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Abstract—In many real-world applications, data is collected
in multi-dimensional spaces. However, not all dimensions are
relevant for data analysis. Instead, interesting knowledge is
hidden in correlated subsets of dimensions (i.e., subspaces of the
original space). Detecting these correlated subspaces independent
of the underlying mining task is an open research problem.
It is challenging due to the exponential search space. Existing
methods have tried to tackle this by utilizing Apriori search
schemes. However, they show poor scalability and miss high
quality subspaces.

This paper features a scalable subspace search scheme (4S),
which overcomes the efficiency problem by departing from the
traditional levelwise search. We propose a new generalized notion
of correlated subspaces which gives way to transforming the
search space to a correlation graph of dimensions. Then we
perform a direct mining of correlated subspaces in the graph.
Finally, we merge subspaces based on the MDL principle and
obtain high dimensional subspaces with minimal redundancy. We
theoretically show that our search scheme is more general than
existing search schemes and has a significantly lower runtime
complexity. Our experiments reveal that 4S scales near-linearly
with both database size and dimensionality, and produces higher
quality subspaces than state-of-the-art methods.

I. INTRODUCTION

The notion of correlation is one of the key elements of
statistics and is important for many areas of applied science.
For instance, correlations have just recently been exploited in
entropy-based dependency analysis to identify novel structures
in global health and human gut microbiota data [27]. In data
mining, correlations of dimensions often indicate the existence
of patterns (e.g., clusters [7] and outliers [15]), and are thus
very important for knowledge discovery. In multi-dimensional
data, however, patterns are often obscured in the full-space due
to the presence of noisy features. Instead, they can be found
in (possibly overlapping) correlated subsets of dimensions, so-
called correlated subspaces of the original data space. Mining
such subspaces, commonly referred to as subspace search, is
crucial to unravel interesting knowledge and to understand
multi-dimensional data.

Example: The facility management of our university stores
indicator values of buildings, such as electricity, heating, gas,
and water consumption per hour. Each dimension is one of
these indicators of a specific building. In such data, not all
indicators of all buildings are correlated with each other.
Instead, there are different subsets of correlated indicators,
e.g., the heating indicators of office buildings, the ones of
the Chemistry department, and so on. Overlap among subsets
is possible since buildings can both be office buildings and
belong to the Chemistry department. In practice, detecting sub-
sets of correlated indicators is important for facility managers.

This is because they can understand the energy consumption
of the university better from such subsets. For instance, they
can apply specialized data analytics on just those subsets to
find clusters or anomalous measurements. An example would
be an abnormally high heating consumption among the office
buildings. Clearly, one cannot observe such patterns when
indicators are uncorrelated or data is distributed randomly.
Lastly, it is preferable to find subsets with as many correlated
indicators as possible, i.e., high dimensional subspaces. Re-
turning redundant lower-dimensional projections of the same
subspace distracts users and misses the bigger picture.

We observe three open challenges that have to be tackled
for scalable subspace search, in particular w.r.t. dimensionality
of data. First, it is unclear how to decide which subspaces
have high correlations. Existing methods [7], [14], [15], [23],
using an Apriori-style search scheme, impose a restrictive
monotonicity on the correlation model: A relevant subspace
has to be relevant in all of its lower-dimensional projections.
However, this is only for efficiency reasons and may cause
poor results in terms of quality. Second, one needs a scalable
search scheme to navigate through the huge search space. For
a data set with 40 dimensions the total number of subspaces is
240 (more than 1 trillion). Looking at databases in practice
(e.g., our facility management stores 540 dimensions), the
search space is astronomically large. Obviously, this makes
brute-force search impractical. Apriori-style methods, though
employing the monotonicity restriction, still suffer from poor
efficiency due to (a) their expensive mining of correlated
dimension pairs and (b) their level-by-level processing that
generates a tremendous number of candidates. Third, the
final set of subspaces must be free of redundancy, i.e., it
must contain high dimensional subspaces rather than their
fragments. Existing methods use the monotonicity restriction.
Hence, they detect redundant subspaces of low quality which
are projections of the same high dimensional subspace.

We address these challenges by proposing 4S. In general,
we depart from the traditional Apriori search scheme and
its monotonicity restriction. In particular, we make scalable
subspace search feasible by creating a new generalized notion
of correlated subspaces: We define a subspace to have a
high correlation if its member dimensions are all pairwise
correlated. We later establish a relationship between our notion
and the well-known total correlation [7] and prove that our
notion is more general than existing ones. That is, given the
same correlation measure, all subspaces found by Apriori-style
methods are also discovered by 4S. As a result, we expect 4S
to discover subspaces missed by such methods.

4S starts exploring the search space by computing pairwise
correlations of dimensions. To ensure scalability, we devise



two new efficient computation methods for this task. One of
these methods builds upon AMS Sketch [5]. To our knowledge,
we are first to use this theory for efficient computation of
pairwise correlations of continuous random variables.

Based on the pairwise correlations computed, we map
the subspace search problem to efficient mining of maximal
cliques in a correlation graph. Hence, we get rid of the lev-
elwise search of Apriori-style methods and directly construct
higher-dimensional subspaces by maximal clique mining. Due
to this non-levelwise processing, 4S neither requires to com-
pute correlations of each subspace candidate nor to check an
excessive number of its lower-dimensional projections.

To address the fragmentation issue of high dimensional
correlated subspaces, we transform the problem to an MDL-
based merge scheme of subspaces and merge the detected
subspaces accordingly. While MDL is an established notion
for model selection, its deployment to subspace search is new.

Overall, unlike Apriori-style methods [7], [14], [15], [23],
4S can find high dimensional correlated subspaces, and pro-
vides both efficiency and quality due to our main contributions:

• A generalized notion of correlated subspaces, relaxing
restrictions of traditional models.

