
INSCY: Indexing Subspace Clusters with In-Process-Removal of Redundancy

Ira Assent ∗ Ralph Krieger Emmanuel Müller Thomas Seidl
Data management and exploration group

RWTH Aachen University, Germany
{assent, krieger, mueller, seidl}@cs.rwth-aachen.de

Abstract

Subspace clustering aims at detecting clusters in any
subspace projection of a high dimensional space. As the
number of projections is exponential in the number of di-
mensions, efficiency is crucial. Moreover, the resulting sub-
space clusters are often highly redundant, i.e. many clusters
are detected multiply in several projections. We propose
a novel index for efficient subspace clustering in a novel
depth-first processing with in-process-removal of redundant
clusters for better pruning. Thorough experiments on real
and synthetic data show that INSCY yields substantial effi-
ciency and quality improvements.

1 Introduction

Clustering in high dimensional spaces is obstructed by

noise of irrelevant attributes. Subspace clustering thus

mines clusters in all subspace projections. As the number

of subspace projections is exponential in the dimensional-

ity, efficiency is crucial [1, 5]. The number of resulting

subspace clusters is usually exponential as well. Clusters

typically show in different subspaces, generating redundant

subspace clusters which contain essentially the same infor-

mation as the “maximal” high dimensional one. To allow

users to analyze reasonable result sizes, redundant subspace

clusters have to be removed. Existing subspace cluster-

ing algorithms proceed breadth-first on the subspace lattice:

based on low-dimensional results higher-dimensional can-

didate sets are generated [1, 5, 7]. Huge numbers of can-

didates in low dimensional subspaces result in excess can-

didates, redundant results and poor runtimes. As maximal

high dimensional results are mined last, redundant projec-

tions can only be cleared out once all subspace clusters have

been computed.

We propose INSCY (INdexing Subspace Clusters with

∗
now with Department of Computer Science,

Aalborg University, Denmark

in-process-removal of redundancY), a new depth-first ap-

proach, i.e. recursive mining in a region of all clusters in all

subspace projections, before continuing with the next re-

gion. This strategy has two key advantages: First, as the

maximal high dimensional projection is evaluated first, im-

mediate pruning of all its redundant low dimensional pro-

jections leads to major efficiency gains. Second, indexing of

potential subspace cluster regions is possible. INSCY com-

bines in-process redundancy pruning with our novel index

structure, the SCY-tree, for very efficient subspace cluster-

ing. The SCY-tree is a compact representation of poten-

tial subspace cluster regions which greatly reduces database

scans. Substantial efficiency gains and automatically re-

duced output size render INSCY fast and concise.

2 Non-redundant Subspace Clusters

Density-based clustering has been shown to successfully

detect clusters of arbitrary shape and size even in noisy data

[3, 5, 2]. It defines clusters as maximal density-connected

sets of dense objects. Density-connections are chains of ob-

jects with inclusion in the respective neighborhoods Nε of

the chain. Maximality means that density-connected objects

are all assigned to the same cluster. In subspace clustering,

the projection to the respective subspace S extends these

notions.

Breadth-first subspace clustering suffers from two major

drawbacks: redundancy and inefficiency. Subspace clus-

ters and all of their lower-dimensional projections are com-

puted. These lower dimensional projections typically do

not differ much from their higher-dimensional counterparts.

Figure 1 illustrates this problem: the 2d subspace cluster

C1

C3
C2

project

project
cluster      

Figure 1. Density-based subspace clustering



C3 generates redundant 1d clusters C1, C2. Both contain

less information than C3 as the 2d correlation is not visi-

ble. Thus, lower dimensional projections are typically con-

sidered less informative. As the number of projections is

exponential, the number of redundant subspace clusters is

overwhelming. Consequently, the output has to be filtered

for user benefit. In breadth-first mining, redundant subspace

clusters can only be detected once all lower dimensional

projections have been processed. Removal cannot be ex-

ploited for runtime improvements.

Formally, a cluster (C,S) is redundant: ∃(C′,S′) :
C′ ⊆ C ∧ S′ ⊃ S and the redundant subspace cluster C
in subspace S is covered to a degree of redundancy R by

a cluster |C′| ≥ R · |C| in a higher-dimensional subspace

S′ ⊃ S. Parameter R sets the degree of acceptable redun-

dancy to 0 − 100%: R = 0% means no redundancy, i.e.

no higher-dimensional cluster exists, whereas R = 100%
corresponds to almost full redundancy, i.e. any cluster is re-

ported if it contains at least one object more than a higher-

dimensional cluster. A cluster (C,S) is fully redundant:
∃(C′,S′) : C′ ⊆ C ∧ S′ ⊃ S ∧ |C′| = |C|. Full redun-

dancy is not considered acceptable, as a projection of the

same set of objects is not interesting at all. We follows the

definition of density-based subspace clusters in [2], and for

simplicity of presentation, use rectangle kernels for density

assessment (as e.g. in [3, 5]), yet in principle any kernel can

be used.

