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Abstract—Subspace clustering aims at detecting clusters in
any subspace projection of a high dimensional space. As the
number of possible subspace projections is exponential in the
number of dimensions, the result is often tremendously large.
Recent approaches fail to reduce results to relevant subspace
clusters. Their results are typically highly redundant, i.e. many
clusters are detected multiple times in several projections.

In this work, we propose a novel model for relevant subspace
clustering (RESCU). We present a global optimization which
detects the most interesting non-redundant subspace clusters.
We prove that computation of this model is NP-hard. For
RESCU, we propose an approximative solution that shows
high accuracy with respect to our relevance model. Thorough
experiments on synthetic and real world data show that RESCU
successfully reduces the result to manageable sizes. It reliably
achieves top clustering quality while competing approaches
show greatly varying performance.

Keywords-data mining; high dimensional data; subspace
clustering; redundancy removal; global optimization;

I. INTRODUCTION

In many recent applications like sensor networks, cus-

tomer segmentation or gene expression analysis, objects

are described by very many attributes. As collecting and

storing data is cheap, users tend to record everything they

can. Analysis of such high dimensional data has become a

major challenge. Traditional cluster analysis groups similar

objects while separating dissimilar ones [12]. However, for

many attributes, i.e. for high dimensional data, meaningful

clusters no longer exist (cf. “curse of dimensionality”)

[7]. Dimensionality reduction techniques such as principle

components analysis (PCA), do not provide a solution to

this problem, as they reduce all objects to a single projection

[13]. However, patterns occur in multiple projections of the

data.

Subspace clustering detects clusters in arbitrary projec-

tions by automatically determining a set of relevant dimen-

sions for each cluster [22], [17]. Thus, one is able to detect

objects as part of various clusters in different subspaces. In

bioinformatics, for example, genome data analysis clusters

genes (objects) which show similar expression levels in a

subset of experimental medical treatments (attributes). Such

similarities might indicate functional relationships. Each

gene might appear in multiple roles (subspace clusters). As

a consequence, subspace clusters might overlap in the sense

that they share objects. Recent research has seen a number

of approaches using different definitions of what constitutes

a subspace cluster [2], [14], [23], [16]. As summarized in a

recent evaluation study [21], their common problem is that

the output generated is typically huge.

Subspace clustering allows multiple clusters per object,

but has to cope with detection of exponentially many sub-

space clusters in arbitrary projections. Many of these clusters

do not provide any further information, as more or less

the same object groups are detected in multiple projections

of the data. Such redundant subspace clusters should be

removed and only the most interesting ones, which provide

novel knowledge about the data should be reported.

A related approach, projected clustering assigns each

object to a single projection [1], [19]. This strict partitioning

of the data into projected clusters can be regarded as extreme

redundancy elimination. Projected clustering results in a

manageable number of clusters, but is not able to detect

overlapping clusters.

Some recent approaches towards modeling and remov-

ing redundant subspace clusters have been proposed. They

define non-redundant and possibly overlapping subspace

clusters, but only with a local scope. In [3], [5], a subspace

cluster is redundant if it shares a certain fraction of objects

with another one. Retaining only maximal subspace clus-

ters, i.e. the highest dimensional one of two, results in a

clear increase in clustering quality. This is due to the fact

that maximal clusters tend to contain less noise and thus

represent the inherent data structure more faithfully. This

definition of redundancy, however, is limited in two respects.

First, redundancy is based only on a pairwise comparison

of clusters. And second, the redundancy check incorporates

only the fraction of jointly detected objects [5]. We call

this a local redundancy definition, as only local properties

like object count and comparison of two subspace clusters

is used. Consequently, a redundant subspace cluster that is

covered by a combination of high dimensional subspace

clusters is still reported as non-redundant. In contrast, we

aim at a global redundancy check including a more flexible

interestingness definition comparing each cluster with the

overall set of detected subspace clusters.

A recent approach aims at extracting non-redundant axis-

parallel subspace regions [18]. It defines non-redundant



results as the minimal subset of subspace clusters to approx-

imately compute the support of any other subspace cluster

(assuming uniform distribution otherwise). This statistical

approach, however, is based on the assumption of uniform

distribution inside a cluster. Moreover the redundancy model

is limited to the fixed cluster definition. As we show in

our evaluations all of these approaches fail to detect all and

only the hidden concepts, i.e. clusters, in a high dimensional

database.

Our goal is to derive a novel model for non-redundant

subspace clusters that takes a global look at overlapping

clusters. The aim is to find all and only relevant concepts

by optimizing the overall clustering result. The main contri-

butions of our work are:

∙ Detection of all interesting clusters, but without the

overwhelming result size of subspace clustering.

∙ Detection of only non-redundant clusters, but without

the strict partitioning of projected clustering.

To achieve these objectives, we introduce a new global

relevance model for subspace clustering. We combine a

novel interestingness function for subspace clusters with a

novel coverage criterion for an overall redundancy removal.

By including the most interesting clusters and excluding re-

dundant clusters, our result set contains all and only relevant

subspace clusters. Any object can be part of multiple clus-

ters, allowing overlapping subspace clusters. It is desirable to

report as few clusters as possible to reduce redundancy, yet

cover as many interesting concepts as possible. Furthermore,

our relevance model is neither restricted to one cluster

definition nor based on a fixed interestingness rating. These

two aspects are typically application dependent and can

be adapted by the instantiation of our model. Considering

computation complexity, we prove that our relevant subspace

clustering is NP-hard. Thus, for an efficient computation of

our relevance model we propose an approximative algorithm

generating possible cluster candidates in best-first order

according to their relevance.

