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Abstract—Outlier mining is an important task for finding
anomalous objects. In practice, however, there is not always a
clear distinction between outliers and regular objects as objects
have different roles w.r.t. different attribute sets. An object may
deviate in one subspace, i.e. a subset of attributes. And the same
object might appear perfectly regular in other subspaces. One
can think of subspaces as multiple views on one database.
Traditional methods consider only one view (the full attribute
space). Thus, they miss complex outliers that are hidden in
multiple subspaces.

In this work, we propose OutRank, a novel outlier ranking
concept. OutRank exploits subspace analysis to determine the
degree of outlierness. It considers different subsets of the
attributes as individual outlier properties. It compares clus-
tered regions in arbitrary subspaces and derives an outlierness
score for each object. Its principled integration of multiple
views into an outlierness measure uncovers outliers that are
not detectable in the full attribute space. Our experimental
evaluation demonstrates that OutRank successfully determines
a high quality outlier ranking, and outperforms state-of-the-art
outlierness measures.
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I. INTRODUCTION

Outlier ranking is an important data mining task for the

identification of anomalous, suspicious, and rare objects

in large data volumes. Many applications in science and

business routinely collect huge amounts of data. In practice,

many of these processes face data quality issues. Sensors

might fail to deliver correct values, experimental conditions

may vary unpredictably, or human behavior is simply unex-

pected. However, due to the amount of information measured

in various attributes, there is not always a clear distinction

between outliers and regular objects. An object (e.g. a person

o2 in Fig. 1) might show different roles in the data, clustered

w.r.t. some attributes (regular sports and sleeping behavior)

while being an outlier in some other attributes (highlighting

an unexpected social attitude). While existing outlier ranking

approaches have been successful in detecting outliers that are

relatively simple, namely those that show when considering

all attributes simultaneously, they have not addressed the

issue of identifying outliers that are anomalous only in some

subsets of the given attributes (so-called subspaces).

A recent research direction has focused on data analysis

in such subspaces. A broad set of clustering algorithms has

been proposed for subspace cluster detection in arbitrary

views of the data space [1], [2], [3], [4], [5], [6], [7],

[8], [9], [10]. They form a well established research area

with scalable processing schemes and various clustering

models taking different application demands into account.

In general, subspace clustering selects a set of relevant

attributes for each cluster. It is able to detect multiple views

on the same database, and groups each object accordingly to

multiple subspace clusters. This type of multiple cluster as-

signment has shown high quality results for example in gene

expression data [5], where each gene has multiple functional

roles that can be detected by multiple subspace clusters.

However, all of these techniques focus on object groupings

and are not able to assess the deviation of individual outliers.
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Figure 1. Outliers w.r.t. multiple subspace views



There is only relatively little research for outlier detection

in subspaces [11], [12], [13]. All three of these approaches

re-invent subspace analysis in the context of outlier min-

ing and fall prey to well-known scalability and subspace

selection challenges. We see huge potential in utilizing es-

tablished subspace analysis models from the domain of sub-

space clustering for subspace outlier mining. Both efficiency

and quality improvements in clustering could be exploited

for subspace outliers in a general framework. However,

subspace clustering poses two unique challenges for outlier

detection (illustrated in Figure 1): first, each object, even if

it deviates substantially in some subspaces, is very likely

to be part of at least some clusters in other projections.

Thus, outliers are not simply non-clustered objects. Second,

assessing the degree of deviation is not straightforward.

Subspace clusters represent groups of data in very many

different (or similar) views, which makes the assessment

of deviation a non-trivial task. An outlierness score for

meaningful ranking requires a principled integration of these

multiple views.

In this work, we propose a novel outlier scoring concept

based on subspace analysis, following our workshop vision

paper [14]. With OutRank we focus on the development of

novel scoring functions that incorporate the extracted infor-

mation represented by subspace clusters. This general con-

cept of incorporating subspace clusters as information into

outlier ranking has not yet been investigated in literature.

With our scoring, we have to define novel indications for

outliers only based on subspace clusters as a pre-processing

result. Please note that these indications are not as simple as

in traditional clustering: “object is not clustered ⇒ it is an

outlier”. As each object may be clustered in multiple views,

we utilize this property to extract evidence for the regularity

of objects. Our general hypothesis is that regular objects

show clustered behavior in multiple subspaces even if the

subspaces are very dissimilar to each other. In contrast, out-

liers are clustered in some subspaces but deviate from these

clusters if one considers other subspaces. As most prominent

indication for outliers, we observe situations where objects

deviate from the subspace cluster they are usually grouped

in. For example, object o2 in Fig. 1 is clustered in two

views, but not in the “social view”. Although there is a

very similar clustering structure of the black objects in the

“sports view”, we observe this object deviating from its

common grouping. Our OutRank method takes this similar-

ity of subspaces into account, and computes the outlierness

degree based on the information available from subspace

analysis. In particular, we utilize the multiple cluster as-

signment provided by subspace clustering algorithms. We

distinguish between redundant (similar) subspace views and

multiple clusterings in orthogonal (dissimilar) subspaces. We

demonstrate empirically that OutRank outperforms existing

outlierness measures, we show its scalability, and evaluate

its flexibility w.r.t. different subspace clustering models.