Definition 1 Subspace Cluster.

A subspace cluster (C,S) is a set of objectsC ⊆ DB, with
|C| ≥ minSize in subspace S with respect to a density
threshold τS, redundancy factor R and ε-neighborhood
NS
ε (q) = {p ∈ DB | dist(pS, qS) ≤ ε}, where the

projection of object o to a subspace S is denoted by oS if:
• objects in C are S-dense:
∀o ∈ C : |NS

ε (o)| ≥ τS
• objects in C are S-connected:
∀o, p ∈ C : ∃ q1, . . . , qm ∈ C : q1 = o ∧ qm = p ∧
∀i ∈ {2, . . . ,m} qi ∈ NS

ε (qi−1)
• C is maximal:
∀o, p ∈ DB: o, p S-connected ⇒ (o ∈ C⇔ p ∈ C)

• (C,S) is not redundant:
¬∃(C′,S′) subspace cluster withC′ ⊆ C ∧ S′ ⊃ S ∧
|C′| ≥ R · |C|

In addition to redundancy removal, the dimensionality-

dependent threshold τS takes the expected density of sub-

spaces |S| into account. Details can be found in [2].

3 Depth-first processing

We have identified three problems of existing breadth-

first subspace clustering algorithms: first, large sets of

candidates in low-dimensional projections, second, no in-

process-removal of redundant subspace clusters, and third,

repeated density computations due to lack of index support.

To overcome these drawbacks and to reduce runtimes sub-

stantially, we propose a depth-first approach.

Breadth-first algorithms are similar to the apriori algo-

rithm originally introduced in frequent itemset mining in

that they work their way bottom-up on the subspace lattice.

Starting from one dimensional results, all subspace clusters

of dimensionality k are mined, before candidates of dimen-

sionality k + 1 are generated, and so on.

Typically, the number of low dimensional subspace clus-

ters is huge, as they reflect high dimensional subspace clus-

ters in several projections. As in breadth-first approaches all

low dimensional subspaces have to be processed before go-

ing into higher-dimensional ones, these approaches have to

perform costly density-based clustering on all lower dimen-

sional projections even if they are all redundant. In breadth-

first mining, redundant clusters can only be detected once

the entire low dimensional projection has been processed.

This means that no redundancy-based pruning is possible,

as the redundant cluster is already output before its high

dimensional representative is processed. Thus, these ap-

proaches show not only extremely large result sizes (redun-

dancy) but also high runtimes (no in-process pruning of re-

dundancy) of several days as stated in [5].

As we know, the only type of index support to speed up

such density computations in subspace clustering is the us-

age of inverted files for individual dimensions in [5]. In-

dexing subspace clusters in breadth-first algorithms would

require building index structures for each of the exponential

many subspace combinations, which is clearly not advan-

tageous. Thus, depth-first processing is the key to efficient

index-based subspace clustering. Our novel index structure

for depth-first mining supports access to arbitrary subspaces

without mining their lower dimensional projections.

In this work, we show how incorporating redundancy re-

moval into depth-first mining allows for more efficient and

accurate subspace clustering. In a recursive fashion on sub-

space regions, we first identify high dimensional subspace

clusters and immediately prune all lower dimensional pro-

jections and thus avoid costly density computations on ir-

relevant low dimensional candidates.

In contrast to breadth-first subspace clustering our al-

gorithm does not need all lower dimensional subspaces

for a restriction. Our depth-first processing is particu-

larly advantageous as it allows for pruning redundant clus-

ters during the mining process. In Figure 2 we assume

a cluster found in subspace {1, 2, 5}. During the depth-

first processing the shaded subspaces are recursively re-

stricted to {1, 2, 5}. In contrast to breadth-first approaches

{1}, {2}, {5}, {1, 2}, {1, 5} and {2, 5} do not have to be

clustered to get to this subspace. If a cluster found in



1,2,3,4,5

2,3

3

2,4 2,5 3,4 3,51,51,41,31,2 4,5

1,3,5 1,4,5 2,3,4 2,3,5 2,4,51,3,41,2,51,2,41,2,3 3,4,5

1 2 4 5

1,2,4,51,2,3,4 1,2,3,5 1,3,4,5 2,3,4,5

Figure 2. Depth-first in subspace lattice

{1, 2, 5} is the only non-redundant result, then we avoid the

costly density computations for all of its lower dimensional

subspaces. Technically, we step back in the recursion from

high dimensional to lower dimensional projections, where

all actual high dimensional clusters are available for imme-

diate pruning of redundant regions in the crossed out sub-

spaces in Figure 2.

