Emmanuel Müller

Dr. rer. nat. Emmanuel Müller

Senior Researcher and Lecturer

Karlsruhe Institute of Technology (KIT)
University of Antwerp

Since July 2015, Dr. Müller is not at Karlsruhe Institute of Technology (KIT).
Further information can be found on the website of Prof. Dr. Emmanuel Müller
Hasso-Plattner-Institute at the University of Potsdam.



Research Activity

I am head of a research group with focus on data mining algorithms in heterogeneous data spaces. My group is funded by the Young Investigator Group program within the Karlsruhe Institute of Technology (KIT). As research group leader at KIT I have been awarded the status "KIT Associate Fellow", which includes the right to award doctorates. Furthermore, I am supported by a post-doctoral fellowship of the research foundation – Flanders (FWO) in collaboration with the University of Antwerp. My research interests cover efficient data mining algorithms, subspace clustering, and outlier mining in high dimensional and heterogeneous databases. I am leading the open-source initiative OpenSubspace as a general contribution to the research community. It is the basis for an evaluation study on recent data mining approaches ensuring repeatable and comparable experiments. I serve as reviewer at several international conferences and journals, as program chair of three workshops, and as guest editor for the Machine Learning journal.

Research focus:

Research projects, PhD supervision, and collaborations:

Open source project for subspace mining:

Tutorials at international conferences:

Organization and editorships:

Services as reviewer:


Teaching

at Karlsruhe Institute of Technology (KIT)
  • Lecturer in the course
    • Big Data Analytics,  WS 2014/15 [slides]
      Awarded by the computer science department as Best Elective Lecture and as Best Tutorials (WS 2014/15)
    • Data Mining Paradigms and Methods for Complex Databases, SS 2014 [slides]
    • Indexing Structures for Efficient Database Access, SS 2013 [slides]
      Awarded by the computer science department as Best Elective Lecture (SS 2013)
    • Data Mining Paradigms and Methods for Complex Databases, SS 2012  [slides]
    • Data Mining Paradigms and Methods for Complex Databases, SS 2011 [slides]

  • Supervision of lab courses:
    • Data Warehousing and Mining, SS 2014
      Successful 2nd place at DATA-MINING-CUP 2014 [press release, KIT Pressemeldung]
    • Data Warehousing and Mining, SS 2013
      Successful 3rd place at DATA-MINING-CUP 2013 [press release]
    • Data Warehousing and Mining, SS 2012
      Successful 3rd place at DATA-MINING-CUP 2012 [KIT Pressemeldung]
      Awarded by the computer science department as Best Lab Course (SS 2012)
    • Development of Outlier Mining Algorithms, WS 2011/12
      Students continued lab course topics, funded by two Research Student Awards
    • Data Warehousing and Mining, SS 2011
      Successful 1st place at DATA-MINING-CUP 2011 [press release, KIT Pressemeldung]

  • Supervision of seminar and pro-seminar theses:
    • Synergien aus Graph-Theorie und Data-Mining für die Analyse von Netzwerkdaten, WS 2013/14
    • Synergien aus Graph-Theorie und Data-Mining für die Analyse von Netzwerkdaten, WS 2012/13
    • Anonymitätsmaße und Datenanalyse am Beispiel des Smart Grid, SS 2012
    • Aktuelle Data-Mining Techniken für komplexe Datenbestände, WS 2011/12
at RWTH Aachen University
  • Lecturer in the course
    • Advanced Data Mining Algorithms, SS 2010

  • Initiator of INTEGER teaching concept:
    INTEGER (INTEGration of Education and Research) is a concept for the integration of teaching and research. A project description, achieved results and publications are listed on the INTEGER webpage. In INTEGER several students have been supervised in an early stage of their scientific career, as part of practical lab courses or as student assistants. Currently, most of them work as research assistants and work on their PhD thesis.

