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Abstract— Outlier detection is an important data mining task
for consistency checks, fraud detection, etc. Binary decision
making on whether or not an object is an outlier is not appro-
priate in many applications and moreover hard to parametrize.
Thus, recently, methods for outlier ranking have been proposed.
Determining the degree of deviation, they do not require setting
a decision boundary between outliers and the remaining data.
High dimensional and heterogeneous (continuous and categorical
attributes) data, however, pose a problem for most outlier ranking
algorithms. In this work, we propose our OutRank approach
for ranking outliers in heterogeneous high dimensional data. We
introduce a consistent model for different attribute types. Our
novel scoring functions transform the analyzed structure of the
data to a meaningful ranking. Promising results in preliminary
experiments show the potential for successful outlier ranking in
high dimensional data.

I. INTRODUCTION

Outlier detection is an important data mining task for man-
aging today’s huge amounts of application data. Applications
include consistency checks of sensor network measurements,
fraud detection in financial transactions, emergency detection
in health surveillance and many more.

Outliers are objects that deviate from the rest of the data to a
great extent. Distance-based [1] or cluster-based [2], [3] outlier
mining algorithms suffer from difficulties in parametrization,
as the extent of deviation is usually hard to quantify. This has
led to outlier ranking based on their degree of deviation, e.g. as
in the local outlier factor (LOF) approach [4] or in its extension
to a top-n outlier detection [5]. While these approaches have
been successful in low-dimensional data, high dimensional and
heterogeneous data still pose a challenge to outlier detection.
For high dimensional data (i.e. with very many attributes)
as prevalent in many application databases, distances grow
more and more alike due to an effect termed the “curse of
dimensionality” [6]. As a consequence, both distance-based
and clustering-based outlier detection methods fail to separate
outliers from the remaining data. Global dimensionality reduc-
tion techniques like principal components analysis (PCA) [7]
are not adequate in practical applications where the assumption
of globally uniform relevance of attributes does not hold.

In clustering, the effect of locally varying relevance of
attributes has led to the development of subspace clustering
techniques. As clustering in the full space is no longer fea-

sible, subspace clustering effectively detects locally relevant
attributes (a lower dimensional subspace) for each cluster.

For high dimensional outlier ranking, we propose exploiting
subspace clustering analysis. A major challenge lies in the
fact that usually even outliers will be part of at least one of
the exponentially many subspace clusters. Thus, the deviation
has to be measured with respect to the prevailing subspace
cluster patterns in the data. An additional challenge arises from
heterogeneity, i.e. both continuous and categorical attributes,
where existing approaches usually focus on just one type of
attributes.

In this work we propose OutRank (outlier ranking), an
approach that is capable of handling heterogeneous high
dimensional data. We introduce novel scoring functions to
assess the deviation of objects from the rest of the data
as determined by subspace clustering analysis. We therefore
extend a recent subspace clustering model [8] to heterogeneous
data in a consistent manner for both types of attributes.
Preliminary experiments show that our algorithm outperforms
LOADED [9], a link-based approach for heterogeneous data.
We demonstrate future research potential toward a general
framework for outlier ranking on arbitrary data types.

II. OUTLIER DETECTION IN SUBSPACES

Outliers are objects that deviate from the overall data, e.g.
as summarized in clustering results.

Challenge 1: High dimensional data.
Technique: subspace cluster analysis.

We propose using subspace clusters for outlier detection in
high dimensional data where traditional clustering fails. The
difficulty lies in meaningful ranking of outliers with respect
to possibly overlapping clusters in arbitrary subspaces. As any
object may belong to several clusters in one or more subspaces,
we define novel scoring functions based on these subspace
clusters (Sec. III).

In density-based (subspace) clustering, dense regions form
clusters while objects in sparse regions are considered outliers.
The density of an object o is measured via a density measure
ϕ(o) of objects in the ε-neighborhood of o. Objects in the



neighborhood are “density-connected” and assigned to the
same cluster.

Outlier detection requires comparable subspace clusters,
i.e. the density measure ϕS has to be unbiased with respect
to the dimensionality of the subspace S. This is achieved
by normalizing with the expected density of the subspace
dimensionality [8]:

Definition 1: Unbiased density normalization
For any density measure ϕS with expectation E[ϕS ],

ϕS

E [ϕS ]
is dimensionality unbiased.

For continuous attributes, our previous work on dimensionality
unbiased subspace clustering provides such an unbiased den-
sity measure [8]. Let Econt [ϕS ] denote the expected density
for a continuous valued subspace S. It is computed as the
number of objects in the database DB multiplied by the
volume ratio of the neighborhood in subspace S to the entire
subspace S:

Definition 2: Continuous normalization

Econt [ϕS ] = |DB| ·
vol(ε-sphereS)

vol(S)

For computation details, please refer to [8].