By processing in depth-first order and using in-process

redundancy removal we reduce costly density-based clus-

tering and hence improve the overall efficiency of subspace

clustering.

4 Indexing subspace clusters

Our novel index for depth-first mining provides a

compact representation of the given data with which we

can access arbitrary subspaces without generating all

lower dimensional projections. Thus in-process removal

of redundant patterns is efficiently supported. To index

subspace regions, we use a transformation from the original

space to a compact tree structure. Using a single data base

scan, the initial SCY-tree is built which represents the entire

data base in the full dimensional space. Each leaf node

stores the count of objects in a subregion, that is described

by the path from the root to this leaf. Special paths indicate

neighboring S-connected regions and thus we achieve that

each cluster is represented by one SCY-tree by merging

SCY-trees representing neighboring S-connected regions.

For depth-first mining, SCY-trees can be efficiently re-

stricted to higher-dimensional subspace projections by

simply extracting path information. Consequently, pruning

of sparse regions and of redundant regions is performed

directly on the SCY-trees without costly neighborhood

computations. Only for validating high dimensional

subspace cluster candidates, access to the original data is

required.

SCY-tree structure
To efficiently support density-based subspace clustering by

our novel indexing structure, we use a compact represen-

tation of potentially dense regions. Reconsidering Defini-

tion 1, we see that any potential cluster consists of a mini-

mum number of S-dense objects, i.e. objects whose neigh-

borhood count exceeds a certain threshold. We represent

these more compactly by mapping regions from the origi-

nal space to descriptor nodes that record the object count

for these regions. Additionally, potential clusters are max-

imally S-connected, i.e. they consist of chains of dense

objects within the ε-neighborhood of one another. To en-

sure that these connections are adequately reflected in the

descriptor node representation, we additionally record in-

formation of objects within ε distance of any neighboring

region.

Each region can be described as the subspace dimensions

it spans and the respective intervals in these dimensions.

Figure 3 illustrates the basic idea: we use intervals in each

dimension to describe regions in the original space and for

each region we store the number of objects. Additionally

we ensure S-connectedness by regions of ε-width such that

an object has to be present in such a region if two neigh-

boring regions contain a S-connected cluster. In contrast

to grid-based techniques like CLIQUE [1] we ensure to find

density-based subspace clusters and thus we do not cut clus-

ters apart.

For the given high dimensional data we perform one data

base scan and create the initial SCY-tree on which mining

operations are performed without excessive data base scans.

As depicted in Figure 3 for a 3-dimensional dataset we show

one 2-dimensional projection of the data on the left side

and the initial SCY-tree T{} in the middle. It represents the

whole data base, while a restricted SCY-tree T{(1,1)} on the

right side represents all data objects that are part of region

1 in dimension 1. As we can see, the tree contains a single

path, as all three objects in this region are located in interval

2 in dimension two and in interval 2 in dimension three.

The general idea is that one can restrict a region to fur-

ther dimensions by restricting the corresponding SCY-tree

representing this region. How to restrict trees and how to

handle density-based clusters across multiple regions via

merging of trees is described in the next section.

Definition 2 SCY-tree structure
A SCY-tree TD represents a region
D = {(d1, i1), . . . , (dk, ik)} in an arbitrary subspace.
The SCY-tree consists of nodes, each of them stores:

• a descriptor (d, i) for dimension d and interval i of
the region and its count c of objects

• a pointer to the parent node and a list of child pointers

• a pointer of a linked list of nodes with the same
descriptor

The main properties of a node are the descriptor and

count value. For shorter representation we thus address a

node simply by (d, i) : c. The SCY-tree nodes are ordered



2 3

di
m

en
si

on
 2

 

dimension 1

1

2

3

{(1,1),(2,2)}

{(1,2),(2,3)} {(1,3),(2,3)}

{(1,3),(2,2)}

{(1,3),(2,1)}

1

dim 2

dim 3

1 3:11:2 2:12:41:13:1

3:42:5

2

21:1

dim 1 3:13:2 3:132:1 3:1 1:3 3:1 3

initial SCY-tree T{ }

dim 2

dim 3

2:3

2:3

SCY-tree T{ (1,1) }
restrict(dim 1,interval 1)