  • Exercises in the courses:
    • Data Mining Algorithms, WS 2008/09
    • Advanced Data Mining Algorithms, SS 2008
    • Index Structures, WS 2007/08

  • Supervision of lab courses:
    • Software lab "Anwendung und Evaluierung von Data Mining Techniken", SS 2009
    • Data Mining Algorithms, WS 2008/09
    • Data Mining Algorithms, WS 2007/08
    • Software lab "Datenstrukturen", SS 2007

  • Regularly supervision of seminar theses


Supervised Theses (bachelor, master and diploma theses):

 


Short CV

 

Publications

Listed online [DBLP Bibliography] -- [ACM Digital Library] -- [Microsoft Academic Search] -- [Google Scholar]

2015 Müller E., Assent I., Günnemann S., Seidl T., Dy J.:
Editorial: MultiClust Special Issue on Discovering, Summarizing and Using Multiple Clusterings
Machine Learning Journal, Springer (January 2015)
[ML Journal]


Khachatryan A., Müller E., Stier C., Böhm K.:
Improving Accuracy and Robustness of Self-Tuning Histograms by Subspace Clustering
IEEE Transactions on Knowledge and Data Engineering  Journal (2015)
[TKDE Journal]

Iglesias P., Müller E., Korn U., Böhm K., Kappes A., Hartmann T., Wagner D.:
Efficient Algorithms for a Robust Modularity-Driven Clustering of Attributed Graphs
Proc. SIAM International Conference on Data Mining (SDM 2015), Vancouver, Canada (2015)
[SDM 2015][Full Text PDF]

Keller F., Müller E., Böhm K.:
Estimating Mutual Information on Data Streams

Proc. 27th International Conference on Scientific and Statistical Database Management (SSDBM 2015), San Diego, USA (2015) 
[SSDBM 2015]
[Full Text PDF]

Nguyen H. V., Böhm K., Becker F., Goldman B., Hinkel G., Müller E.:
Identifying User Interests within the Data Space - a Case Study with SkyServer
Proc. 18th International Conference on Extending Database Technology (EDBT 2015), Brussels, Belgium (2015)
[EDBT 2015][Full Text PDF]

2014 Nguyen H. V. Müller E., Böhm K.:
A Near-Linear Time Subspace Search Scheme for Unsupervised Selection of Correlated Features
Big Data Research Journal, Elsevier (2014)
[BDR Journal][Full Text PDF]


Nguyen H. V. Müller E., Vreeken J., Böhm K.:
Unsupervised Interaction-Preserving Discretization of Multivariate Data
Data Mining and Knowledge Discovery Journal, Springer (2014)
[DMKD Journal][ECML PKDD 2014]


Perozzi B., Akoglu L., Iglesias P., Müller E.:
Focused Clustering and Outlier Detection in Large Attributed Graphs

Proc. 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2014), New York City, USA (2014) (full paper acceptance rate 14.6%)
[KDD 2014][Full Text PDF]

Nguyen H. V., Müller E., Vreeken J., Efros P., Böhm K.:
Multivariate Maximal Correlation Analysis

Proc. International Conference on Machine Learning (ICML 2014), Beijing China (2014)
[ICML 2014]
[Full Text PDF]

Iglesias P., Müller E., Irmler O., Böhm K.:
Local Context Selection for Outlier Ranking in Graphs with Multiple Numeric Node Attributes

Proc. 26th International Conference on Scientific and Statistical Database Management (SSDBM 2014), Aalborg, Denmark (2014) 
[SSDBM 2014]
[Full Text PDF]

Nguyen H. V., Müller E., Andritsos P., Böhm K.:
Detecting Correlated Columns in Relational Databases with Mixed Data Types

Proc. 26th International Conference on Scientific and Statistical Database Management (SSDBM 2014), Aalborg, Denmark (2014) 
[SSDBM 2014]
[Full Text PDF]