II. RELATED WORK

In this section, we review existing techniques for outlier

mining in pairs of opposed approaches, and highlight our

research focus w.r.t. these directions.

Binary Detection vs. Outlier Ranking:
Originally, outlier mining meant binary detection of outliers

(as opposed to inliers) [15], [16]. Also, some clustering

techniques are capable of finding a set of non-clustered

outliers [17]. By contrast, recent approaches determine a

degree of outlierness, such as the local deviation of objects

[18], which has been recently extended to high dimensional

data [19], [20]. In this work, we follow the ranking paradigm

which provides a more detailed view on the deviation of

outliers. Please note that a binary outlier set can be easily

derived through thresholding out of a ranking result.

Full Space vs. Subspace Outliers:
Traditional methods determine outliers or compute the out-

lier score in the full attribute space [18], [21], [19]. As

such, they consider outliers to appear w.r.t. all of the given

attributes, and fail to uncover complex deviation hidden in

some attributes only. In the literature, a binary subspace

outlier method [11] and ranking in subspaces [13], [12]

have been proposed. In a sense, these approaches re-invent

selection strategies for subspaces in the context of outlier

mining. They ignore recent results in subspace clustering,

both in terms of efficiency and subspace selection. With

our work we bridge this gap and exploit the advances in

subspace clustering research for the benefit of complex

outliers hidden in multiple subspaces.

A Single Projection vs. Multiple Subspaces:
Well-established approaches, such as principal components

analysis [22], can be used to reduce the data space to a single

projection. However, such a projection of the entire data

space is not aware of individual projections for subsets of

the objects. A single projection misses different views of the

data. A first technique uses multiple random projections to

cope with this issue [23]. However, this means that relevant

structures from which outliers deviate can be missed in

(random) non-selected subspaces. In contrast to single and

random projections, subspace clustering detects clusters in

any possible combination of attributes. It covers a variety

of approaches in subspace clustering [1], [4], [5], projected

clustering [2], [3], and non-redundant subspace clustering

[6], [7], [8]. Details can be found in a recent survey [9] and

an evaluation study [10]. OutRank builds on these successful

subspace analysis results, but does not assume a particular

method. It uses subspace clustering as a meaningful pre-

processing step for subspace and cluster detection. We fully

explore this idea and provide novel scoring functions that

assess the evidence in the entire subspace clustering result.

III. OUTLIER RANKING VIA SUBSPACE ANALYSIS

The goal in OutRank is to derive a ranking of all objects

in the database w.r.t. to their deviation from the remainder of



the data. In order to assess also complex deviations, subspace

clusters are analyzed, and the results are integrated into a

score for each object. Subspace clustering provides groups

of regular objects, and potential outliers in the respective

subspace. To compute the score, we have to formalize the

degree of regularity (or deviation) of an object in the sub-

space and how to integrate these partial scores to derive the

overall score. An important consideration for the integration

is to avoid bias associated with similar views that do not

carry new information regarding regularity (or deviation) of

an object.

A. Basic Notions

Formally, for a d-dimensional database DB with each

object o described by a vector (o1, . . . , od) ∈ R
d in the full

space D = {D1 . . . Dd}, OutRank computes a score(o) ∈
[0 . . . 1] for each object o ∈ DB. score(o) represents the

degree of regularity, thus 1 − score(o) is the outlierness
degree. This means that perfect inliers score close to a value

of 1, and highly deviating outliers score close to a value

of 0. The outlier ranking is simply a sorted list of DB in

ascending order of score(o).
In order to find complex deviations, i.e., deviations that

are not visible in the full space, we analyze subspaces. Each

subspace is a view of the data in which we determine regular

data, and deviations. Formally, a subspace is defined as a

subset of the given attributes:

Definition 1: Subspace S
Given the full data space D = {D1 . . . Dd}, a subspace is
defined as:

S ⊆ D
Obviously, there are far too many subspaces to explore. With

increasing number of attributes d, we observe an exponential

increase of 2D−1 possible subspaces. Selecting the relevant

subspaces for each cluster or outlier is a main research

goal. Each subspace S represents a different view on DB,

hence, distances are restricted to Di ∈ S. For example, the

restricted Euclidean distance in S is defined as:

distS(o, p) =

√ ∑
Di∈S

(oi − pi)2

Based on this definition of subspaces, a variety of sub-

space clustering algorithms have been proposed. Each tech-

nique provides a different cluster definition (e.g. grid-based

[1], [4], density-based [5], [6], . . . ), which fulfills a certain

application demand. We abstract from these individual def-

initions and use their general clustering result as input for

our outlier ranking.