• A scalable subspace search scheme, including efficient
pairwise correlation computation and direct construc-
tion of high dimensional correlated subspaces.

• An MDL-based merge of subspaces to reconstruct
fragmented subspaces and remove redundancy

II. RELATED WORK

Feature selection. Related methods such as PCA and others
[9], [17] select one subspace only. However, a dimension not
relevant for one subspace may form a correlated subspace
together with other dimensions. Thus, these simplified schemes
likely miss important subspaces. Conversely, 4S aims at min-
ing multiple possibly overlapping subspaces.

Subspace search for specific tasks. There exist subspace
search methods designed specifically for tasks such as outlier
detection [2], [16], [22], clustering [3], [31], [20], and clas-
sification [32], [12]. However, they are strongly coupled with
the underlying tasks. For instance, supervised feature selection
focuses on the correlation between each dimension and the
class label, not the correlations among dimensions. 4S in turn
is unsupervised, and further, not bound to any specific task.

General subspace search. [7], [14], [15], [23] are recent
proposals to mine overlapping subspaces, abstracting from any
concrete task. They explore the search space using an Apriori-
style search. However, due to the monotonicity restriction, they
detect only low dimensional subspaces. Such subspaces in turn
likely are different projections of the same high dimensional
correlated subspaces. This causes redundancy that is well-
known for most subspace mining models [21], [20]. Besides,
they suffer severe scalability issue due to their expensive min-
ing of correlated dimension pairs, and their levelwise search
scheme which generates very many candidate subspaces. In
contrast, 4S aims at a novel scalable search scheme that departs
from these drawbacks. Experiments show that 4S yields good
results with much less runtime.

III. PRELIMINARIES

Consider a database DB of size N and dimensionality
D. The set of dimensions is denoted as the full-space F =
{X1, . . . , XD}. Each dimension Xi has a continuous domain
dom(Xi) and w.l.o.g, we assume dom(Xi) = [−v, v] ⊆ R.

A subspace S is a non-empty subset of F . Its dimension-
ality is written as |S|. The subspace lattice of DB consists
of D − 1 layers {Li}Di=2. Single-dimensional subspaces are
excluded since one is interested in correlations of two or more
dimensions. Every layer Li contains

(
D
i

)
many subspaces, each

having i dimensions.

We aim at mining subspaces across all lattice layers whose
member dimensions are highly correlated. Note that the search
space is huge. For a dataspace with D dimensions the total
number of possible subspaces is O(2D). For one subspace,
one needs O(D · N) time to process, e.g., to compute the
correlation. An overall complexity of O(D · N · 2D) makes
brute-force search impractical. Even more sophisticated search
schemes have severe scalability problems (cf. Section III-A).
Hence, we propose a new scalable solution (cf. Section III-B).

A. Existing Search Schemes

Existing methods explore the search space based on the
Apriori principle (APR) using a correlation measure for sub-
space assessment. Here we choose the total correlation for
illustration purposes.

Definition 1: The total correlation of {Xi}di=1 is:

T ({X1, . . . , Xd}) =

d∑
i=2

H(Xi)−H(Xi|X1, . . . , Xi−1)

where H(. . .) is the Shannon (differential) entropy.

The total correlation is used in [7], which computes en-
tropies by estimating probability density functions through
discretization. For APR, one can either keep a top number of
subspaces at each layer (beam-based) or impose a threshold on
the subspace correlation (threshold-based). Recently, [15], [23]
point out that the beam-based scheme allows more intuitive
parameterization than the threshold-based one. Thus, for better
presentation, we stick to the former. However, our discussion
is also applicable to the threshold-based scheme [7], [14].

APR starts at layer L2. For each layer Li visited, APR com-
putes the total correlation T (S) for each candidate subspace
S ∈ Li. The top MAX NUM subspaces {Si

r(j)}
MAX NUM
j=1

with the highest total correlation are selected. MAX NUM
is the beam size. {Si

r(j)}
MAX NUM
j=1 are also used to deter-

mine which subspaces to examine in the next layer Li+1. In
particular, a subspace Si+1 in Li+1 is considered iff all of
its i-dimensional projections are in {Si

r(j)}
MAX NUM
j=1 . This is

known as the monotonicity restriction, which causes redundant
processing: To reach one subspace, one needs to generate and
examine all of its lower-dimensional projections.

APR stops when either there is no more layer to explore or
the set of candidate subspaces in the current layer is empty. As-
sume that MAX NUM is set such that APR reaches layer Lk.
The time complexity of APR is O(D2∆+2k ·∆·MAX NUM )
where the first term is the cost of exploring L2, the second
term is the cost of exploring higher layers, and ∆ is the cost



of computing the correlation of each subspace. For instance,
∆ = Θ(N) in [7].

Since the monotonicity property imposes strict restriction
on high-level layers (i.e., high k), APR tends not to reach high
dimensional subspaces. To resolve the issue, MAX NUM
must be significantly large. However, this causes APR to pro-
cess many candidate subspaces at each layer visited. Further,
to process a subspace, APR requires to examine exponentially
many lower-dimensional projections to ensure that they all
have high correlation. These cause its runtime to become
very high. Even when MAX NUM is kept low, APR still
suffers from poor scalability due to its expensive mining of L2.
Further, setting MAX NUM to low values fails to offset the
monotonicity restriction. This prevents APR from discovering
high dimensional subspaces. Only lower-dimensional frag-
ments of correlated subspaces are detected. Thus, the quality
of subspaces is impacted. In summary, APR (a) is inefficient,
(b) tends to miss high dimensional correlated subspaces, and
(c) fragments them into many redundant lower-dimensional
subspaces.