2013 Akoglu L., Müller E., Vreeken J. (Eds.):
Proceedings of the KDD 2013 Workshop on Outlier Detection and Description
ACM SIGKDD Workshop Proceedings of the 1st Workshop on Outlier Detection and Description (ODD 2013)
[ODD @ KDD 2013] [Proceedings]

Eichinger F., Pathmaperuma D., Vogt H., Müller E.:
Data Analysis Challenges in the Future Energy Domain
Yu T., Chawla N., Simoff S. (eds.): Computational Intelligent Data Analysis for Sustainable Development, Chapman and Hall/CRC (2013) 
[DMKD Series][Full Text PDF]

Iglesias P., Müller E., Laforet F., Keller F., Böhm K.:
Statistical Selection of Congruent Subspaces for Mining Attributed Graphs
Proc. IEEE International Conference on Data Mining (ICDM 2013), Dallas, TX, USA (2013) (full paper acceptance rate 11.6%)
[ICDM 2013]
[Full Text PDF]

Aksehirli E., Goethals B., Müller E., Vreeken J.:
Cartification: A Neighborhood Preserving Transformation for Mining High Dimensional Data
Proc. IEEE International Conference on Data Mining (ICDM 2013), Dallas, TX, USA (2013) (acceptance rate 19.6%)
[ICDM 2013]
[Full Text PDF]

Nguyen H. V., Müller E., Böhm K.:

4S: Scalable Subspace Search Scheme Overcoming Traditional Apriori Processing
Proc. IEEE International Conference on Big Data (BigData 2013), Santa Clara, CA, USA (2013) (full paper acceptance rate 17.4%)
[BigData 2013]
[Full Text PDF]

Keller F., Müller E., Wixler A., Böhm K.:
Flexible and Adaptive Subspace Search for Outlier Analysis
Proc. 22nd ACM International Conference on Information and Knowledge Management (CIKM 2013), San Francisco, USA (2013) (full paper acceptance rate 16.9%)
[CIKM 2013][Full Text PDF]

Nguyen H. V., Müller E., Vreeken J., Keller F., Böhm K.:
CMI: An Information-Theoretic Contrast Measure for Enhancing Subspace Cluster and Outlier Detection
Proc. SIAM International Conference on Data Mining (SDM 2013), Austin, Texas, USA (2013)
[SDM 2013][Full Text PDF]

Müller E., Iglesias P., Mülle Y., Böhm K.:
Ranking Outlier Nodes in Subspaces of Attributed Graphs
Proc. 4th International Workshop on Graph Data Management: Techniques and Applications (GDM 2013) in conjunction with IEEE 29th International Conference on Data Engineering (ICDE 2013), Brisbane, Australia (2013)
[ICDE 2013] [GDM 2013]


2012 Müller E., Seidl T., Venkatasubramanian S., Zimek A. (Eds.):
Proceedings of the 3rd MultiClust Workshop
SIAM Workshop Proceedings of the 3rd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings (MultiClust 2012)
[MultiClust 2012] [Proceedings]

Müller E., Assent I., Iglesias P., Mülle Y., Böhm K.:
Outlier Ranking via Subspace Analysis in Multiple Views of the Data
Proc. IEEE International Conference on Data Mining (ICDM 2012), Brussels, Belgium (2012) (full paper acceptance rate 10.7%)
[ICDM 2012][Full Text PDF]

Keller F., Müller E., Böhm K.:
HiCS: High Contrast Subspaces for Density-Based Outlier Ranking
Proc. IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA (2012) 
[ICDE 2012]
[Full Text PDF][Supplementary material]

Müller E., Günnemann S., Färber I., Seidl T.:
Discovering Multiple Clustering Solutions: Grouping Objects in Different Views of the Data
Tutorial at IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA. (2012)
[ICDE 2012][Full Text PDF][Tutorial Website]

Müller E., Günnemann S., Färber I., Seidl T.:
Discovering Multiple Clustering Solutions: Grouping Objects in Different Views of the Data
Tutorial at 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2012), Kuala Lumpur, Malaysia. (2012)
[PAKDD 2012][Tutorial Website]