II. RELEVANT SUBSPACE CLUSTERING

In this section, we introduce our relevant subspace clus-

tering definition. Most existing approaches use only local

properties, i.e. objects 𝑂 and dimensions 𝑆, to define if

𝐶 = (𝑂,𝑆) is a subspace cluster or not. We take a global

view, considering the theoretic set of possible subspace

clusters 𝐼𝑁 = {𝐶1 . . . 𝐶𝑛} in totality for our relevant clus-

tering definition. As pre-computation of 𝐼𝑁 is too expensive

we propose an approximative algorithm using a novel on-

demand cluster generation derived from our relevance model

in Section III. Most of the clusters in 𝐼𝑁 do not provide any

knowledge for the user, thus, our relevance model defines

which of these clusters to output (cf. Fig. 1). We aim at

reducing the output to only the relevant subspace clustering

𝑀 ⊆ 𝐼𝑁 . The remaining clusters overwhelm the user, thus

hinder the analysis and are removed.
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Figure 1. Components of a relevance model

Two aspects are important for relevance. One is the inter-
estingness of a cluster itself. The interestingness evaluates

a cluster locally via its properties like dimensionality or

size. For example, clusters in only one dimension might not

be interesting. Interestingness is often user or application

dependent and therefore it should be adaptable. A detailed

discussion of the interestingness is given in Section II-A.

Another aspect is the redundancy of clusters. Redundancy

means that this cluster does not contribute to new knowledge

with respect to other clusters (for example if another cluster

with similar properties exists). Consequently, a redundant

cluster should not be outputted. The redundancy is discussed

in Section II-B.

Please note that the two aspects are not entirely indepen-

dent. Given the choice between two clusters with similar

properties, the less interesting one should be marked as

redundant. Both aspects constitute our relevance model: A

relevant cluster is interesting but not redundant. The overall

relevance model is described in Section II-C.

In Section II-D, we prove important complexity results

and conclude in Section II-E with an instantiation of our

model.

A. Interestingness of a cluster

In this section, we quantify the interestingness of a cluster.

Figure 2 gives an example of clusters in dimensions 1 and 2

(left), and 3 and 4 (right), respectively. Objects in both illus-

trations are represented using the same symbol. For example,

assume that we deem clusters with more dimensions more

interesting. The 2d (two dimensional) clusters 𝐶1 and 𝐶2

are then favored over the 1d clusters 𝐶3 −𝐶6. The number

of objects, the diameter or the density of a cluster are other

typical choices of interestingness.

Interestingness is not handled explicitly in existing pro-

jected and subspace clustering algorithms. In projected

clustering algorithms, overlapping clusters are not detected

due to the partitioning. In Figure 2, the most interesting

clusters 𝐶1 and 𝐶2 are not found. They both contain some

objects that occur in the other cluster as well, and are

therefore mutually exclusive, even though the objects occur

in dimensions 1 and 2, or 3 and 4, respectively. As a

consequence, potentially interesting clusters are missed by

the occurrence of other interesting clusters. Another problem

is the handling of outliers only in a post-processing step.

Interestingness of the clusters is calculated before removal

of outliers and hence misleading values can occur.



Subspace clustering algorithms realize a very limited in-

terestingness calculation. Each set of points and dimensions

that fulfills the cluster definition (e.g. exceeding a density

threshold) is equally interesting. It is a binary decision

“cluster” or “no cluster”.

And finally, the calculation of the interestingness in both

models is usually fixed and cannot be modified by the user.
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Figure 2. Interestingness by cost values

Our model overcomes these problems. We assign an inter-

estingness value to each cluster. It is a local rating, so that

other clusters do not influence this measure. Furthermore,

our cluster definition (cf. Sec. II-E) accounts for outliers so

that misleading values do not occur.

We model the (un-)interestingness via a cost function 𝑘.

Small values denote interesting clusters. For example, in

Figure 2 the 1d cluster 𝐶4 might get a cost value of 𝑘 = 10
while the more interesting 2d cluster 𝐶1 might get a lower

cost value of 𝑘 = 1.

For any cluster 𝐶, given by the set of its objects 𝑂 and

the corresponding dimensions 𝑆, we define the cost function

as follows:

Definition 1: Cost function
Let 𝒫(𝐷𝐵) be the power set of all database objects and
𝒫(𝐷𝑖𝑚) the power set of the dimensions. A cost function

𝑘 : 𝒫(𝐷𝐵)× 𝒫(𝐷𝑖𝑚) → ℝ

assigns cost 𝑘(𝑂,𝑆) to the subspace cluster 𝐶 = (𝑂,𝑆).

By defining a cost function, we can account for several

aspects of a subspace cluster, like the dimensionality or

the density. Changes to the cost function yield an easy

adaptation of the model. This flexibility is not achieved

by other approaches. An instantiation of the function is

presented in Section II-E. By first calculating the interesting

values individually and allowing overlap we find higher

quality clusterings. In Figure 2 we may select both 𝐶1 and

𝐶2.

For computational reasons, we assume cost functions

which assign a strictly positive value to all subspace clusters,

i.e. given a set 𝑀 = {(𝑂1, 𝑆1), . . . , (𝑂𝑛, 𝑆𝑛)} of clusters,

the function fulfills 𝑘(𝑂𝑖, 𝑆𝑖) > 0 for all (𝑂𝑖, 𝑆𝑖) ∈ 𝑀 . To

mine the most interesting clusters we minimize the overall

cost. However, to also maximize the number of objects

covered by a clustering, we additionally take coverage into

account. We formalize coverage as follows:

Definition 2: Coverage of a clustering
Given a clustering 𝑀 = {(𝑂1, 𝑆1), . . . , (𝑂𝑛, 𝑆𝑛)}, the
coverage of 𝑀 is defined as follows: 𝐶𝑜𝑣(𝑀) =

∪𝑛
𝑖=1 𝑂𝑖

The coverage of a clustering 𝑀 is the union of the objects

in all selected clusters. We now define the overall relative

cost of a clustering as the sum of the individual cost values

normalized by the number of covered objects.