B. Overview of 4S Processing

To avoid the exponential runtime w.r.t. the dimensionality,
4S does not explore the subspace lattice in a levelwise manner.
Instead, 4S initially mines subspaces of high correlations
in L2. They are then combined to directly create higher-
dimensional subspaces. In short, 4S works in three steps. First,
we compute the correlation of each pair of dimensions and only
keep the top K pairs (i.e., subspaces of L2) with the largest
correlations. Setting K is explained in Section V.

Next, we construct an undirected correlation graph GD
representing our search space of subspaces. Its nodes are the
dimensions, connected by an edge iff their correlation is in
the top K values. Following our new notion of correlated
subspaces, we mine maximal cliques of this correlation graph.
They serve as candidate subspaces. The toy example in Figure
1 displays a correlation graph for a 10-dimensional data set.
There are 45 possible subspaces in L2; K = 10 of which
are picked to construct GD. From GD, 4S finds three maximal
cliques (subspaces): S1 = {1, 2, 3, 4}, S2 = {1, 3, 4, 5}, and
S3 = {7, 8}.

Mining maximal cliques on GD may also produce sub-
spaces that are projections of the same subspaces due to the
restriction on pairwise correlations (i.e., through K). For in-
stance, in Figure 1, dimension 5 is connected to all dimensions
in S1 except for dimension 2. This leads to the detection of two
separate subspace fragments S1 and S2 that have high overlap
with each other. It would make sense to merge S1 and S2 to
create the larger subspace {1, 2, 3, 4, 5}. This also helps us to
cope with real-world data where perfect pairwise correlation
between dimensions of correlated subspaces may not always
be fulfilled. Thus, we propose to merge similar subspaces using
an MDL-based approach. Following this step, we obtain even
higher-dimensional subspaces with minimal redundancy.

Overall, in contrast to APR, we can reach high dimensional
correlated subspaces by our scalable search scheme, which
consists of: (a) scalable computation of L2, (b) scalable mining
of Lk with k > 2, and (c) subspace merge. While APR needs
to impose the Apriori monotonicity restriction on all layers
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Fig. 1: Example of correlation graph.

for efficiency purpose, we only require that dimensions of
subspaces are pairwise correlated (i.e., restriction on L2). Next,
we introduce each step of 4S in detail (cf. Section IV-VII).
Further, we formally prove that 4S is more general than APR
in Section V, and empirically show that 4S produces subspaces
of higher quality than existing methods in Section VIII.

IV. SCALABLE COMPUTATION OF L2

Our goal is to have a correlation measure that captures
both linear and non-linear correlation. The measure should also
permit direct calculation on empirical data without having to
estimate probability density functions or rely on discretization
[27], [7]. Our research in turn is orthogonal to studying such a
new measure, and we base ourselves on a simple yet effective
correlation measure. It is defined as follows:

Definition 2: The correlation of dimensions X and Y is:

Corr(X,Y ) =

∫ v

−v

∫ v

−v
(FXY (x, y)− FX(x)FY (y))2dxdy

where F (. . .) is the cumulative distribution function (CDF).

Corr has the nice property that it is defined based on CDFs
which allow direct computation on empirical data. Let {xi}Ni=1
and {yi}Ni=1 be realizations of X and Y , respectively. The
theorem below shows how to compute Corr(X,Y ) using these
empirical values (cf. proof in [29]).

Theorem 1: Corr(X,Y ) equals to
1

N2

N∑
i=1

N∑
j=1

(v −max(xi, xj))(v −max(yi, yj))

− 2

N3

N∑
i=1

 N∑
j=1

(v −max(xi, xj))

 N∑
j=1

(v −max(yi, yj))


+

1

N4

N∑
i=1

N∑
j=1

(v −max(xi, xj))

N∑
i=1

N∑
j=1

(v −max(yi, yj))

Following Theorem 1, we need to compute three terms,
referred to as T1, T2, and T3, and Corr(X,Y ) = 1

N2T1 −
2

N3T2 + 1
N4T3. Corr is based on [29]. However, we im-

prove Corr by devising approaches to efficiently compute
it on large and multi-dimensional data sets. In particular, to
compute Corr(X,Y ), we originally need O(N2) time. For
D-dimensional data sets, the total runtime required to explore
layer L2 becomes O(D2N2). This is a serious problem for
the data sets under our consideration. To tackle the issue, we
introduce two new approaches, MultiPruning and Sketching,
to boost efficiency regarding both N and D. MultiPruning
calculates the exact correlation. However, it still has issues



regarding efficiency for large data sets. Sketching in turn trades
accuracy for efficiency. Yet it is still better than APR (cf., Sec-
tion VIII). Note that Corr deploys the same estimator as other
quadratic measures of independence [25], such as [1], [30].
The difference only lies in different kernels employed. Thus,
the ideas of MultiPruning and Sketching are also applicable
to other measures of the same category. In other words, our
method is not limited to only one correlation measure.

A. MultiPruning

MultiPruning aims at reducing the runtime by applying
pruning rules for Corr(X,Y ) based on two upper bounds of
T1. It uses the fact that we only keep the top K pairs of
dimensions with the largest correlation. Let {(xs(i), ys(i))}Ni=1

be {(xi, yi)}Ni=1 sorted in descending order w.r.t. X . The upper
bounds of T1 are as follows.