At a very general level, we provide an abstract definition

of a scoring function, given a subspace clustering, as follows:

Definition 2: Basic Outlier Scoring
Let SCR = {(C1, S1), . . . , (Ck, Sk)} a subspace clustering

result, i.e., a set of clusters Ci in their associated subspaces
Si. A scoring function on SCR is then defined as:

score(o) =
∑

{(C,S)∈SCR | o∈C}
evidence(o, (C, S), SCR)

where evidence computes a value of regularity for o being
clustered in subspace cluster (C, S) given the entire sub-
space clustering result SCR.

This definition provides the abstraction of our framework,

and does not put any restrictions to SCR or the under-

lying subspace clustering approach. The abstract notion

“evidence of regularity” will be instantiated by concrete Out-
Rank scoring functions in the following (cf. Section III-C).

Nonetheless, OutRank as a framework does not require a

particular instantiation, and can therefore be adapted to new

developments in scoring or subspace analysis. We consider

this decoupling of scoring and subspace analysis as a major

contribution to the development of future outlier ranking

techniques.

B. Challenges with Subspace Analysis

In the simplest case, an object o might not appear in

any subspace cluster, and yields score(o) = 0. In practice,

however, an object is typically clustered (differently) in

multiple subspaces, and it might show different degrees

of regularity/deviation in different subspaces. We therefore

need to carefully design a principled way to assess the

information provided by different subspaces and how they

relate to one another.

As we can immediately see from the restricted distance

function distS , objects typically show different behaviors

in multiple views S. With OutRank, we rely on the general

observation that outliers are objects which do not agree with

other data in at least some of the attributes:

(1) Outliers may be regular in some subspaces

(2) They deviate in at least some subspaces

⇒ Assessment of different subspaces indicates their out-

lierness

Since subspaces may contribute conflicting or redundant

information, OutRank assesses not only the regularity in

each view, but also takes the remaining views into account.

OutRank is the first outlier mining approach that tackles

these challenges for an outlier analysis based on such

multiple views.

Challenge 1: Multiple Views
Multiple views, as uncovered by subspace clustering, render
binary scoring meaningless, i.e., a scoring function as
follows

score(o) =

{
1 , if ∃(C, S) ∈ SCR ∧ o ∈ C
0 , else.

is expected to find few, if not none, outliers in practice.
Challenge 1 is a direct consequence of the observation

discussed above: as typically all objects o are part of at least
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Figure 2. Toy example: Similarity of Subspaces

one subspace cluster, simply assigning a regularity value of

1 to all clustered objects and 0 otherwise, is not feasible.

A second challenge arises from the fact that subspace

clusters often constitute redundant patterns, as seconded by

a recent evaluation study [10].

Challenge 2: Redundancy of Subspaces
A subspace clustering result SCR =
{(C1, S1), . . . , (Ck, Sk)} is usually redundant, i.e., a
subspace cluster (Ci, Si) often overlaps (with respect
to the clustered objects) with other subspace clusters
(Cj , Sj). Typically, these overlaps occur when the subspace
projections share many attributes. In the extreme case, a
subspace cluster is reflected in all its lower dimensional
projections as stated by the following monotonicity property:

(C, S) ∈ SCR ⇒ (C, T ) ∈ SCR ∀T ⊆ S

Most subspace clustering models obey this monotonicity

property [1], [5], [6]. The inverse property is often used

to prune subspaces for efficient subspace processing.

As a consequence, each object o ∈ (C, S) is clustered in

all 2|S| − 1 many lower dimensional subspace projections.

Even worse, is the fact that subspace clusters are expected

to re-occur in very similar subspaces that share dimensions:

o ∈ (C, S) ∧ o ∈ (C, S′) with |S ∩ S′| �= 0. Outlier

scores should be aware of the similarity between subspaces,

which captures the increasing expectation of shared cluster

structures.

The fact that virtually all objects are clustered in multiple

views, and, what is more, that these views provide redundant

information, is the core challenge for outlier scoring. Still,

OutRank exploits precisely this fact to derive an evidence

measure that takes these multiple views and their informa-

tion on the varying regularity of objects into account.