Definition 3: Overall relative cost of a clustering
Let 𝑀 = {(𝑂1, 𝑆1), . . . , (𝑂𝑛, 𝑆𝑛)} be a clustering and 𝑘 a
cost function. We define the overall relative cost of 𝑀 as:

𝑅𝐾(𝑀) =
𝐾(𝑀)

∣𝐶𝑜𝑣(𝑀)∣ with 𝐾(𝑀) =
∑

(𝑂𝑖,𝑆𝑖)∈𝑀

𝑘(𝑂𝑖, 𝑆𝑖)

The smaller the overall relative cost 𝑅𝐾(𝑀), the more

interesting is the clustering 𝑀 per covered object. We

achieve a high coverage and at the same time small total

cost.

B. Redundancy of a cluster

The second aspect of relevance is non-redundancy. A

large cluster 𝐶 and all of its lower dimensional projections

could be assigned low cost values if interestingness is based

on size. Selecting all projections along with 𝐶 based on

interestingness alone leads to a poor overall result. One gets

very many redundant clusters, while 𝐶 would be sufficient.

We therefore take a global view for redundancy elimina-

tion and compare a cluster with other clusters. While the

interestingness is a local measure based on the cluster itself,

the redundancy takes other clusters into account.

Existing projected and subspace clustering algorithms

do not address redundancy handling adequately. Projected

clustering simply forces results to be non-redundant by

assigning each object to a single cluster at the cost of miss-

ing overlapping clusters. Subspace clustering algorithms, in

contrast, either use no or a mere local approach to check the

redundancy. Such an approach compares only two clusters

[5]. If the clusters cover nearly the same objects, one of

them is redundant. The problem of this local approach is

illustrated in Figure 3. Obviously, in both subfigures the

cluster 𝐶2 is redundant because it is induced by the other

clusters 𝐶1, resp. 𝐶1𝑎, 𝐶1𝑏. A local approach could identify

the redundancy in the left figure. Cluster 𝐶2 is redundant, as

it covers 𝐶1 and only a few additional objects. In the right

figure, the fraction of points shared by 𝐶1𝑎 and 𝐶2 as well

as by 𝐶1𝑏 and 𝐶2 is small, and the cluster 𝐶2 is misleadingly

classified as non-redundant. This mistake is the result of the

local view on redundancy, i.e. for each check only a pairwise

comparison of clusters is performed.

We use a global view for the redundancy checks, i.e. we

use all clusters at the same time to judge the redundancy
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Figure 3. Local and global redundant clusters

of another cluster. This approach results in more accurate

decisions.

As one can see from the above example, the redundancy

of a cluster is linked to the coverage of objects. If a set

of clusters shares many objects with a cluster 𝐶, 𝐶 is a

redundant cluster. In other words: A cluster is redundant

if it does not cover many new objects. The cluster 𝐶2 in

Figure 3(b) is redundant, because with respect to the two

other clusters only a few new objects are covered. The

same holds for the cluster 𝐶2 in Figure 3(a). The fact that

we consider all clusters for the redundancy checks yields

a global redundancy model. Thereby we identify in both

subfigures the cluster 𝐶2 as redundant.
Basic Set-Cover approach: If we select the minimal

number of clusters such that all objects are covered, we can

realize a global redundancy model. The output of clusters

that only contain already covered objects is prevented. This

check is with respect to all other clusters in the result set.

At the same time we identify multiple overlapping concepts

in the data, because all objects have to be covered.

This novel way of subspace clustering can be considered

as an instance of the Set-Cover problem [11]. Given several

finite sets, Set-Cover seeks for the minimal number of sets

that cover the whole population. In the clustering context,

we want to find the minimal number of clusters, such that

all objects are covered.

However the direct application of Set-Cover to our task

is not possible.

Problem 1: Simply choosing the minimal number of

clusters means that usually low dimensional clusters, which

tend to contain more objects, are preferred over high di-

mensional clusters. This preference usually conflicts with

the user’s notion of interestingness. Instead of choosing the

minimal number of clusters, we determine the clustering

with minimal relative cost (cf. Def. 3). This setup takes the

desired interestingness notion into account. In Figure 3(b),

for example, we would choose the two 2d clusters instead of

the one 1d cluster. We thus use an extension of the Set-Cover

problem to the Weighted-Set-Cover problem [9].

Problem 2: Covering all objects by clusters is not always a

meaningful solution, as some databases contain outliers that

do not fit to any concept. The Set-Cover problem enforces

a complete cover of all objects and potentially finds no

solution in this case. Or, all objects can be covered but

only by uninteresting clusters. For example, if the outliers

are only contained in the 1d clusters the Set-Cover problem

enforces choosing these uninteresting ones. An example is

in Figure 3(b), as one has to select 𝐶2 to get a complete

coverage. We therefore propose a generalization of the Set-

Cover problem to cope with outliers.

Gain-based redundancy: We solve these problems by

a gain-based extension of the Set-Cover problem. The basic

idea is to measure the gain of a new cluster if we add it

to a known clustering. In other words, we have to answer

the question: Is it worthwhile to take the “more complex”

clustering?