Challenge 2: Heterogeneous attributes.
Technique: consistent density normalization.

For heterogeneous data, computation of the expected density
requires taking categorical attributes into account. By defini-
tion, categorical data attributes have no extension, i.e. only
discrete values occur. As a consequence, distance values are
discrete as well and the notion of ε-sphere neighborhoods leads
to discontinuous densities.

We propose a novel approach that unifies density assess-
ment for categorical and continuous attributes. To ensure a
consistent density measure, the expected density should be
normalized for categorical attributes in the same manner as for
continuous attributes. We achieve this consistency by treating
categorical values not as discrete points, but as segments of the
attribute value range. More precisely, the number of values vi
for each attribute dimension i of the categorical attributes is
considered to be the value range extension in this attribute.
The overall volume of a categorical subspace Scat is then
defined as the product of these ranges, yielding a rectangular
overall volume vol(Scat) =

∏
i∈Scat vi. The expected density

of categorical attributes is then the number of objects in the
database DB multiplied by the ratio of the segment volume
by the volume of the subspace.

Definition 3: Categorical normalization

Ecat [ϕS ] = |DB| ·
vol(segment)

vol(S)

with vol(segment) = 1 as each segment corresponds to one
discrete value. This view corresponds to a frequency count in
the categorical attributes, and fits in nicely with our continuous
attribute normalization in the sense that the overall expected
density normalization E [ϕS ] is consistent for both types of
attributes in subspace S = Scont ∪ Scat:

Definition 4: Heterogeneous normalization

E [ϕS ] = |DB| ·
vol(ε-sphereScont

)

vol(Scont)
· vol(segment)

vol(Scat)

Using this extended density measure definition for heteroge-
neous data, we determine subspace clusters (C, S) as maximal
density-connected sets of objects C in a subspace S [8]. Sub-
space clusters according to this model are not redundant, i.e.
clusters are not included in other clusters in higher dimensional
subspaces.

Definition 5: Subspace Clustering
A subspace clustering w.r.t. to a density threshold F is a set
{(C1, S1), . . . , (Cn, Sn)} of clusters Ci in subspaces Si, i.e.
• Ci maximal, density-connected set of objects in Si

• each object o ∈ Ci is more dense than expected by at a
least a factor F : ϕSi

(o) ≥ F · E [ϕSi
]

• Ci is not redundant in any higher dimensional subspace
Sj ⊃ Si, i.e. (Ci, Sj) not a subspace cluster

III. OUTLIER RANKING

Using subspace clustering to analyze the structure of the
data allows our approach to deal with high dimensional
data. However, compared with traditional full space clustering
algorithms like DBSCAN [2] there is no direct outlier output.
Subspace clustering does not compute a partitioning of the data
in several clusters and a group of outlier objects. Instead the
result is a set of overlapping clusters which typically encloses
all objects. We thus focus on defining scoring functions as
a transformation based on subspace clusters. Scoring must
reflect the deviation of objects such that a ranking of outliers
can be computed by sorting objects in ascending order of their
scores.

Challenge 3: Outlier ranking on subspaces.
Technique: scores for subspace cluster memberships.

In subspace clustering, objects are typically in at least one
subspace cluster, because in low dimensional subspaces (e.g.
one or two attributes) it is most probable to find similar objects.
Additionally, objects are often in more than one subspace
cluster, because of the large number of different subspaces,
it is likely that each objects is similar to other objects in at
least one subspace. Thus, we define outliers as objects that
are found in abnormally few or low dimensional subspace
clusters. Consequently, we develop novel scoring functions
based on the result set of subspace clustering. For each object



in the database these scoring functions assign positive score
values for each object in each subspace cluster. The lower
the score, the greater the deviation. Scoring functions should
weight these clusters by their size with respect to both number
of objects and number of attributes. This reflects the idea
that larger subspace clusters in more attributes are stronger
witnesses for an object’s “normality”.

In our first scoring function we incorporate cluster size |C|
and subspace dimensionality |S| directly. The score is thus
the weighted sum (by parameter α) of these two properties,
normalized by maximal cluster size cmax and maximal dimen-
sionality dmax:

Definition 6: Size and dimensionality scoring:

score1(o) =
∑

o∈(C,S)

α ·
(
|C|
cmax

)
+ (1− α) ·

(
|S|
dmax

)
An object o is assigned a score for each subspace cluster it be-
longs to, weighted by the size and dimensionality. Objects not
in any subspace cluster score zero and objects in only small or
very low dimensional subspace clusters score low, accurately
reflecting their deviation from the prevailing patterns in the
data.