Let us illustrate the latter challenge with similar subspaces

and our envisioned solution in a toy example. As depicted

in Figure 2, we have some 2-dimensional subspaces with

three subspace outliers. Each of them is clustered in at

least two subspace clusters. Thus, it is hard to distinguish

the most deviating outlier. Furthermore, the three subspaces

are similar to each other. In particular, the left and the

central subspace share “attribute 1”, while the central and

right one share “attribute 3”. Outlier scoring should not be

biased by this property as similar clusters are expected,

i.e. clustered structures are likely to re-occur in similar

subspaces. Handling similarity of subspaces is an open

challenge for outlier scoring.

For our scoring functions, we utilize this property of

expected clusters in similar subspaces. If one considers the

similarity of subspaces we observe an unexpected deviation

in o2. Object o2 is clustered in two subspaces and deviating

in the third (central) one. This is quite unexpected due to the

similar subspaces. Objects o1 and o3 are not as unexpected.

They deviate in dissimilar subspaces. Outlier scoring should

account for such expected and unexpected behavior and rank

o2 first.

C. Outlier Scoring Functions

In this section, we introduce three instantiations for the

evidence function in Definition 2. As main property, all of

these functions can be computed directly out of the sub-

space clustering result SCR. This keeps the computational

overhead for outlier ranking very low as we will show also

in our experimental evaluation. Let us start with a baseline

scoring function:

Definition 3: Individual Weighting (IW)
Extending Def. 2, we measure the evidence individually for
each subspace cluster:

scoreIW (o) =
1

|SCR| ·
1

2
·

∑
{(C,S)∈SCR | o∈C}

|C|
cmax

+
|S|
smax

with |C| the number of clustered objects, and |S| the number
of attributes; cmax the maximal cluster size in SCR and
smax the maximal dimensionality in SCR.
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In our baseline scoring, we simply count the occurrences

of an object in a subspace cluster and weight it by the

size and dimensionality of (C, S). This reflects the idea that

larger subspace clusters with more correlated attributes are

stronger evidence for an object’s regularity.

Consider a small illustrative example with three outliers

in Figure 3. The Figure shows three projections of the

data (leftmost figure: two one-dimensional projections to

the x-axis and y-axis, respectively, center figure: one two-

dimensional projection) and the resulting scoring (rightmost

figure). The subspace clusters (circles around areas of high

point density) in these low-dimensional projections help

identify these outliers which might not be visible in higher

dimensional projections. Given the three highlighted sub-

space clusters we can derive an outlier ranking as depicted

in the rightmost figure: objects in no or few and low-

dimensional clusters receive low scores, objects which agree

with larger and higher dimensional clusters receive higher

scores. In this manner, outliers are easily detectable from

the ranking as those objects with the lowest scores.

However, this simple measure has clear drawbacks if

outliers are not reflected by small and low dimensional

clusters. Our first measure does not include a comparison of

neither subspaces nor the detected set of clustered objects.

As depicted in our previous example (cf. Figure 2), outliers

might be detected only due to their unexpected deviation

in similar subspaces. Comparing two similar subspaces and

the contained clusters leads to a more enhanced scoring.

Essentially, redundant clusters do not provide any knowl-

edge for outlier scoring. They simply count each object

multiple times and introduce a bias to the overall scoring

function. Thus, our more enhanced evidence measures in-

corporate the similarity of cluster and subspace sets derived

from the Jaccard Index: simObj(Ci, Cj) =
|Ci∩Cj |
|Ci∪Cj | and

simDim(Si, Sj) =
|Si∩Sj |
|Si∪Sj | respectively.

Definition 4:
Comparison based on Subspace Similarity (SS)
For each object o we compare each (C, S) ∈ SCR with o ∈

C with all other subspaces S∗ ∈ SCR:

scoreSS(o) =

1

|SCR| ·
∑

{(C,S)∈SCR | o∈C}
mean {subDif(o, S, S∗)}

with S �= S∗ ∈ SCR and

subDif(o, S, S∗) =

⎧⎪⎨
⎪⎩

1− simDim(S, S∗)
, if ∀(C∗, S∗) ∈ SCR ⇒ o �∈ C∗

1, else.

In the extreme case, an object gets the highest

scoreSS(o) = 1 if it is clustered in all subspaces. This is

the best evidence of being regular. If o is clustered in (C, S)
but not in S∗ then it depends on the (dis-)similarity of S
and S∗. For very similar subspaces one expects that clustered

structures reoccur. For redundant subspace clustering models

(cf. Challenge 2) this is true due to the monotonicity

property. As depicted in Figure 2 it is usually the case

that clusters reoccur due to correlated attributes. Definition

4 is aware of this property and expects this situation.