Let us consider Figure 4 and assume the clusters 𝐶1 and

𝐶2 to be selected. Intuitively, the cluster 𝐶3 is redundant

with respect to the selected ones, so its gain should be

small. Two important aspects contribute to this fact. First, the

cluster 𝐶3 covers only a few new objects, i.e. many objects

are already contained in other clusters. These new objects,

covered by the cluster 𝐶3 = (𝑂,𝑆), can be calculated via

the residual set 𝑂∖𝐶𝑜𝑣({𝐶1, 𝐶2}). And second, the cost of

the cluster is very high, i.e. the cluster is not interesting.

High cost 𝑘(𝑂,𝑆) should correspond to a low gain. Overall

we take the ratio of these two measures. Cluster gain thus

is the additional coverage in relation to its cost.

Definition 4: Cluster gain
Given a cluster 𝐶 = (𝑂,𝑆), a clustering 𝑀 and a cost
function 𝑘 for 𝑀 ∪{𝐶}. The cluster gain of 𝐶 with respect
to 𝑀 is:

clus gain(𝐶,𝑀) =
∣𝑂∖𝐶𝑜𝑣(𝑀)∣

𝑘(𝑂,𝑆)

Usually, high dimensional clusters are favored so that

these clusters should get low cost values. Nevertheless, by

changing the cost function we can also change the cluster

gains and hence the preferred clusters.

We identify a cluster as redundant (with respect to a given

clustering) if its cluster gain is too small. In Figure 4 the

cluster gain of 𝐶3 (with respect to {𝐶1, 𝐶2}) is only 0.3 as

𝐶3 covers 3 new objects and 𝑘(𝐶3) = 10. Instead, 𝐶2 has

a higher cluster gain of 4 (with respect to {𝐶1}).

Consistent with this idea, a clustering 𝑀 is redundancy-free

if all clusters from 𝑀 exceed a minimum cluster gain. The

gain has to be measured with respect to the remaining clus-

ters from 𝑀 so that each cluster adds sufficient information

to the overall clustering.

Definition 5: Redundancy-free clustering
Given a clustering 𝑀 ⊆ 𝐼𝑁 and a minimal cluster gain
Δ ∈ ℝ

≥0. The clustering 𝑀 is redundancy-free, iff

∀𝐶 ∈ 𝑀 : clus gain(𝐶,𝑀∖{𝐶}) > Δ
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Figure 4. Relevant clustering

In this way we achieve a global view for the redundancy

checks. Each cluster 𝐶 has to compete with all remaining

cluster 𝑀∖{𝐶} in the result set at the same time.

As one can see, the clustering {𝐶1, 𝐶2} in Figure 4

is redundancy-free while the clusterings {𝐶1, 𝐶2, 𝐶3} or

{𝐶1, 𝐶2, 𝐶4} contain redundant information (assuming Δ =
0.5). Definition 5 gives us the basis to avoid redundancy

in our clustering. However, if we remove clusters from a

redundancy-free clustering, this property still holds for the

smaller clustering. The removal of information, i.e. clusters,

cannot generate redundancy. This means that also the empty

clustering is redundancy-free. That is obviously not desired

by the user. To obtain a relevant clustering, it should be

redundancy-free but at the same time cover as many objects

as possible.

C. Overall relevance of a clustering

To enforce the selection of clusters we introduce the

property of concept-covering. A clustering 𝑀 does not
satisfy this property as long as clusters exist, which have

a high gain and are not in 𝑀 . 𝑀 is not the result because

further interesting concepts can be covered. A clustering is

concept-covering, and hence the coverage sufficient, if all

remaining clusters have a small cluster gain. We formalize

this by:

Definition 6: Concept-covering clustering
Given a clustering 𝑀 ⊆ 𝐼𝑁 and a minimal cluster gain
Δ ∈ ℝ

≥0. The clustering 𝑀 is concept-covering, iff

∀𝐶 ∈ 𝐼𝑁∖𝑀 : clus gain(𝐶,𝑀) ≤ Δ

Intuitively, a clustering is concept-covering if adding

any new cluster always results in redundancy. A concept-

covering clustering in Figure 4 is {𝐶1, 𝐶2}. Clustering {𝐶1}
is not concept-covering because we could add 𝐶2 without

introducing redundancy.

The property of concept-covering clusterings is a re-

laxation of complete coverage. It solves the problem of

enforcing a complete coverage as in the Set-Cover problem

(cf. Problem 2).

RESCU: Relevant subspace clustering: Our RESCU

model demands a relevant clustering to be redundancy-free

and concept-covering. However, as the example in Figure 4

illustrates, several clusterings could fulfill both properties,

e.g. {𝐶1, 𝐶2} or {𝐶4, 𝐶5}. To select the most interesting

clustering, we additionally compare their relative cost (cf.

Def. 3). Our relative cost function (cost per covered object)

ensures finding an optimal clustering with both interesting

clusters and high coverage. The relative cost for the cluster-

ing {𝐶1, 𝐶2} in Figure 4 is just 0.17, but 0.81 for {𝐶4, 𝐶5}.

This is formalized by:

Definition 7: Relevant subspace clustering (RESCU)
Given a clustering 𝑀 ⊆ 𝐼𝑁 and a minimal cluster gain
Δ ∈ ℝ

≥0. 𝑀 is relevant, iff
∙ 𝑀 is redundancy-free and concept-covering

(Def. 5 & 6) AND
∙ 𝑀 has minimal relative cost, i.e. 𝑅𝐾(𝑀) ≤ 𝑅𝐾(𝑁)

for all redundancy-free and concept-covering cluster-
ings 𝑁 ⊆ 𝐼𝑁

The relevant clustering in our previous example is thus

{𝐶1, 𝐶2}. Also for the example in Figure 2 the relevant

clustering is {𝐶1, 𝐶2} even though the two clusters share

some objects. This illustrates that handling of overlapping

clusters is possible in our model.