Figure 3. Initial SCY-tree and first recursion step

lexicographically according to their descriptors: first, ac-

cording to the dimensions and second according to the in-

terval. We omit the dimension in the illustration of each

node (cf. Figure 3) as each level of the tree corresponds to

one dimension. The special ε-width regions (S-connectors)
that ensure correct density-based clustering are represented

by (d, i) : −1 as we are only interested in the presence of an

object. Nodes representing S-connectors are depicted with-

out a count value (cf. green node in Figure 3).

By using S-connectors we ensure that each region con-

taining a density-based cluster is represented by one SCY-

tree. We therefore set-up the S-connectors at the upper bor-

der of each interval. Given an S-connected cluster spreading

across two neighboring regions there has to be at least one

object in this ε-width region. For the mining this indicates

that INSCY has to merge these two neighboring regions to

have the whole S-connected cluster represented in one SCY-

tree. For multiple regions this merge operation on neighbor-

ing SCY-trees can be done iteratively until no further object

is contained in any surrounding ε region.

5 INSCY algorithm

INSCY mines subspace clusters directly on SCY-tree

paths that correspond to regions and their S-connected re-

gions.

Algorithm 1: INSCY(scy-tree, result)

foreach descriptor in scy-tree do1

restricted-tree := restrict(scy-tree, descriptor);2

restricted-tree := mergeWithNeighbors(restricted-tree);3

pruneRecursion(restricted-tree); //prune sparse regions4

INSCY(restricted-tree,result); //depth-first via recursion5

pruneRedundancy(restricted-tree); //in-process-removal6

result := DBClustering(restricted-tree) ∪ result;7

1. Restricting SCY-trees: searching different subspaces
In one recursive INSCY call the for-loop restricts the cur-

rent SCY-tree for each descriptor (d, i) in lexicographical

order of descriptors. Restriction means that only objects in

dimension d in interval i contribute, consequently the tree

decreases by at least level d. This step is similar in spirit to

conditional FP-growth steps in association rule mining that

dim 2

dim 3

1 3:11:2 2:12:11:1

3:42:2

2

2

SCY-tree T{ (1,3) }

Figure 4. SCY-tree for dimension 1 interval 3

builds conditional subtrees for frequency counts [4]. Note

that any descriptor, not only those at leaf level, are picked

for restriction. This is crucial for detecting arbitrary sub-

space clusters in any possible combination of dimensions.

INSCY can thus efficiently obtain any possible subspace by

extracting the relevant path information into restricted trees.

For efficient restriction, all nodes labeled with the same de-

scriptor are accessed via a linked list.

Example. The initial SCY-tree in Figure 3 is first

restricted to (1, 1) following lexicographical order, i.e. in

dimension 1, interval 1 (red region). For each node in

dimension 1 (at leaf level) labeled 1 (only the third leaf

node from the left with count 3), the paths from this node

to the root are copied into the restricted SCY-tree T{(1,1)},
depicted at the right, labeled with the count of that node.

2. Pruning recursive calls: removing sparse regions
If any SCY-tree count does not exceed the parameter

minSize, further restriction, i.e. projection, can only lead

to lower count values that do not exceed minSize either.

Consequently, they can be safely pruned.

Example. T{(1,1)} has no S-connector in dimension 1,

thus the region cannot be grown. The count of 3 is below

our example minSize value of 4, thus the tree is pruned.

3. Merging SCY-trees: growing S-connected regions
Potentially S-connected restricted trees are easily detected

from special paths without count values. Merging of S-

connected restricted SCY-trees means simply inserting all

paths of one tree into the other one, aggregating the count

values on common paths, possibly inserting new nodes.

Example. Restricting the SCY-tree T{(1,3)} (Fig. 4)

in dimension 2 we get the two SCY-trees for (2, 1) and



(2, 2) shown in Figure 5. Neither exceeds minSize, but

the S-connector node 1 in dimension 2 in the parent tree

T{(1,3)} indicates a connection in this dimension from

(2, 1) to the lexicographical neighbor (2, 2). The two

SCY-trees are merged to the SCY-tree T{(1,3)×(2,1−2)}
representing both intervals in dimension 2, depicted in

Figure 5.

dim 3 3:22:1

SCY-tree T{ (1,3) x (2,1) }

dim 3 3:12:1 2

SCY-tree T{ (1,3) x (2,2) }

dim 3 3:32:2 2

SCY-tree T{ (1,3) x (2,1-2) }

perform merge

Figure 5. Merge of two SCY-trees

4. Clustering: mining actual subspace clusters
In the final step, the density-based clustering on the re-

stricted SCY-tree, the actual data is accessed to identify the

actual neighborhoods and to check all conditions of sub-

space clusters (Definition 1). This access, however, is re-

quired only for those few regions that cannot be pruned.