Theorem 2: [CAUCHY-SCHWARZ BOUND]

T1 ≤
N∑
i=1

√√√√ N∑
j=1

(v −max(xi, xj))2
N∑
j=1

(v −max(yi, yj))2

Theorem 3: [SORTED-BASED BOUND] T1 ≤
N∑
i=1

(v − xs(i))(v − ys(i)) + 2

N∑
i=1

(v − xs(i))
N∑

j=i+1

(v − ys(j))

The statistics required for the Cauchy-Schwarz bound, for
instance

∑N
j=1(v − max(xi, xj))

2 for 1 ≤ i ≤ N , can be
pre-computed for each dimension in O(N logN) time. This
is from our observation that

∑N
j=1(v − max(xi, xj))

2 =∑
xj≥xi

(v − xj)
2 +

∑
xj<xi

(v − xi)
2. That is, for each

dimension, we first sort its data in descending order. Then,
we loop through the data in that order and pre-compute the
required statistics. To illustrate our idea, let us consider three
data points P1 = (1,−1), P2 = (−1, 1), and P3 = (0, 0)
(i.e., dom(X) = [−1, 1]). To compute the statistics for X ,
we sort X in descending order and obtain {1, 0,−1}. Then,
we compute

∑3
j=1(1−max(xi, xj))

2 (1 ≤ i ≤ 3) by looping
through the sorted list once and obtain: 0 for P1, 5 for P2, and 2
for P3. Similarly, for

∑3
j=1(1−max(yi, yj))

2 (1 ≤ i ≤ 3), we
obtain: 5 for P1, 0 for P2, and 2 for P3. The statistics required
to exactly compute the second term T2 of Corr(X,Y ), which
are

∑N
j=1(v − max(xi, xj)) for 1 ≤ i ≤ N , can be pre-

computed similarly. The statistic of the third term T3, which
is
∑N

i=1

∑N
j=1(v−max(xi, xj)), is also computed during this

phase by incrementally summing up the statistics of T2 (per
dimension).

During the pairwise correlation computation, we maintain
the top K values seen so far. For a new pair of dimensions
(X,Y ), we first compute the bounds. This computation is in
O(N). Using the same example, we calculate the Cauchy-
Schwarz bound by looping through the stored statistics once,
and achieve:

√
0 · 5 +

√
5 · 0 +

√
2 · 2 = 2. Similarly, the

exact value of the second term T2 is computed. The sorted-
based bound in Theorem 3 is obtained in O(N) time as
follows. We loop through the data sorted w.r.t. X . For
each point (xs(i), ys(i)), we compute (v − xs(i))(v − ys(i))

and (v − xs(i))
∑N

j=i+1(v − ys(j)) taking into account that∑N
j=i+1(v − ys(j)) =

∑N
j=1(v − ys(j)) −

∑i
j=1(v − ys(j)).

The sorted-based bound can also be computed w.r.t. Y . So in

fact, we have two versions of this bound, one for X and one
for Y . The exact value of T3 is computed in just O(1) time
using its pre-computed statistics.

If any upper bound of Corr(X,Y ) is less than the Kth

largest value so far, we can safely stop computing its actual
value. Otherwise, we compute T1, and hence Corr(X,Y ) (and
update the top K correlation values), using Lemma 1.

Lemma 1: T1 =
∑N

i=1(v − xs(i))(v − ys(i))
+2
∑N

i=1(v − xs(i))
∑N

j=i+1(v −max(ys(i), ys(j)))

That is, for each xs(i), we search for ys(i) in the list of
values of Y sorted in descending order. For each value y >
ys(i) encountered, we add 2(v−xs(i))(v−y) to T1. Once ys(i)
is found, the search stops. Suppose that the position found
is p, and the list has e elements. We add 2(e − p + 1)(v −
xs(i))(v − ys(i)) to T1. We remove ys(i) from the list and
proceed to xs(i+1). This helps us to avoid scanning the whole
list and, hence, reduces the runtime. We note that

∑N
i=1(v −

xs(i))(v − ys(i)) is already computed during the sorted-based
bound computation.

Computing Corr(X,Y ) for each pair of dimensions
{X,Y } costs O(N2). Thus, the worst-case complexity of
MultiPruning is O(D2N2). However, our experiments show
that MultiPruning is efficient in practice.

B. Sketching

To better address the scalability issue (i.e., quadratic in N ),
we propose Sketching as an alternative solution. First, we see
that T3 is computed in only O(1) time using its pre-computed
statistics. Thus, our main intuition is to convert the terms T1
and T2 to forms similar to that of T3. We observe that T1
and T2 can be perceived as dot products of vectors. Such
products can be efficiently estimated by AMS Sketch [5]. AMS
Sketch provides rigorous theoretical bounds for its estimation
and can outperform other sketching schemes [28]. However,
to our knowledge, we are first to use this theory to efficiently
compute pairwise correlations of continuous random variables.
Our general idea is to use AMS Sketch to derive unbiased
estimators of T1 and T2 that have forms similar to T3. The
estimators are unbiased since their expected values equal to
their respective true values. To show that the estimation errors
are small, we prove that the estimators concentrate closely
enough around the true values of T1 and T2, respectively.
Overall, Sketching reduces the time complexity of computing
Corr(X,Y ) to O(N logN).

Sketching approximates Corr(X,Y ) through unbiased es-
timators by projecting X and Y onto random 4-wise indepen-
dent vectors. Let u, v ∈ {±1}N be two independent random
4-wise independent vectors. We estimate T1 as:

Theorem 4: Let Z be a random variable that equals to
N∑
i=1

N∑
j=1

(v −max(xi, xj))uivj

N∑
i=1

N∑
j=1

(v −max(yi, yj))uivj

then E(Z) = T1 and Var(Z ) ≤ 8 [E (Z )]2 .

Likewise, we estimate T2 as:

Theorem 5: Let W be a random variable that equals to



N∑
i=1

N∑
j=1

(v −max(xi, xj))ui

N∑
i=1

N∑
j=1

(v −max(yi, yj))ui

then E(W ) = T2 and Var(W ) ≤ 2 [E (W )]2 .