Khachatryan A., F., Müller E., Stier C., Böhm K.:
Sensitivity of Self-Tuning Histograms: Query Order Affecting Accuracy and Robustness
Proc. 24th International Conference on Scientific and Statistical Database Management (SSDBM 2012), Chania, Crete, Greece (2012) 
[SSDBM 2012]

Maaß H., Çakmak H. K., Süss W., Quinte A., Jakob W., Müller E., Böhm K., Stucky K. U., Kühnapfel U.:
Introducing a New Voltage Time Series Approach for Electrical Power Grid Analysis
Proc. IEEE International Energy Conference & Exhibition (EnergyCon 2012), Florence, Italy (2012) 
[EnergyCon 2012]


Vanea A., Müller E., Keller F., Böhm K.:
Instant Selection of High Contrast Projections in Multi-dimensional Data Streams
Proc. Workshop on Instant Interactive Data Mining (IID 2012) in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2012), Bristol, UK (2012) 
[IID 2012][Full Text PDF]

Müller E., Keller F., Blanc S., Böhm K.:
OutRules: A Framework for Outlier Descriptions in Multiple Context Spaces
Proc. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2012), Bristol, UK (2012) (Demo)
[ECML PKDD 2012][OutRules Project]

Keller F., Müller E., Böhm K.:
Υποχώροι Υψηλής Αντίθεσης για την Βαθμολόγηση Εκτόπων με Βάση την Πυκνότητα
Proc. Hellenic Data Management Symposium (HDMS 2012), Chania, Crete, Greece (2012) 
[HDMS 2012]

2011
Müller E., Günnemann S., Assent I., Seidl T. (Eds.):
Proceedings of the 2nd MultiClust Workshop
CEUR Workshop Proceedings of the 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings (MultiClust 2011)
[MultiClust 2011][Proceedings]

Müller E., Assent I., Günnemann S., Seidl T.:
Scalable Density-Based Subspace Clustering
Proc. 20th ACM International Conference on Information and Knowledge Management (CIKM 2011), Glasgow, UK (2011) (full paper acceptance rate 15%)
[CIKM 2011][Full Text PDF]

Günnemann S., Färber I., Müller E., Assent I., Seidl T.:

External Evaluation Measures for Subspace Clustering
Proc. 20th ACM International Conference on Information and Knowledge Management (CIKM 2011), Glasgow, UK (2011) (full paper acceptance rate 15%)
[CIKM 2011][Full Text PDF]

Müller E., Schiffer M., Seidl T.:
Statistical Selection of Relevant Subspace Projections for Outlier Ranking
Proc. IEEE 27th International Conference on Data Engineering (ICDE 2011), Hannover, Germany (2011) (full paper acceptance rate 19.8%)
[ICDE 2011][Full Text PDF]

Günnemann S., Müller E., Raubach S., Seidl T.:
Flexible Fault Tolerant Subspace Clustering
Proc. IEEE International Conference on Data Mining (ICDM 2011), Vancouver, Canada (2011) (full paper acceptance rate 12.2%)
[ICDM 2011][Full Text PDF]

Müller E., Günnemann S., Färber I., Seidl T.:
Discovering Multiple Clustering Solutions: Grouping Objects in Different Views of the Data
Tutorial at SIAM International Conference on Data Mining (SDM 2011), Mesa, Arizona, USA. (2011)
[SDM 2011]
[Full Text PDF][Tutorial Website][Tutorial Slides]

Khachatryan A. , Müller E., Böhm K., Kopper J.:
Efficient Selectivity Estimation by Histogram Construction based on Subspace Clustering
Proc. 23rd International Conference on Scientific and Statistical Database Management (SSDBM 2011), Portland, Oregon, USA (2011)
[SSDBM 2011]