Example. Figure 5: T{(1,3)×(2,1−2)} is merged in

dimension 3 according to S-connector node 2, yielding

T{(1,3)×(2,1−2)×(3,2−3)} with a count of 5 ≥ minSize.
There is no further dimension that we could restrict the

tree in. Since our result set is still empty, no redun-

dancy pruning is possible, and we cluster the region

(1, 3)× (2, 1− 2)× (3, 2− 3). In our example, we assume

detection of a cluster.

5. Redundancy pruning: in-process removal
In-process-removal of redundant clusters is checked on the

SCY-tree (with respect to the redundancy parameter R) if

there is already a cluster in the result set covering this re-

gion. As INSCY proceeds in a depth-first manner, the re-

cursion stops if no higher-dimensional clusters can be found

(i.e. no further restriction is possible, or minSize is no

longer exceeded). INSCY then steps back to analyze lower-

dimensional projections, checking only SCY-trees contain-

ing potentially non-redundant clusters. As the maximal

high dimensional subspace clusters is the first one to be in-

cluded in the result set, costly mining steps of low dimen-

sional projections are avoided.

Example. Stepping back in the recursion, process

T{(1,3)×(2,1−2)}. The redundancy check shows that

SCY-tree T{(1,3)×(2,1−2)} has a count of only 5. Thus no

DBClustering is performed, because this is exactly the

size of the subspace cluster found in the 3-dimensional

subspace (1, 3)(2, 1− 2)(3, 2− 3).

6. Arbitrary restrictions: detecting all subspace clusters
The INSCY algorithm mines arbitrary subspaces, i.e. any

possible combination of dimensions. Any dimension not

currently under consideration, be it at leaf level or above,

is simply disregarded during restriction of SCY-trees. More

precisely, as the path information is extracted, in-between

dimensions do not require any special treatment. Conse-

quently, SCY-trees provide the means for efficient mining

of any subspace.

Example. Another step back in the recursion leads

to T{(1,3)} shown in Figure 4. Here, dimension 2 has

already been processed, and it does not need to be restricted

any more. Next, restriction in dimension 3 is mined.

From Figure 4 we can see that the resulting SCY-tree

T{(1,3)×(3,2−3)} would have a count of 6, as there is a count

of 2 in cell 2 and a count of 4 in cell 3 with an S-connector

path between them. Redundancy pruning is possible again,

as with a redundancy parameter of 80% the inequation

(5 ≥ 80% · 6) is true and thus a count of 6 is considered

too close to the already detected subspace cluster of size

5 for mining or inclusion in the result set. In the last step

back to the initial SCY-tree, the INSCY algorithm detects a

non-redundant cluster. Skipping dimension 1 and perform-

ing restriction and merge for dimension 2 yields T{(2,1−2)}
with a count of 8. A further recursive call of INSCY on

dimension 3 performs the second DBClustering call on

T{(2,1−2)×(3,2−3)} because this time (5 ≥ 80% · 8) does

not hold for redundancy pruning. Thus, actual subspace

clustering is performed.

Correct detection of non-redundant subspace clusters
First, all non-redundant clusters are in the listing, which

is straightforward as any SCY-tree that is pruned with re-

spect to redundancy is compared against subspace clusters

that have already been stored in the result listing. As no

subspace cluster is later removed from the listing, all non-

redundant clusters are included. Second, no redundant clus-

ter is in the output. This is ensured as INSCY mines regions

in a depth-first manner, i.e. each individual region is clus-

tered in all subspace projections. Due to the recursive nature

of the algorithm, higher-dimensional subspace clusters are

mined first, before stepping back to lower-dimensional sub-

space clusters in the same region which can then be pruned.