We derive Theorems 4 and 5 using [5]. They allow us to
approximate T1 and T2 by estimators having forms similar
to that of T3. Hence, Corr(X,Y ) can be approximated in
O(N logN) time by pre-computing the statistics required in a
way similar to MultiPruning. Please note that, we also need to
ensure estimators to concentrate closely enough around their
respective mean. To accomplish this, we apply Chebychev’s
inequality. For Z, its variance is upper-bounded by 8[E(Z)]2.
By averaging over s1 different values of u and v, the variance
is reduced to at most 8[E(Z)]2

s1
. Using Chebychev’s inequality,

we have: P (|Z − E(Z)| > εE(Z)) ≤ 8
s1ε2

. If we repeat the
averaging s2 = O(1/δ) times and take the median of these
averages, the relative error of Z w.r.t. E(Z) is at most ε with
probability at least 1− δ, as proven in [5].

Similarly, by averaging over s1 different values of u, the
variance of W is reduced to at most 2[E(W )]2

s1
. Applying

the Chebychev’s inequality, we have: P (|W − E(W )| >
εE(W )) ≤ 2

s1ε2
. We again boost the estimation accuracy by

repeating the averaging s2 = O(1/δ) times.

Sorting all dimensions costs O(DN logN). For each
random vector and each dimension, it costs O(N) to pre-
compute the statistics. For all vectors and all dimensions, the
total cost of pre-computing statistics is O(s1s2DN). Since
s1s2 must be large enough to guarantee estimation accuracy,
the cost of pre-computing statistics dominates that of data
sorting. Computing the correlations for all dimension pairs
and maintaining the top values cost O(s1s2D

2 + D2 logK)
with O(s1s2D

2) dominating. Thus, the total time complexity
of Sketching is O(s1s2DN + s1s2D

2). In our experiments,
D < N , i.e., the time complexity becomes O(s1s2DN), a
considerable improvement from O(D2N2). We note that the
factor s1s2 does not contribute much to the overall runtime
and in practice Sketching scales linearly to both N and D.

V. SCALABLE MINING OF Lk

Based on the set of 2-dimensional subspaces found in L2,
denoted as S2, we now explain how to mine subspaces in
higher-level layers. According to our notion, a subspace has
a high correlation if its member dimensions are all pairwise
correlated. We now point out that subspaces fulfilling our
notion likely have a high total correlation. We also formally
prove that our new notion of correlated subspaces is more
general than that of APR. That is, given the same correlation
measure, all subspaces found by APR are also discovered by
our mining scheme. Further, we will demonstrate empirically
later on that, with our notion, 4S produces better subspaces
than APR. First, let us consider a subspace S with all pairs
{Xi, Xj} ∈ S2. W.l.o.g., assume that S = {X1, . . . , Xd}.

Lemma 2: The total correlation is lower-bounded by:
T ({X1, . . . , Xd}) ≥

∑d
i=2H(Xi)−H(Xi|Xi−1)

Lemma 2 is derived from the fact that conditioning reduces
entropy [24]. By definition, every pair {Xi−1, Xi} ∈ S2
has a high correlation. Following Definition 2, this means
that F (Xi−1, Xi) and F (Xi−1)F (Xi) deviate from each

other. Thus, the joint density function f(Xi−1, Xi) of Xi−1
and Xi deviates from the product of their marginal den-
sity functions, which is f(Xi−1)f(Xi) [29]. Consequently,
H(Xi)−H(Xi|Xi−1), which equals to the Kullback-Leibler
divergence of f(Xi−1, Xi) and f(Xi−1)f(Xi), is high. Based
on Lemma 2, we conclude that: T ({X1, . . . , Xd}) is high.
Lemma 2 also holds for any permutation of {Xi}di=1. Hence,
under any permutation of the dimensions of S, S has a
high total correlation. This also means: The difference be-
tween the joint density function of S and the product of its
marginal density functions is high w.r.t. the Kullback-Leibler
divergence. Hence, subspaces fulfilling our notion likely are
mutually correlated, not just pairwise correlated. Since many
other correlation measures define mutual correlation based on
the difference between the joint distribution and the product
of marginal distributions [25], our subspaces are also likely
mutually correlated under such correlation measures.

We now prove that our new notion of correlated subspaces
is more general than that of APR:

Theorem 6: Let S be a subspace detected by APR using
Corr (generalized for more than two dimensions) as corre-
lation measure and given MAX NUM ≤ K, then all of its
pairs {Xi, Xj} ∈ S2.

Proof: We use induction:
Let S = {X1, . . . , Xd} be a subspace mined by APR.

Basis: When d = 2, it is clear that S ∈ S2.

Hypothesis: Assume Theorem 6 holds for d = n ≥ 2.

Inference: We prove that Theorem 6 also holds for d =
n+ 1, i.e., we prove ∀Xi 6= Xj ∈ S : {Xi, Xj} ∈ S2. This is
straightforward. For Xi 6= Xj , there exists an n-dimensional
subspace U ⊂ S such that Xi, Xj ∈ U and U is included
by APR in the output (cf., monotonicity property). Hence,
{Xi, Xj} ∈ S2 according to the hypothesis.

Theorem 6 also holds for other correlation measures, e.g.,
the ones in [7], [15], [23], with S2 being formed according to
the measure used. It implies that, given the same correlation
measure and MAX NUM ≤ K, all subspaces included in the
final output of APR are also discovered by our mining scheme.
This is because any two of their dimensions are pairwise
correlated, i.e., they form cliques in the correlation graph. This
shows that our mining scheme is more general than APR and,
hence, can discover subspaces missed by APR. Note that a
subspace satisfying the pairwise condition is not necessarily
included in the final output of APR. However, the monotonicity
restriction imposed by APR is only to reduce the runtime [23],
and does not guarantee the quality of subspaces. Our empirical
study also confirms this.

