen has
a local context with high publishing ratios in IJCAI, AAAI,
and ICML, but Pavan has never published in these confer-
ences in contrast to the other authors in his advisors context
(e.g., Ugur Kuter, Santiago Ontandn, Victor R. Lesser).

Christoph Heinz is a strong connected node in his con-
text consisting of 18 authors (e.g., Martin Schneider, Jens-
Peter Dittrich, Dieter Korus). In this context, authors pub-
lish frequently on database conferences (e.g., VLDB, EDBT,
and several more) but they have never publish on the CIKM
conference. In contrast to his context, Christoph has not



publish in database conferences, which are relevant for his
context, but he is the only one that has published on CIKM.

Ina Miiller-Gormann belongs to a highly connected
local context (31 authors) with several relevant attributes
(SIGMOD, KDD, ICDE, ICDM, and several more). She
has published with many authors (e.g., Arthur Zimek, Hans-
Peter Kriegel, ...) of this context, however, she has a clear
deviation in the relevant attributes. She has not published
in the relevant conferences of her local context.

All these authors are clearly local outliers. The strong
connectivity in the graph structure and the highly deviat-
ing attribute values in the relevant attributes of their con-
texts cause their high ranks. Thus, they would not have
been found without the local context selection provided by
ConOut.

Ranking Function ~AUC|%)]
LAD - LGD 81,21
LAD + LGD 79,66

LAD 78,10
LGD 50,28

Max(LGD,LAD) 75,14
Min(LGD, LAD) 78,81

Table 3: AUC results for the different ranking func-
tions on Amazon database [Disney DVD selection]

6. CONCLUSION AND DISCUSSION

In this work, we have proposed ConQut, a context selec-
tion for outlier ranking in graphs with numeric node at-
tributes. Our approach computes locally graph and at-
tribute contexts for each object in the database. For each
context, it selects a set of relevant attributes. Relevance of
attributes is measured by a statistical test which compares
the local and the global variance of each attribute. Thus,
outlier ranking relies on a high contrast between outliers
and their local context. Overall, ConOut computes a high
quality outlier ranking that scales well with the number of
attributes. Our thorough evaluation on synthetic and real
world data shows that it finds local contexts, in contrast to
other approaches.

ConOut balances quality with efficiency when joining at-
tribute information with the graph structure. In contrast
to approaches based on subspace selection, the runtimes of
ConQut are significantly lower. To achieve this, we assume
that attributes are independent. We do so to give way to
an efficient selection of relevant attributes, in linear time.
Efficiency is important when it comes to larger attributed
graphs. As future work, we aim to design local efficient
approaches without assuming the independence of the at-
tributes.

Our approach focuses on numerical node attributes. Thus,
a mixture of attribute types such as binary, categorical, and
continues values is not explicitly considered in this work.
The statistical test would require additional unification of
the relevance measure to be applicable in the presence of
such heterogeneity. Finally, we also aim at other graph defi-
nitions, e.g., considering edge attributes or directed graphs.
Such data provides even more information for data mining,

however, it also poses novel challenges regarding attribute
selection.
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