In contrast to this expectation, it highlights outliers that

show unexpected behavior in such similar subspaces. Lowest

scores are assigned to objects o ∈ (C, S) but not clustered

in any of its similar subspaces simDim(S, S∗) ≈ 1.

Overall, the score aggregates the behavior of o in multiple

views, comparing cluster with the residual subspaces in

SCR. For each cluster (C, S) we use the harmonic mean of

the subspace difference subDif(o, S, S∗) such that strong

deviation in one subspace does not dominate the overall

score. It enforces low scores only for outliers that show high

deviation in many of their similar subspace projections S∗.

In our third scoring function we go even further and

consider the possible split of (C, S) in a set of clusters

{(C1, S
∗), . . . , (Cj , S

∗)} in a similar subspace S∗. A simple

example of a split is given in Figure 1: The cluster of

white objects in the “social view” is split-up and covered by



two cluster in the “sports view”. As given in the following

definition, this comparison heavily involves more and more

possible reasons for the deviation of the object o:

Definition 5:
Comparison based on Cluster Coverage (CC)
For each object o we compare each (C, S) ∈
SCR with o ∈ C with all other subspace cluster sets
{(C1, S

∗), . . . , (Cj , S
∗)} with high coverage of (C, S):

scoreCC(o) =

1

|SCR| ·
∑

{(C,S)∈SCR | o∈C}
mean {covClust(o, Cov, S∗)}

with S �= S∗ ∈ SCR and covClust(o, Cov, S∗) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1− simDim(S, S∗))·
mean{simObj(C,C∗) | C∗ ∈ Cov}
, if ∃(C∗, S∗) ∈ SCR ∧ o ∈ C∗

simDim(S, S∗)·
mean{(1− simObj(C,C∗) | C∗ ∈ Cov}
, else.

, and Cov a set of clusters that covers the objects in C best
w.r.t. simObj(C,C∗).

In contrast to the previous definitions, scoreCC includes

the possibility of clusters splitting up in multiple clusters.

This can happen as similar subspaces S∗ might reveal

sub-structures Cov that cover the original subspace cluster

(C, S). We utilize the same notion as before and match the

“evidence of regularity” to the similarity of subspaces and

its contained subspace clusters. In the first case of cluster

coverage covClust(o, Cov, S∗) the object is clustered in

subspace S∗. Thus, it gets high scores if S and S∗ are

dissimilar while the detected clusters C and C∗ are very

similar. This is a good indication for a regular object as it

is similarly clustered in different projections. In contrast,

the object gets very low scores if it is not clustered in

a dissimilar subspace with very similar clusters. The later

situation indicates an unexpected outlier which does not

follow a similar clustering.

Clearly Definition 5 requires some additional processing

in finding the optimal cluster coverage Cov in each sub-

space. However, it is also the most complex scoring, and we

would like to evaluate the quality enhancement by including

more and more information. Let us briefly summarize the

increase of used information in our three scoring functions:

• baseline scoring (IW): only size and dimensionality of

individual clusters are used

• subspace similarity scoring (SS): comparison of multi-

ple subspaces weighted by their similarity

• cluster coverage scoring (CC): comparison of multiple

sets of clusters that cover (C, S) weighted by the

similarity of subspaces and the similarity of clusters.

D. Discussion of Underlying Subspace Models

Before we study the performance of our scoring functions

in an empirical evaluation, let us briefly review and catego-

rize subspace clustering approaches w.r.t. the properties that

are relevant for outlier scoring. This should assist in using

the appropriate scoring function with the best underlying

subspace clustering model. This discussion extends the orig-

inal publications in subspace clustering w.r.t. their abilities

for outlier detection.

Following the terminology of a recent evaluation study

[10], we distinguish between four paradigms: (1) subspace
clustering [4], [5], which shows highly redundant subspace

clusters, (2) projected clustering [3], [2], which show a

partitioning of the data with a binary detection of outliers,

(3) non-redundant subspace clustering [6], [7], [8], which

optimize the result set by removing redundant clusters, and

(4) multiple projected clusters, i.e. a simple extension of

projected clustering based on PROCLUS [2]. Due to space

limitations, we cannot review all details of their clustering

properties here. For a detailed discussion w.r.t. clustering

please refer to the evaluation study [10].

Considering outlier mining, we study properties com-

mon to these four clustering paradigms. As in our scor-

ing framework, we abstract from the definition of a clus-

ter (Ci, Si) in the different models, and resort to the

abstract notion of a subspace clustering result SCR =
{(C1, S1), . . . , (Ck, Sk)}.

We base our discussion on a simple measure to distinguish

basic properties of different subspace clustering paradigms.