Having formally analyzed the theoretical properties of our
notion of correlated subspaces, we now map the problem of
mining subspaces in higher-level layers to maximal clique min-
ing in the correlation graph. Consider an undirected correlation
graph GD with nodes being the dimensions. An edge exists
connecting two dimensions Xi and Xj iff {Xi, Xj} ∈ S2.
A subspace of our interest then forms a clique in GD. To
avoid redundancy, we propose to mine only maximal cliques,
i.e., subspaces are not completely contained in each other. We
regard maximal cliques of GD as candidates for this step.



Given D dimensions, the worst-case complexity to find all
maximal cliques is O(3D/3). To ensure the practicality of 4S,
we rely on a recent finding [4]. It states that the properties of a
data set (e.g., distances between data points) are preserved after
dimensionality reduction as long as the number of dimensions
kept is O(logN). As a result, we set K ≤ D logN , i.e.,
O(D logN). Hence, the expected maximal degree of each
node in GD is O(logN), i.e., each dimension can be part of
subspaces (maximal cliques) with expected maximal dimen-
sionality O(logN). Also, the expected degeneracy of GD is
O(logN). Following [10], we obtain the following result:

Theorem 7: The expected time complexity of mining max-
imal cliques is O(DN1/3 logN). The expected number of
maximal cliques is O((D − logN)N1/3).

Therefore, using our strategy, we can efficiently and di-
rectly mine high dimensional subspaces without knowledge
loss. Further, we achieve this without traversing the subspace
lattice in a levelwise manner. Note that our scheme is different
from approaches imposing the maximal dimensionality of
subspaces. This is because the maximal dimensionality is
implicitly embedded in 4S, rather than explicitly. Further, 4S
is not constrained by the O(logN) bound in practice. This is
due to our MDL-based merge of subspaces, which reconstructs
fragmented high dimensional correlated subspaces.

VI. SUBSPACE MERGE

We denote the set of dimensions, each of which belonging
to at least one maximal clique, as {Xr(j)}lj=1. Also, {Ci}mi=1
is the set of maximal cliques. Due to the pairwise restriction of
our subspace notion, subspaces (maximal cliques) obtained by
mining GD may be projections of the same higher-dimensional
correlated subspaces. To reconstruct such subspaces and to
remove redundancy in the output, we merge subspaces into
groups such that the new set of subspaces guarantees com-
pleteness and minimizes redundancy. To accomplish this, we
first construct a binary matrix B with l rows and m columns.
The rows are dimensions, and the columns are cliques. Bij = 1
iff Xi is in Cj , and 0 otherwise. We transform the subspace
merge to grouping similar columns of B, each final group
constituting one subspace. We meet the merge requirements
by applying the MDL-based algorithm in [19]. It compresses
(groups) similar columns of B such that the total encoding cost
of B given the grouping is minimal. We have:

Theorem 8: The subspace merge guarantees completeness
and minimizes redundancy.

That is, our subspace merge ensures that its output sub-
spaces capture all the subspaces produced by the second step
(completeness). This stems from the fact that MDL guarantees
a lossless compression. Thus, the original set of subspaces is
compressed while ensuring that no information loss occurs.
Besides, our algorithm heuristically selects the grouping of
subspaces that minimizes the overall compression cost. For
instance, if a grouping contains two very similar subspaces
(i.e., redundant ones), our algorithm would not pick it since
the merge of two subspaces can result in a better grouping
with a lower encoding cost. Hence, redundancy is minimized.

According to [19], the total time complexity of this step
is O(lm3), which is O(l(D − logN)3N). Nevertheless, the

runtime in practice is much smaller because (a) the number
of cliques is much smaller than the one stated in Theorem 7,
(b) the number l of dimensions left is small compared to D,
and (c) the subspace merge algorithm in [19] terminates early.
Our experiments also point out that the runtime of this step
is negligible compared to the first step. While APR can also
apply this subspace merge, it does not achieve the same quality
as 4S since it cannot reach high dimensional subspaces.

VII. OVERALL COMPLEXITY ANALYSIS

The computation of L2 (using Sketching) costs O(DN).
The mining of Lk costs O(DN1/3 logN). The subspace merge
costs O(l(D− logN)3N). Thus, the worst-case complexity of
4S is O(l(D − logN)3N). However, our experiments point
out that the most time-consuming step is the computation of
L2, which accounts for nearly 90% of the overall runtime.
Hence, overall, we can say that 4S has O(DN) average-case
complexity. Our experiments also confirm that 4S has near-
linear scalability with both N and D. This is a significant
improvement from the O(D2N + 2k · N · MAX NUM )
complexity of APR where k is the highest layer reached.

VIII. EXPERIMENTS

We write 4S-M and 4S-S as 4S with MultiPruning and
Sketching, respectively. We compare 4S with the following
methods. FS as baseline in full-space. FB [18] using ran-
dom subspaces for outlier mining. EC [7], CMI [23], and
HICS [15] representing the APR-style methods. FEM [9]
representing the unsupervised feature selection approaches.
For all of these methods, we try to optimize their parameter
settings. For our methods, we set K = D logN . For 4S-S,
we fix s1 = 10000 and s2 = 2. Setting s2 to 2 follows the
observation that smaller values for s2 generally result in better
accuracy [8].