6 Experiments

INSCY is compared to the most recent non-approxive

density-based algorithm SUBCLU [5] that uses inverted



����

����

����

����

��
	

��

�
��

�
��

������
����������
���������
���������
���������
��������

�

����

����

� ���� ���� ���� ����
 !
!�"!�
���#


(a) Runtime

�����

$�%

���%
&��'!(�
 	��"
��)*��(��

��

����

��%

+�%

$�%

�(�



�����%

��%

�(
��



��

&�
�'
!(

����%

��%

�
"


��)
*�

���%

��% 	�
�

(b) Quality

Figure 6. Evaluation of Redundancy.

files on individual dimensions as the only possible indexing.

Synthetic density-based subspace clusters are generated as

in [5, 2] to generate density-based clusters in arbitrary sub-

spaces with additional overlapping subspace clusters, just

as in most real world data sets. Quality is measured via F1
measure [9, 7], the harmonic mean of recall (“are all clus-

ters detected?”) and precision (“are the clusters accurately

detected?”). F1-value of a clustering is the average of all

F1-values, where the most frequent label is assigned to any

detected subspace cluster.

Figure 6(a) shows that runtime scalability depends

largely on the degree of redundancy. No redundancy, i.e.

R = 0% shows runtimes far lower than all other variants.

Even as little asR = 20% redundancy in the result set leads

to up to four times slower runtimes. Towards full redun-

dancy of R = 100% runtimes are only slightly better than

SUBCLU. Figure 6(b) illustrates the respective F1 quality

measurements and the result size on 1900 objects. As we

can see from the dark gray bars, the number of subspace

clusters increases exponentially (logarithmic scale), mean-

ing overwhelming output size of competing algorithms. The

light gray bars are F1 measurements. Clearly, removing re-

dundancy leads to far better F1 values. Redundant subspace

clusters thus obscure information in maximal dimensional-

ity subspace clusters. The fully redundant SUBCLU algo-

rithm did not finish after more than 10 days, hence we were

not able to evaluate the F1 value for SUBCLU.

On real world data sets (pendigits, vowel, glass [8] and

shapes [6]) F1 values are given in Figure 7(a). Remov-

ing redundancy is important for all four real world data

sets as well: noisy clusters are removed from the result set,

and precision improves (e.g. R = 0% results in a preci-

sion of 30% for vowel while R = 5% yields a precision

of 24%). Removing all redundant subspace clusters might

miss a few cluster objects resulting in slightly lower recall.

As illustrated by Figure 7(a) allowing a very small amount

of redundant clusters is a good compromise. The effect for

runtime behavior is presented in Figure 7(b). The results

demonstrate that INSCY outperforms SUBCLU, especially

for maximal redundancy pruning (R = 0%).

(a) Quality (b) Runtime

Figure 7. Evaluation on real world data.

7 Conclusion

INSCY (indexing subspace clusters with in-process-

removal of redundancy) overcomes two major drawbacks of

existing subspace clustering approaches: highly redundant

results and poor runtimes. We analyzed how in-process

removal of redundancy in a depth-first approach permits

powerful pruning. Our SCY-tree is the first indexing

structure for compact representation of potential subspace

cluster regions to avoid repeated database scans. Thorough

experiments demonstrate that INSCY clearly outperforms

existing subspace clustering algorithms.

Acknowledgments: This research was funded in part by

the cluster of excellence on Ultra-high speed Mobile Infor-

mation and Communication (UMIC) of the DFG (German

Research Foundation grant EXC 89).

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Au-

tomatic subspace clustering of high dimensional data for data

mining applications. In SIGMOD, pages 94–105, 1998.
[2] I. Assent, R. Krieger, E. Müller, and T. Seidl. DUSC: Di-

mensionality unbiased subspace clustering. In ICDM, pages

409–414, 2007.
[3] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based

algorithm for discovering clusters in large spatial databases.

In KDD, pages 226–231, 1996.
[4] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without

candidate generation. In SIGMOD, pages 1–12, 2000.
[5] K. Kailing, H.-P. Kriegel, and P. Kröger. Density-connected

subspace clustering for high-dimensional data. In SDM, pages

246–257, 2004.
[6] E. Keogh, L. Wei, X. Xi, S.-H. Lee, and M. Vlachos.

LB Keogh supports exact indexing of shapes under rotation

invariance with arbitrary representations and distance mea-

sures. In VLDB, pages 882–893, 2006.
[7] G. Moise, J. Sander, and M. Ester. P3C: A robust projected

clustering algorithm. In ICDM, pages 414–425, 2006.
[8] D. Newman, S. Hettich, C. Blake, and C. Merz. UCI reposi-

tory of MLDBs, 1998.
[9] I. Witten and E. Frank. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann, USA,

2005.