An extended empirical study of the performance of different

subspace clustering approaches as instantiations to OutRank
is given in the experiments (Section IV). For our formal

comparison, we distinguish the overlap of a clustering result:

ClusterCount(o, SCR) = |{(C, S) ∈ SCR | o ∈ (C, S)}|

avgCC(SCR) =
∑

o∈DB

ClusterCount(o, SCR)/|DB|

We distinguish the clustering results by the average num-

ber of clusters, in which objects are detected.

• avgCC(SCR) ≥ 2g

with g = min{|S| | (C, S) ∈ SCR}
For all redundant subspace clustering results [4], [5].

• avgCC(SCR) ≤ 1
For all partitioning result sets [3], [2].

• avgCC(SCR) = c
with a constant c that can be controlled by the user

For all non-redundant clustering algorithms optimizing

the result set [6], [7], [8].

• avgCC(SCR) = c
with c the number of PROCLUS runs

For the multiple non-deterministic PROCLUS [2] runs

that are combined in one result set.



For our scoring based on cluster coverage (cf. Def-

inition 5) it is crucial to have multiple overlapping

subspace clusters. Thus, partitioning approaches with

avgCC(SCR) ≤ 1 should not be used in combination with

this score. Due to the high cost of each comparison, scoreCC

should be used with non-redundant subspace clustering [6],

[7], [8] or multiple projected clustering results with restricted

result size.

For our scoring based on subspace similarity (cf. Defi-

nition 4) such restrictions do not apply. It is more flexible

and allows also partitioning algorithms [3], [2]. Due to its

subspace similarity, scoreSS is able to distinguish redundant

subspaces [4], [5], as well as more enhanced subspace

clustering models based on result optimization [6], [7], [8].

IV. EXPERIMENTS

In the experiments, we study the performance of OutRank
in comparison with full space outlier ranking methods (LOF

[18], and ABOF [19]) and with subspace outlier ranking

techniques (OUTRES [13] and SOD [12]). We evaluate

our three ranking functions “Individual Weighting” Out-
Rank(IW) (cf. Def. 3), “Subspace Similarity” OutRank(SS)
(cf. Def. 4), and “Cluster Coverage” OutRank(CC) (cf.

Def. 5). The robustness is studied w.r.t. different sub-

space clustering models: grid-based SCHISM [4]; density-

based INSCY [6]; approximative FIRES [5]; non-redundant

RESCU [8], as well as two partitioning algorithms PRO-
CLUS [2] and MINECLUS [3]. And finally, we analyze

scalability in terms of database size and dimensionality.

We measure the quality of the obtained outlier rankings

using the well-established ROC curve, and by calculating the

area under curve (AUC) values [24]. A ROC curve shows

the relationship between the false positive rate (x-axis) to

the true positive rate (y-axis). The more to the upper left

the curve runs, the better its performance. The area under

the curve reflects the overall expected performance and pro-

vides a way to compare the curves numerically. We ensure

comparability of quality results by using publicly available

benchmark datasets and re-using synthetic data published by

our competitors. For comparability w.r.t. runtime evaluation,

we extend the open source framework SOREX [25] with

our functions, and perform all experiments on a computer

cluster, each node equipped with two quad-core Intel Xeon

E5540 2.53GHz CPUs running HP XC Linux.

A. Synthetic Data

We start our experimental study by comparing the quality

of OutRank with competing algorithms on synthetic data.

This benchmark database is used in the evaluation of our

most recent competitor OUTRES [13]. It contains 4765

objects, and each object is represented by 16 attributes. In

total, 61 outliers deviate from clusters hidden in subspaces

with four relevant attributes in each view. Each of the 16
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Figure 4. Quality of OutRank vs. competing approaches

given attributes is used at least once in one of these sub-

spaces. Furthermore, we use a series of synthetic datasets,

which are publicly available for subspace cluster evaluation

[10]. These datasets are used in order to study the quality

and scalability of our ranking functions w.r.t. the different

subspace paradigms and increasing number of attributes. In

contrast to the first dataset, outliers and clusters are hidden

in subspaces with more relevant attributes, increasing with

the overall number of given attributes.

Quality in Comparison to Competitors:
In Figure 4 we show both ROC curves and AUC values for

each ranking. Results show that OutRank yields best quality:

All three scores (IW), (SS), and (CC) show better results

compared to all full space techniques and also compared

to the subspace technique SOD. In comparison to OUTRES,

OutRank(SS) and (CC) obtain similar AUC values. However,

the ROC plot shows the better performance of OutRank. It

reaches a higher true positive rate earlier than OUTRES and

any other competitor.