We test the subspaces produced by all methods in: outlier
detection with LOF [6], clustering with DBSCAN [11], and
classification with the C4.5 decision tree. The first two areas
are known to yield meaningful results when the subspaces se-
lected have high correlations, i.e., include few or no irrelevant
dimensions [7], [18], [21], [15], [23]. Hence, they are good
choices for evaluating the quality of correlated subspaces. The
third area is to show that correlated subspaces found by 4S
are also useful for the supervised domain. For each method,
LOF, DBSCAN, and C4.5 are applied on its detected subspaces
and the results are combined, following [18] for LOF, [7] for
DBSCAN, and [13] for C4.5.

We use synthetic data and 6 real-world data sets from the
UCI Repository: the Gisette data about handwritten digits;
HAR, PAMAP1, and PAMAP2 all sensor data sets with
physical activity recordings; Mutant1 and Mutant2 containing
biological data used for cancer prediction. Further, we use
the facility management’s database of our university (KIT)
with energy indicators recorded from 2006 to 2011. More
details are in Table I. Note that each of them has more than
1 trillion subspaces. This features a challenging search space
w.r.t. dimensionality for all methods. Further, we assist future
comparison, by providing data sets, parameters, and algorithms
on our project website1.

1http://www.ipd.kit.edu/∼muellere/4S/

http://www.ipd.kit.edu/~muellere/4S/


Data set Size Attributes Classes

Gisette 13500 5000 2
HAR 10299 561 6
KIT 48501 540 2
Mutant1 16592 5408 2
Mutant2 31159 5408 2
PAMAP1 1686000 42 15
PAMAP2 1662216 51 18

TABLE I: Characteristics of real-world data sets. Each of them
has more than 1 trillion subspaces.

A. Experiments on synthetic data

Quality on outlier detection. We have created 6 synthetic
data sets of 10000 records and 100 to 1000 dimensions. Each
data set contains subspace clusters with dimensionality varying
from 8 to 24 and we embed 20 outliers deviating from these
clusters. Our performance metric is the Area Under the ROC
Curve (AUC), as in [18], [15], [16]. From Table II, one can
see that 4S-M overall has the best AUC on all data sets.
4S-S in turn achieves the second-best performance. In fact, in
most cases, 4S-M correctly discovers all embedded subspaces.
Though 4S-S does not achieve that, its subspaces are close to
the best ones, and it has better performance than other methods.
We are better than FS, which focuses on the full-space where
noisy dimensions likely hinder the detection of outliers. Our
methods outperform FB, which highlights the utility of our
correlated subspaces compared to random ones. Examining
the subspaces found by APR-style methods (EC, CMI, and
HICS), we see that they are either irrelevant, or they are low
dimensional fragments of relevant subspaces. This explains
their poor performance. FEM has low AUC since it only mines
a single subspace and hence, misses other important correlated
subspaces where outliers are present.

Quality on clustering. Synthetic data sets with 100 to 1000
dimensions are used again. Our performance metric is the F1
measure, as in [21], [20]. Table III displays clustering results
of all methods. One can see that 4S-M and 4S-S have the
best performance on all data sets tested. This again highlights
the quality of subspaces found by our methods.

From the outlier detection and clustering experiments, we
can see that 4S-S is a good approximation of 4S-M.

APR using subspace merge. For illustration, we only
present the outlier detection and clustering results on the
synthetic data set with 10000 records and 1000 dimensions.
From Table IV, by applying the subspace merge, APR-style
methods achieve better AUC and F1 values than without
merge. Yet, our methods outperform all of them. This is
because APR-style methods already face severe issue with
reaching high dimensional subspaces. Thus, applying subspace
merge in their case cannot bring much of improvement.

Scalability. Since FS and FB do not spend time for finding
subspaces, we only analyze the runtime of the remaining
methods. To test scalability w.r.t. dimensionality, we use data
sets with 10000 data points and dimensionality of 100 to
1000. Based on Figure 2, 4S-S has the best scalability.
FEM scales better than 4S-M because it only searches for a
single subspace. Overall, 4S-S has near-linear scalability w.r.t.
dimensionality, thanks to our efficient search scheme.

Task 4S-M 4S-S EC CMI HICS

Outlier Mining (AUC) 0.99 0.92 0.76 0.49 0.44
Clustering (F1) 0.91 0.88 0.84 0.70 0.76

TABLE IV: Comparison with APR using subspace merge on
the synthetic data set with 10000 records and 1000 dimensions.
Highest values are in bold.
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Fig. 2: Runtime w.r.t. dimensionality on synthetic data.

To test scalability to data size of all methods, we use
data sets with 100 dimensions and sizes of 10000 to 100000.
Figure 3 shows that 4S-S scales linearly and is more efficient
than 4S-M. This is in line with our theoretical analysis.

We also note that the runtime of the first step in our
methods dominates the other two steps. For example, on the
data set of 10000 records and 1000 dimensions, 4S-S takes
about 150 minutes for the first step and only 14 minutes for
the remaining two steps.

From the results obtained, we can conclude that 4S-S
achieves the efficiency goal while still ensuring high quality
of subspaces found. From now onwards, we use 4S-S for the
remaining experiments and write only 4S.
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Fig. 3: Runtime w.r.t. data size on synthetic data.



Data set 4S-M 4S-S FS FB EC CMI HICS FEM

D100 1.00 1.00 1.00 0.65 0.90 0.46 0.43 0.50
D200 1.00 1.00 0.99 0.50 0.85 0.47 0.46 0.48
D400 0.99 0.98 0.96 0.51 0.83 0.46 0.45 0.63
D600 0.99 0.98 0.77 0.54 0.76 0.42 0.29 0.54
D800 0.99 0.87 0.75 0.61 0.74 0.43 0.40 0.59
D1000 0.99 0.92 0.81 0.47 0.75 0.46 0.40 0.64

TABLE II: AUC on outlier mining for synthetic data sets. Highest values are in bold.