Alternatively, in our second scoring function we use the
measurements of density-based subspace clustering for outlier
scoring. From the point of view of the density-based clus-
tering paradigm, objects with high density are “normal”. As
discussed in the previous section, for subspace clustering this
should be normalized by the expected density. Thus, the factor
F̃ (o) by which an object o actually exceeds the expectation is
an adequate weight for an object’s score:

Definition 7: Density expectation scoring:

score2(o) =
∑

o∈(C,S)

F̃ (o) =
∑

o∈(C,S)

ϕS(o)

E [ϕS ]

As before, objects not in any subspace clusters are assigned a
value of zero, and objects that only barely exceed the expected
density are given low scores.

For a preliminary evaluation of our approach we constructed
a test data set1 out of a real world database containing both
categorical and continuous attributes. We randomly added 10
and 100 outliers, respectively, to assess the potential of the
scoring functions for outlier ranking.

We measure recall and F1-measure values known e.g. from
classification [10]. Recall is the ratio of outliers found in the
ranking by the total number of outliers in the data. It indicates
to which degree the rankings are successful in detecting the
hidden outliers. The F1-measure is the harmonic mean of
recall and precision, i.e. it also takes the false positives into
account. For 10 outliers Figure 1 and Figure 2 show recall
and F1-measure values vs. different ranking sizes for score1,

1data set containing 900 objects described by seven attributes. Earth quake
monitoring database available at http://nsmp.wr.usgs.gov/data.html
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Fig. 1. Recall for 10 outliers
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Fig. 2. F1-measure for 10 outliers

score2 and the ranking used in the LOADED algorithm2 [9].
Similarly, Figure 3 and Figure 4 show recall and F1-measure
values for 100 outliers.

An ideal ranking should first find all hidden outliers and thus
show both increasing recall and F1-measure until all outliers
have been detected. Because we introduced outliers randomly,
some of the introduced “outliers” may actually be consistent
with the data distribution and not show up as outliers.

As we can see, our subspace clustering based approach
yields promising results. It shows a faster increase in both
recall and F1-measure, and in sum detects more outliers on the
first 200 objects than the link-based competing algorithm. For
the data set with only 10 outliers, score2 shows a clearly better
performance, while for 100 outliers, score1 is slightly better at
detecting outliers. This could be due to the fact that for more
outliers, the factor by which the expected density of a subspace
is exceeded better reflects the degree of deviation than the
size and dimensionality of subspace clusters. We investigate
this issue in our ongoing work to develop an overall optimal
scoring function.

2For score1 we set α = 0.25 by empirical evaluation.
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Fig. 3. Recall for 100 outliers

50%

60%

70%

80%

90%

100%

as
ur

e

0%

10%

20%

30%

40%

50%

0 20 40 60 80 100 120 140 160 180 200

F1
-m

e

number of objects

Scoring 1

Scoring 2

LOADED

Fig. 4. F1-measure for 100 outliers

Compared with LOADED, which assigns link scores based
on different schemes for categorical and continuous attributes,
our consistent outlier measure for heterogeneous data shows
superior performance. By generating distinct test sets with
outliers in just categorical or just continuous attributes, we will
investigate in future evaluations the differences to LOADED
to further improve our scoring functions.

IV. CONCLUSION AND FUTURE WORK

Ranking of outliers is a useful technique for the analysis
of potentially deviating objects in the data. Starting from the
most unusual objects with respect to patterns in the data, the
ranking can be studied up to a user specified point. The ranking
should thus reflect the degree of deviation. In this work, we
have studied rankings that reflect outliers in the data.

As opposed to existing approaches, our OutRank approach
handles heterogeneous data, i.e. both continuous and categori-
cal attributes, of high dimensionality. Using subspace clusters
as pattern representatives in high dimensional data, we have
developed a novel normalization for detection of outliers in
any subspace. The ensuing scoring functions reflect the main

characteristics of the objects with respect to subspace clusters
to ensure that outlier ranking reflects the degree of deviation.

Challenge 4: Score analysis and combination.
Technique: evaluation and interleaved top-k mining.

Our preliminary experiments show promising results for both
scoring functions. Ongoing work deals with in-depth study of
the performance of the two different scoring functions. Insights
into their strengths and weaknesses could be combined into
a framework that works for a broad range of application
domains.

Moreover, we plan to interleave outlier ranking with the
subspace cluster analysis. This allows for an immediate top-
k outlier output as for low dimensional data in [5] before
processing the whole ranking.

Challenge 5: Sequential attributes.
Technique: consistent normalization for sequences.

Additionally, OutRank will be extended to include sensor
data as well. Taking the sequential nature of sensor data
into account, an overall model that deals with continuous,
categorical and sequential attributes allows application of our
technique to any kind of data attributes.
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