The flexibility of our model additionally provides the

possibility of classifying other clusterings as relevant by

changing the interestingness criterion. If we adapt the cost

function so that 𝐶1 and 𝐶2 in Fig. 4 get higher cost values,

the clustering {𝐶4, 𝐶5} could become relevant. Thus our

model enables the user to control the output as desired.

D. Complexity results

Calculating a RESCU clustering is a NP-hard problem.

We prove this by giving a polynomial reduction of Weighted-

Set-Cover problem, which is a NP-complete problem, to

our RESCU model, i.e. Weighted-Set-Cover ≤𝑝 𝑅𝐸𝑆𝐶𝑈 .

The Weighted-Set-Cover problem seeks those non-empty

sets that together have minimal weights and fully cover all

objects. For this reduction we need to map the input of

the Weighted-Set-Cover problem to an input of RESCU and

show that the resulting relevant subspace clustering is a valid

solution for the Weighted-Set-Cover problem.

Theorem 1: Computing RESCU (Def. 7) is NP-hard.

Proof:
We show that Weighted-Set-Cover ≤𝑝 𝑅𝐸𝑆𝐶𝑈 .
Input mapping: We map the input of the Weighted-Set-
Cover (objects, sets, weight function) to an input for RESCU
(database 𝐷𝐵, possible clusters 𝐼𝑁 , cost function 𝑘). We
further map the assumption of the Set-Cover (complete
coverage exists) to (Δ = 0) in RESCU. As RESCU is a
more general problem it finds a clustering even in databases
containing noise, where complete coverage is meaningless.
We now have to show that relevant subspace clustering (cf.
Def. 7) corresponds to a solution of the Weighted-Set-Cover
problem.



RESCU generates a valid solution for Set-Cover:
(1) Every chosen set contributes at least one object to the

overall coverage:
A relevant clustering 𝑀 is non-redundant (Def. 5):
⇔ ∀ 𝐶 ∈ 𝑀 : clus gain(𝐶,𝑀∖{𝐶}) = ∣𝑂∖𝐶𝑜𝑣(𝑀∖{𝐶})∣

𝑘(𝑂,𝑆)
> 0

Thus, all sets contribute at least one object
∀ 𝐶 ∈ 𝑀 : 𝑂 = 𝐶𝑜𝑣({𝐶}) ∕⊆ 𝐶𝑜𝑣(𝑀∖{𝐶}).

(2) For a Weighted-Set-Cover all objects have to be
covered by at least one set:
A relevant clustering 𝑀 fulfills the concept-covering prop-
erty (Def. 6):
⇔ ∀ 𝐶 ∈ 𝐼𝑁∖𝑀 : clus gain(𝐶,𝑀) = ∣𝑂∖𝐶𝑜𝑣(𝑀)∣

𝑘(𝑂,𝑆)
≤ 0

⇔∕ ∃ 𝐶 ∈ 𝐼𝑁∖𝑀 : ∣𝑂∖𝐶𝑜𝑣(𝑀)∣ > 0

Thus, all objects are covered: 𝐶𝑜𝑣(𝑀) = 𝐷𝐵.
(3) The sum of weights is minimal for the chosen sets:

A relevant clustering 𝑀 has minimal relative costs (Def. 7):
For all non-redundant and concept-covering clusterings
𝑁 ⊆ 𝐼𝑁 : 𝑅𝐾(𝑀) ≤ 𝑅𝐾(𝑁) ⇔ 𝐾(𝑀)

∣𝐶𝑜𝑣(𝑀)∣ ≤ 𝐾(𝑁)
∣𝐶𝑜𝑣(𝑁)∣

From 𝐶𝑜𝑣(𝑀) = 𝐶𝑜𝑣(𝑁) = 𝐷𝐵 we have: 𝐾(𝑀) is
minimal.

(1) ∧ (2) ∧ (3) ⇒ 𝑀 is a valid Set-Cover solution.
RESCU is NP-hard.

As we have proven, RESCU is a generalization of the

Set-Cover problem and thus NP-hard. Furthermore, it has

two advantages for detection of relevant clusterings. First,

we can handle outliers so that we can find a solution even

if a complete coverage is not possible. And second, RESCU

incorporates clustering properties and thus mines the most

relevant concepts instead of simply covering the data.

E. Instantiation of the model

By the flexibility of our model we can handle any

definition of subspace clusters (as the input of the model)

and cost functions (to rate the clusters). For a practical

evaluation we instantiate these two aspects.

Definition of subspace clusters.
We use density-based clustering because it detects clusters

of arbitrary shape and size even in noisy data [10]. The

idea is to define clusters as dense areas separated by

sparsely populated areas. In this way outliers are not part

of the clusters within the same subspace and misleading

ratings are prevented. An object is considered dense if

its neighborhood, i.e. an 𝜀-distance region around it, is

sufficiently populated. We follow the definition from [14]

with the modification, that we adjust the 𝜀-range according

to the subspace dimensionality. Thereby we account

for increasing distances between the objects in higher

dimensional spaces, similar to recent approaches [16], [3].

The value of 𝜀 in a subspace with dimensionality 𝑑 is

𝜀 =
[

4⋅𝑛
3⋅Γ(1.5)

] 1
5 ⋅ 𝜀1 ⋅

[
𝑑+2
4⋅𝑛 ⋅ Γ(𝑑2 + 1)

] 1
5

where 𝜀1 denotes the 𝜀-range in the 1d subspace, 𝑛 the

database size and Γ the gamma function.