Data set 4S-M 4S-S FS FB EC CMI HICS FEM

D100 0.99 0.99 0.72 0.95 0.67 0.50 0.80 0.76
D200 0.89 0.89 0.67 0.66 0.67 0.50 0.80 0.76
D400 0.85 0.83 0.67 0.81 0.67 0.80 0.77 0.75
D600 0.96 0.95 0.67 0.66 0.67 0.67 0.83 0.53
D800 0.99 0.93 0.67 0.67 0.67 0.67 0.83 0.74
D1000 0.91 0.88 0.67 0.67 0.83 0.67 0.74 0.75

TABLE III: F1 on clustering for synthetic data sets. Highest values are in bold.

Data set 4S FS FB EC CMI HICS FEM

Gisette 0.77 0.67 0.60 0.73 0.74 0.74 0.68
HAR 0.67 0.42 0.53 0.27 0.65 0.15 0.53
KIT 0.73 0.36 0.51 0.33 0.55 0.55 0.44
Mutant1 0.62 0.58 0.55 0.56 0.58 0.57 0.55
Mutant2 0.64 0.57 0.53 0.55 0.58 0.59 0.56
PAMAP1 0.86 0.54 0.47 * * * 0.48
PAMAP2 0.87 0.53 0.45 * * * 0.41

TABLE V: AUC on outlier mining for real-world data sets.
Highest values are in bold. (*) means the result is unavailable
due to excessive runtime.

B. Experiments on real data

We apply all methods to two applications: outlier detection
and classification. Clustering is skipped here since it conveys
similar trends among the methods as with synthetic data.

Quality on outlier detection. As a standard procedure
in outlier mining [18], [15], [16], the data sets used are
converted to two-class ones, i.e., each contains only a class
of normal objects and a class of outliers. This is done by
either picking the smallest class or down-sampling one class to
create the outlier class. The rest forms the normal class. From
Table V, 4S achieves the best results. Its superior performance
compared to other methods, including APR-style methods
techniques (EC, CMI, and HICS), stems from the fact that 4S
better discovers correlated subspaces where outliers are visible.
For example, on the KIT data set, 4S finds subspaces where
several consumption indicators of different buildings of the
same type (e.g., office buildings, laboratories) cluster very well
with a few exceptions, possibly caused by errors in smart-meter
readings, or rare events (e.g., university holidays when energy
consumption is low or large-scale physics experiments when
electricity consumption is extremely high). These subspaces
however are not discovered by other methods.

On the PAMAP1 and PAMAP2 data sets, we can only
compare 4S against FS, FB, and FEM. This is because other
methods take excessively long time without completing. These
data sets contain data collected by sensors attached to human
bodies when they perform different activities, e.g., walking,
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Fig. 4: Runtime (in seconds) of subspace search methods on
real-world data sets. EC, CMI, and HICS did not finish within
5 days on the PAMAP data sets.

running, ascending stairs. The best AUC of 4S on both data
sets once again implies that 4S successfully discovers high
quality subspaces, which in turn assist in the detection of
outliers. For example, the subspaces found by 4S on PAMAP1
exhibit correlations among the hand, chest, and ankle of
human subjects. There are of course different grouping patterns
representing different types of activities. In any case, such
correlations let records representing transient activities become
outliers. This is intuitive because those activities are very
random and do not feature any specific correlation among
different parts of human bodies [26].

In Figure 4 we show the wall-clock time (in seconds) for
each subspace search method. Note that EC, CMI, and HICS
did not finish within 5 days on the PAMAP data sets. The
results show that 4S is much faster than all competitors.

Quality on classification. We here test 4S against the well-
known Random Forest classifier [13], FEM for unsupervised
feature selection, and CFS [12] for supervised feature se-
lection. We skip other methods since previous experiments
already show that 4S outperforms them. The classification
accuracy (obtained by 10-fold cross validation) is in Table VI.
Overall, 4S consistently yields better accuracy than Random



Data set 4S Random Forest FEM CFS

Gisette 0.76 0.75 0.72 0.84
HAR 0.83 0.81 0.74 0.85
KIT 0.97 0.96 0.85 0.92
Mutant1 0.99 0.88 0.85 0.97
Mutant2 0.99 0.87 0.89 0.98
PAMAP1 0.91 0.71 0.69 0.87
PAMAP2 0.93 0.71 0.66 0.86

TABLE VI: Classification accuracy for real-world data sets.
Highest values are in bold.

Forest and FEM. It is comparable to CFS which has access to
the class label. The results obtained show that the correlated
subspaces found by 4S are also useful for data classification.

IX. CONCLUSIONS

Mining high dimensional correlated subspaces is a very
challenging but important task for knowledge discovery in
multi-dimensional data. We have introduced 4S, a new scalable
subspace search scheme that addresses the issue. In particular,
through theoretical analysis, we have proven that the subspace
search problem can be transformed to the problem of clique
mining. This transformation not only avoids the high runtime
complexity of Apriori methods but also leads to more general
results (i.e., we detect correlated subspaces found by Apriori
methods as well as subspaces missed by them). Both of these
points have been proven in the paper.

Overall, compared to existing work, 4S embarks on a
completely novel approach to efficiently solving the subspace
search problem. Empirically, we have demonstrated that 4S
scales to data sets of more than 1.5 million records and 5000
dimensions (i.e., more than 1 trillion subspaces). Not only
being more efficient than existing methods, 4S also better
detects high quality correlated subspaces that are useful for
outlier mining, clustering, and classification.

Directions for future work include a systematic study of
our search scheme with different correlation measures, and
the integration of subspace merge into the correlation graph to
perform an in-process removal of redundancy.
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