Quality w.r.t. Subspace Clustering:
As we can see in Figure 5, the performance of OutRank

depends on (1) the quality of the given subspace clustering

result and (2) the underlying clustering definition. From the

clustering perspective, INSCY, RESCU, and MINECLUS

have shown the best accuracy in their clustering results

[10], [8]. For OutRank(SS), high clustering quality is clearly

transfered into a high quality outlier ranking.

The “Cluster Coverage” OutRank(CC) ranking assumes

underlying subspace clustering results that provide multiple

views, i.e., allow overlap among subspace clusters. Conse-

quently, as seen in Figure 5 (b), partitioning algorithms such

as MINECLUS and PROCLUS do not perform well with our

“coverage clustering” ranking. Partitioning algorithms assign

each object to exactly one subspace cluster, and thus do not

provide multiple views. Non-redundant subspace clustering

algorithms such as RESCU aim to avoid such overlapping

clusters. Thus, they also show slightly worse results for

OutRank(CC), but improve with increasing dimensionality
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Figure 5. Quality w.r.t. different subspace clustering paradigms

(d ≥ 45) as more and more objects are clustered in

multiple views. We demonstrate this effect by including

the results of the combination of multiple non-deterministic

runs of PROCLUS as Multiple-PROCLUS. As we can see,

these multiple views greatly improve the performance, and

Multiple-PROCLUS even shows best performance across all

scoring functions and is used as default setting for all other

experiments.

We demonstrate this effect of multiple views for Multiple-
PROCLUS in more detail. Figure 6 shows the quality en-

hancement with increasing number of views, i.e., number

of randomized runs. As we can see, adding views indeed

provides more information for the scoring. The higher the

number of runs, the higher the number of views of an

object, and the higher is the outlier ranking quality. Clearly,

OutRank(CC) is more affected by low overlap of subspace

clusters.

Runtime Scalability:
Figure 7 shows the runtime scalability for increasing

database size and data dimensionality. We compare runtimes

of our outlier scoring with runtimes of OUTRES, which

showed the best quality among all competitors. For each

scoring approach of OutRank, we show the runtimes of

the underlying subspace clustering algorithms as well. Our

approach outperforms OUTRES as it scales better with in-

creasing number of attributes and also with larger databases.
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Figure 6. Quality w.r.t. multiple views out of several PROCLUS runs

Scalability is achieved by the efficient subspace clustering al-

gorithms [2], [8], which outperform the most recent subspace

outlier mining technique [13]. For our baseline function

(IW) and for (SS) the overhead for scoring is negligible

in comparison with the runtime of the subspace clustering

algorithm. On the other hand, (CC) requires higher runtimes

if the redundancy of the cluster results is high (e.g., for

SCHISM or Multiple-PROCLUS). Note, that high quality

results with overlapping clusters require such a complex

function in order to exploit the cluster properties. Still, the

runtime tends to be smaller than the subspace clustering

for increasing number of dimensions. Overall, we observe

high quality (cf. Fig. 5) and scalable runtime (cf. Fig. 7) of

OutRank.

B. Real Data

Finally, we use five real world benchmark datasets from

the UCI ML Repository [26]: Diabetes, Breast Cancer

Wisconsin (Diagnostic), Ionosphere, Breast Cancer and Ar-

rhythmia with their minority class for outlier evaluation. Due

to its stability in quality results on synthetic datasets, we use

Multiple-PROCLUS with ten runs as default setting for the

real world experiments.



dimensions |D| 5 10 20 35 45 55 65 75 85 95 105

OUTRES 2.49 10.69 60.30 331 779.7 - - - - - -

PROCLUS ∗ 1.15 1.72 3.16 5.92 8.20 10.19 12.65 15.12 19.75 25.21 28.69

OutRank(IW) 0.03 0.03 0.05 0.07 0.08 0.10 0.12 0.13 0.14 0.16 0.18

OutRank(SS) 0.05 0.08 0.13 0.16 0.18 0.21 0.22 0.22 0.23 0.26 0.26

OutRank(CC) 65.12 79.73 11.14 8.61 7.85 2.05 9.25 9.81 6.82 6.95 15.14

SCHISM 0.02 0.09 21.76 - - - - - - - -

OutRank(IW) 0.03 0.04 0.05 - - - - - - - -

OutRank(SS) 0.03 0.04 0.07 - - - - - - - -

OutRank(CC) 0.10 0.24 0.12 - - - - - - - -

RESCU 0.11 0.19 4.32 16.69 22.14 49.42 111.8 284.4 414.9 559.3 1275

OutRank(IW) 0.02 0.03 0.05 0.07 0.09 0.10 0.12 0.14 0.15 0.17 0.19

OutRank(SS) 0.03 0.03 0.05 0.07 0.09 0.11 0.13 0.14 0.16 0.18 0.19

OutRank(CC) 0.03 0.04 0.05 0.08 0.09 0.12 0.14 0.15 0.17 0.20 0.21
(a) Runtime (sec.) w.r.t. number of attributes