Definition of cost functions.
The cost function used in our experiments is 𝑘(𝑂,𝑆) =
1

∣𝑆∣𝛽 with 𝛽 ≥ 0. Higher dimensional clusters get lower cost

values and are therefore more interesting than lower dimen-

sional clusters. Preference for higher dimensional clusters

is also used in [5]. Variation of 𝛽 influences how much

different subspace dimensionalities affect the cost value.

A very high 𝛽-value implies that the result set mainly

contains high dimensional clusters, whereas a low value

tends to lead to lower dimensional clusters. If all cost values

are nearly identical low dimensional clusters are usually

preferred because these clusters generally cover more objects

and so their cluster gain is higher.

We implemented further cost functions that reflect other

interestingness objectives. For example, the density of the

subspace clusters can be taken into account. Due to space

limitations these functions are not included in this work.

III. APPROXIMATIVE ALGORITHM

There are two major challenges for efficient computation

of relevant subspace clustering. First, as we have shown

in Section II-D, global optimization of the clustering is a

NP-hard problem. And second, the assumed input set 𝐼𝑁
is too large and its enumeration may be difficult or even

impossible. Thus, we assume that there exists no efficient

and especially no scalable solution. However, we provide

an approximative solution tackling both of these challenges

based on three main contributions:

∙ Greedy selection of clusters.

∙ Relevance update for concept-covering.

∙ On-demand generation and ranking of subspace clusters

according to their cluster gain.

A naive approach would compute all possible subspace

clusters (𝐼𝑁 is exponential w.r.t. number of dimensions)

and then choose an optimal subset of clusters (exponential

in the number of results). We use an approach that generates

promising clusters on-demand and ranks them according to

their relevance information. Thus we avoid an expensive

pre-computation of all possible subspace clusters. With our

greedy approach we relax the optimization by choosing in

each step the most promising cluster available. Please note

that a new cluster changes the overall coverage of the data,

and it changes the relevance of remaining clusters. Updating

the relevance is thus essential for concept-covering.
Greedy Selection of Clusters:

Our greedy approach iteratively includes the best cluster so

far. Such an approximation idea is known for other NP-hard

problems like Set-Cover [11], [9]. For our novel relevant

subspace clustering, this basic idea of greedy processing

leads to efficient computation but also high quality subspace

clustering results by choosing in each step the most relevant

cluster according to our cluster gain definition.

By iteratively picking clusters, we relax two parts of

Definition 7. First, instead of checking the global redundancy



(Def. 5) we compute an approximative solution, as in each

step 𝑖 the relevance of a new cluster 𝐶𝑖 is checked only w.r.t.

clusters 𝑀𝑖 = {𝐶1 . . . 𝐶𝑖−1} already chosen in the previous

𝑖 − 1 steps. The cluster 𝐶𝑖 is non-redundant w.r.t. 𝑀𝑖.

Secondly, we choose the cluster with the highest clus gain
in order to have the most interesting clusters in the result

and to approximate the minimal relative cost of the relevant

clustering:

Definition 8: Relaxation of relevant clustering
𝐶𝑖 is inserted into the current result set 𝑀𝑖 iff

(1) 𝐶𝑖 is a non-redundant cluster w.r.t. 𝑀𝑖:
clus gain(𝐶𝑖,𝑀𝑖) > Δ

(2) 𝐶𝑖 is the most interesting cluster in step 𝑖:
∀𝐶 ∈ 𝐼𝑁∖𝑀𝑖 : clus gain(𝐶𝑖,𝑀𝑖) ≥ clus gain(𝐶,𝑀𝑖)

Our relaxation yields an efficient processing. It computes a

chain of most relevant clusters 𝐶𝑖 yielding an approximative

solution for our RESCU model. It is a best-first method as in

each step the cluster with the highest gain is selected. The

greedy processing terminates if no more relevant clusters

are available in the residual set of clusters according to the

concept-covering property (cf. Def. 6).

Relevance Update:
The set of resulting clusters directly influences the cluster

gain of the next cluster to be chosen. We have to update

the cluster gain (Def. 4) of all candidates 𝐶 ∈ 𝐼𝑁∖𝑀𝑖+1,

each time we insert a cluster 𝐶𝑖 into the result set 𝑀𝑖+1 =
𝑀𝑖 ∪ {𝐶𝑖}. As the new cluster 𝐶𝑖 changes the overall

coverage of objects 𝐶𝑜𝑣(𝑀𝑖+1) ⊇ 𝐶𝑜𝑣(𝑀𝑖), we have to

adjust the relevance of all remaining cluster candidates. Our

relevance update decreases the gain of redundant clusters

that are already covered by 𝐶𝑖. Consequently, other concepts

not yet covered have a relatively higher likelihood of being

chosen in the following iteration.

Example: In our example given in Figure 4 we first choose

𝐶1 as the first relevant subspace cluster with maximal cluster

gain clus gain(𝐶1, {}) = 10. Intuitively, our algorithm

chooses according to the cluster gain definition, which

prefers higher dimensional clusters that contain objects

not yet covered by other relevant clusters. Thus, in the

second step we choose 𝐶2 with the currently highest gain

clus gain(𝐶2, {𝐶1}) = 4, a 2d-cluster with not yet covered

objects. Choosing {𝐶1, 𝐶2} forces a relevance update as

now most of the objects in 𝐶3, 𝐶4, 𝐶5 are already covered.

Thus, the next most relevant cluster is 𝐶3 with an updated

relevance of only 0.3 as it contributes only 3 objects to the

overall clustering. Thus, assuming Δ = 0.5, the algorithm

has detected all and only the relevant clusters as any remain-

ing cluster has a lower cluster gain.