database size |DB| 1595 3722 5848 7975 10102

OUTRES 62.47 105.07 153.42 210.05 268.84

PROCLUS ∗ 2.35 4.81 8.89 12.61 14.71

OutRank(IW) 0.05 0.11 0.17 0.23 0.35

OutRank(SS) 0.13 0.32 0.47 0.67 1.58

OutRank(CC) 8.23 56.59 100.36 79.23 183.52

SCHISM 30.42 72.38 113.57 157.48 119.37

OutRank(IW) 0.04 0.10 0.15 0.21 0.29

OutRank(SS) 0.05 0.11 0.16 0.22 0.32

OutRank(CC) 0.06 0.11 0.17 0.23 0.44

RESCU 5.96 13.85 20.61 32.70 38.14

OutRank(IW) 0.05 0.10 0.16 0.21 0.29

OutRank(SS) 0.05 0.11 0.16 0.22 0.33

OutRank(CC) 0.05 0.11 0.17 0.25 0.40
(b) Runtime (sec.) w.r.t. database size

Figure 7. Runtime scalability

The results of all real world experiments are shown in

Fig. 8. Best AUC values are in bold, and high quality results

that are within 3% of the best are highlighted as well. Out-

Rank achieves the best results with the highest dimensional

datasets. While the traditional full space method LOF shows

good performance for small number of attributes, it starts de-

generating with increasing dimensionality. OUTRES shows

best performance for medium dimensionality. However, it is

not able to achieve high quality for Breast, and it does not

scale for d = 128.
Considering both quality and runtime, OutRank shows

best performance with high outlier ranking quality and sig-

nificantly lower runtime compared to OUTRES. It obviously

requires longer runtimes than the full space method LOF

since OutRank computes both the subspace clustering and

the scoring. On the other hand, we can see that competing

full space and subspace approaches do not perform well for

increasing number of attributes. By contrast, OutRank can

benefit from established subspace clustering methods and

achieves best performance on synthetic and real world data.

V. CONCLUSION

Ranking of outliers is a useful approach to the analysis of

deviating objects in the data. Starting from the most unusual

objects with respect to patterns in the data, users can study

the ranking up to a point where the data appears consistent.

Thus, the ranking should correctly reflect the degree of

deviation. Traditional approaches fail in uncovering complex

deviations hidden in subspace projections of the data. In this

work, we address this challenge by OutRank, a novel scoring

concept based on subspace analysis. Complex deviations are

captured by incorporating evidence from subspace clustering

results into outlier scores.

Our novel scoring functions capture the evidence as

reflected by the main characteristics of the objects w.r.t.

subspace clusters. OutRank integrates multiple views into

the outlier ranking in a principled manner by assessing the

information in the entire subspace clustering result. Thus,

OutRank uncovers outliers that are not detectable in the full

attribute space. It outperforms competing approaches from

outlier ranking [18], [19], as well as state-of-the-art subspace

approaches [13], [12].

VI. FUTURE WORK

Due to our abstraction from the underlying method, any

(future) subspace clustering algorithm can be utilized for

subspace outlier detection. This creates potential for quality



database d AUC [%] Runtime [sec.]
LOF OUTRES OutRank(IW) (SS) (CC) LOF OUTRES OutRank(IW) (SS) (CC)

Diabetes 8 70.98 58.83 70.07 68.19 68.23 0.3 0.952 1.17 1.19 1.44

Breast (diagnostic) 30 86.94 72.97 81.6 77.82 83.72 0.3 10.11 1.3 1.52 203.22

Ionosphere 32 77.97 83.71 76.49 73.34 68.67 0.1 227.32 1.71 1.75 1.84

Breast 33 56.42 57.88 64.75 60.01 62.2 0.1 107.88 0.66 6.75 0.71

Arrhythmia 128 62.92 - 66.24 65.21 67.03 0.5 - 19.35 19.40 13.83

Figure 8. Results on real-world datasets

and efficiency improvements in the future. It could be

interesting to study other clustering paradigms that provide

multiple clusterings [27]. Recently alternative clustering,

disparate clustering, and orthogonal clustering have been

proposed [28], [29], [30]. They all provide alternative views

on the same data and data space, which could be exploited

for outlier scoring as well. These approaches do not work

in subspaces, meaning that scoring functions for their notion

of multiple views are necessary.
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