On-Demand Generation and Ranking:
For our greedy processing we maintain an up-to-date ranked

list of subspace clusters with a high cluster gain. However,

it would be computationally too expensive to compute all

possible clusters 𝐼𝑁 and then sort them according to their

cluster gain. In contrast to such an exhaustive generation of

all possible clusters, our approach computes candidates on-

demand and reduces computation to only the most promising

regions. As most of the exponentially many clusters in 𝐼𝑁
are not interesting or they are redundant w.r.t. the final result

set, they do not affect the global optimization. Hence, our

on-demand candidate generation computes only the most

promising cluster candidates according to their cluster gain.

For on-demand generation of these regions we use our

recent density estimation technique which combines a given

set of lower dimensional cluster candidates (initially 2d

clusters) to possibly interesting higher dimensional patterns

[20]. These new cluster candidates are inserted into our

ranking based on their cluster gain. Due to relevance updates

in later steps, the positions of these new cluster candidates

might be rearranged. The currently most relevant candidates

are at the top of the ranking.

Furthermore, as density-based clustering is a computation-

ally expensive task we compute density estimation based on

discretized grid cells to approximate the true densities [4].

Efficiency is ensured as we only perform our density-based

clustering on the top ranked candidates. Thus, by choosing

the top candidate from the ranking, we focus in each step on

the most promising cluster either to generate new candidates

or to refine an approximative cluster.

For inclusion in the clustering result according to greedy

processing we select the top ranked cluster that has been

refined and used for new candidate generation.

Using this on-demand ranking in our greedy approach, we

ensure efficiency by generation of only a small set of promis-

ing subspace cluster candidates as needed. Furthermore, in

each step we select the most promising (top ranked) region

for processing.

IV. EXPERIMENTS

We compare RESCU with recent representatives of dif-

ferent high dimensional clustering paradigms: Grid-based

subspace clustering CLIQUE [2] and its extension SCHISM

[23]; Density-based algorithms SUBCLU [14], INSCY [5]

and the approximative FIRES [16]; Projected clustering

PROCLUS [1] and statistical P3C [19] and StatPC [18].

Note that we have optimized parameters for each algo-

rithm on each data set. Furthermore, we provide supplemen-

tary material1 (executables, exact parameter settings and data

sets used in our evaluation) for repeatability and comparison.

For a fair comparison of the competing approaches we use

a recent evaluation framework [21]. All implementations

are in Java and experiments were run on Intel Core 2 Duo

computers with 3 GHz and 2 GB main memory.

Benchmark data from the UCI archive [6] (also used in

the evaluation study in [21]) is used to study performance on

1http://dme.rwth-aachen.de/OpenSubspace/RESCU
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Figure 5. Scalability w.r.t. dimensionality and size of the database

real data. In addition, we use 17-dim. features as extracted

in [5] from sequence data in [15]. Besides the UCI 16-

dim. pendigits data, we use 32 and 48-dim. variants by

interpolation of the available polylines. As the true number

of clusters is unknown for real data, accuracy of class labels

as in e.g. [19], [5], [20] is measured. We employ synthetic

data for validating that all generated clusters are identified

and for scalability experiments. Following the method in

[14], [5] for overlapping density-based clusters in arbitrary

subspaces, we generate data of different dimensionalities and

hide subspace clusters with a dimensionality of 50%, 60%

and 80% of the data dimensionality.
We measure quality as the F1 value [19], [5], [20], [24],

which among other things evaluates the cluster purity. It is

computed as the harmonic mean of recall (“are all clusters

detected?”) and precision (“are the clusters accurately/purely

detected?”). On real data, the class label of a detected

subspace cluster is its most frequent label. The F1 value of

the entire clustering is the average of all clusters’ F1 values.

Additionally, we provide the commonly used accuracy of

classifiers (e.g. C4.5 decision tree) built on the detected pat-

terns [8], [20]. A high accuracy indicates that the subspace

clustering is a good generalization of the underlying data

distribution. By providing both measures on many data sets,

we provide a thorough analysis for real world data.

A. Scalability
Our comparative study begins with an analysis of the

result size and runtime (Fig. 5(a) & 5(b)) with respect to

the dimensionality on a synthetic data set with 10 hidden

clusters.
Redundancy maintenance: First, we want to show the

result size of the algorithms CLIQUE and SUBCLU, which

do not provide redundancy removal. They produce over-

whelming result sets that are several orders of magnitude

larger than the hidden clusters. They suffer from the fact, that

any cluster typically induces several very similar clusters in

lower dimensional projections, especially as dimensionality

increases. Our RESCU approach successfully detects only

the 10 relevant subspace clusters.
Figure 5(b) illustrates the effect of size on the runtime

of these approaches. (Please note the logarithmic scale.)

Beyond 15 dimensions, the poor scalability of CLIQUE and

SUBCLU due to their result size renders analysis infeasible

on standard desktop PCs. In the following experiments, we

do not include CLIQUE and SUBCLU due to their poor

performance in terms of result size and runtimes. RESCU, as

a representative for models with redundancy removal, clearly

outperforms these algorithms.

In summary, redundancy removal is a key property to

provide interpretable results and good scalability. Algorithms

that maintain redundant clusters are not considered in the

following experiments.

Redundancy removal: Compared to CLIQUE and SUB-

CLU the remaining algorithms scale to higher dimensional

data sets and show significantly smaller result sizes in the

range from 6 to 169 as depicted in Figure 5(a). Please

note that comparison with some algorithms that require the

number of clusters as an input, like the projected clustering

approach PROCLUS, does not reflect their performance in

real application scenarios where this information is typically

not available. Most of the algorithms output more than 10

clusters, however, they where not able to detect all of the 10

hidden clusters. RESCU is able to find all hidden clusters.

Overall only our RESCU relevance model is able to find the

hidden and thus relevant clusters. We further investigate the

quality of the clustering result on real world data sets in Sec.

IV-B.

The runtime of RESCU (Fig. 5(b)) is comparable to that of

the other approaches. It is less affected by the dimensionality

as it computes only the relevant subspace clusters on-

demand and excludes most irrelevant results. Our relevance

ranking of cluster candidates and the greedy processing

ensures an overall efficient computation. Although some

algorithms have smaller runtime, RESCU is still efficient

and, as we believe, this aspect is compensated by the higher

clustering quality of RESCU.

Our next experiment in Figure 5(c) shows the runtime

of the algorithms with respect to the database size. Our

RESCU approach scales well whereas most of the competing

algorithms show a greater increase in runtime. Overall the

results from this experiment are comparable to the results in

Fig. 5(b).



B. Quality on real world data

Our next experiment in Figure 6 evaluates F1 value and

accuracy for the pendigits data. We vary the dimensionalities

from 16 to 48. For F1 measure on the 16d data set we

observe top quality results for RESCU, P3C and PROCLUS.

Hence these algorithms find almost all and pure clusters.

While P3C does not scale to the higher dimensional data

sets, RESCU and PROCLUS reach again high qualities.

Considering accuracy, our RESCU approach has the best

quality results. SCHISM is second in accuracy, but has a

significantly lower F1 value. In general, RESCU is the only

approach that shows top results for both measures in all

dimensionalities. Our novel model is able to detect the most

interesting and non-redundant clusters in the data set.

It must be highlighted that the results of the two density-

based approaches INSCY and FIRES cannot compete with

RESCU. The high quality of RESCU is not only a result

of the density-based instantiation of the subspace cluster

definition but in particular due to our new relevance model.
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Figure 6. Quality on pendigits data (7494 objects; 16-48 dimensions)

In Figure 7 we show F1 and accuracy results for six

further real world data sets. In addition to the absolute values

we note the relative quality compared to the best measure-

ment on each data set. Best 95% results are highlighted

in gray. RESCU achieves top quality results for all data

sets with respect to both measures. Competing approaches

show highly varying performance. None of them achieves

top quality allover. Although some of the approaches achieve

slightly better results on some of the data sets, RESCU

reliably shows top results on all data sets.

C. Parametrization

We also evaluate the approximation quality of RESCU

compared to the full optimization model. As we have proven

RESCU is NP-hard and thus we can compute an optimal

solution only for very small settings. In this experiment we

use datasets with 10 clusters. The cost and objects per cluster

are randomly selected from (0; 1] and [1; 100], respectively.

For each Δ value we generate at least 20 random datasets

to calculate the optimal and approximative solution. Figure

RESCU 60 100% 62 100% 44 100% 64 96% 71 100% 69 100%

INSCY 56 93% 54 87% 37 84% 67 100% 58 82% 65 94%

FIRES 30 50% 49 79% 10 23% 12 18% 33 46% 65 94%

SCHISM 45 75% 49 79% 24 55% 53 79% 69 97% 69 100%

PROCLUS 39 65% 54 87% 32 73% 30 45% 44 62% 65 94%

P3C 17 28% 39 63% 8 18% 16 24% 44 62% 65 94%

STATPC 19 32% 47 76% 17 39% 47 70% 39 55% 64 93%

60 62 44 67 71 69

RESCU 60 100% 75 100% 62 97% 61 98% 67 100% 76 97%

INSCY 56 93% 61 81% 62 97% 59 95% 65 97% 70 90%

FIRES 56 93% 62 83% 50 78% 53 85% 46 69% 75 96%

SCHISM 38 63% 59 79% 64 100% 58 94% 65 97% 71 91%

PROCLUS 60 100% 62 83% 46 72% 62 100% 47 70% 77 99%

P3C 39 65% 45 60% 36 56% 58 94% 63 94% 77 99%

STATPC 31 52% 62 83% 57 89% 58 94% 41 61% 78 100%
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Figure 7. F1 and accuracy on real world data
[Captions: data set (size; dimensionality)]

8 gives the relative approximation quality compared to the

optimal solution (in terms of cost) for different values of Δ.

On average, the approximative solution shows only small

differences to the optimal solution. The whiskers, corre-

sponding to the 15% and 85% quantiles respectively, indicate

that also rare cases yield good approximation qualities.

The approximation quality is remarkably robust against the

parameter Δ, the cluster gain threshold. Even for extremely

rigid values close to zero, average approximation is close to

optimal.
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Next, we evaluate the flexibility of our RESCU model.

For our cost function instantiation (cf. Sec. II-E), we vary

the 𝛽 parameter that controls interestingness as a trade-off

between higher dimensional clusters and more objects per

cluster. For the 32d pendigits data set, Figure 9 shows the

median size (triangles) of the clusters and the number of

high-D (≥ 12) clusters (squares) for the relevant clustering

of a given 𝛽 value. As we can see, low 𝛽 values give strong

preference to large and few clusters, whereas high values

result in many clusters with less objects. Likewise, RESCU

can be just as easily adapted using any other cost function

that reflect the interestingness in a user’s analysis.
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V. CONCLUSION

We introduce the RESCU (relevant subspace clustering)

model for mining the most interesting non-redundant clusters

in high dimensional data. Our novel model incorporates

both non-redundancy and global interestingness via a new

cluster gain definition. We prove that the computation of

this model is NP-hard. For RESCU, we propose an ap-

proximative solution that shows high accuracy with respect

to our relevance model. Thorough experiments demonstrate

that RESCU reliably outperforms existing subspace and

projected clustering algorithms while automatically reducing

the output to all and only relevant clusters.
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