 
Müller E., Assent I., Günnemann S., Gerwert P., Hannen M., Jansen T., Seidl T.:
A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases
Proc. 14th GI Conference on Database Systems for Business, Technology, and the Web (BTW 2011), Kaiserslautern, Germany (2011)
[BTW 2011]
[Full Text PDF]

Müller E., Schiffer M., Seidl T.:
Στατιστική Επιλογή από Σημαντικούς Υποχώρους για Εύρεση Εκτόπων
Proc. Hellenic Data Management Symposium (HDMS 2011), Athens, Greece (2011)
[HDMS 2011]

2010 Müller E.:
Efficient Knowledge Discovery in Subspaces of High Dimensional Databases
Dissertation, Fakultät für Mathematik, Informatik und Naturwissenschaften, RWTH Aachen University. (2010) Tag der mündlichen Prüfung: 09.06.2010
[RWTH Bibliothek]

Müller E., Günnemann S., Färber I., Seidl T.:
Discovering Multiple Clustering Solutions: Grouping Objects in Different Views of the Data
Tutorial at IEEE International Conference on Data Mining (ICDM 2010), Sydney, Australia (2010)
[ICDM 2010]
[Full Text PDF][Tutorial Website][Tutorial Slides]

Kranen P., Müller E., Assent I., Krieger R., Seidl T.:
Incremental Learning of Medical Data for Multi-Step Patient Health Classification
Plant C., Böhm C. (eds.): Database Technology for Life Sciences and Medicine, World Scientific Publishing P.321-344 (2010)
[World Scientific Publishing ]

Müller E., Schiffer M., Seidl T.:
Adaptive Outlierness for Subspace Outlier Ranking
Proc. 19th ACM Conference on Information and Knowledge Management (CIKM 2010), Toronto, Canada P.1629-1632 (2010)
[CIKM 2010][Full Text PDF]

Müller E., Kranen P., Nett M., Reidl F., Seidl T.:
Air-Indexing on Error Prone Communication Channels
Proc. of the 15th International Conference on Database Systems for Advanced Applications (DASFAA 2010), Tsukuba, Japan, Springer LNCS 5981 P.505-519 (2010)
[DASFAA 2010]

Hassani M., Müller E., Spaus P., Faqolli A., Palpanas T., Seidl T.:
Self-Organizing Energy Aware Clustering of Nodes in Sensor Networks Using Relevant Attributes
Proc. 4th International Workshop on Knowledge Discovery from Sensor Data (SensorKDD 2010) in conjunction with 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2010), Washington, DC, USA P.87-96 (2010)
[SensorKDD 2010]

Müller E.:
Mining Subspace Clusters: Enhanced Models, Efficient Algorithms and an Objective Evaluation Study
PhD Workshop of the 36th International Conference on Very Large Data Bases (VLDB 2010), Singapore (2010)
[VLDB 2010] [Full Text PDF]

Färber I., Günnemann S., Kriegel H.-P., Kröger P., Müller E., Schubert E., Seidl T., Zimek A.:
On Using Class-Labels in Evaluation of Clusterings
Proc. 1st International Workshop on Discovering, Summarizing and Using Multiple Clusterings (MultiClust 2010) in conjunction with 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2010), Washington, DC, USA (2010)
[MultiClust 2010] [Full Text PDF] [Talk Slides]

Günnemann S., Färber I., Müller E., Seidl T.:
ASCLU: Alternative Subspace Clustering
Proc. 1st International Workshop on Discovering, Summarizing and Using Multiple Clusterings (MultiClust 2010) in conjunction with 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2010), Washington, DC, USA (2010)
[MultiClust 2010] [Full Text PDF] [Talk Slides]

Assent I., Müller E., Günnemann S., Krieger R., Seidl T.:
Less is More: Non-Redundant Subspace Clustering
Proc. 1st International Workshop on Discovering, Summarizing and Using Multiple Clusterings (MultiClust 2010) in conjunction with 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2010), Washington, DC, USA (2010)
[MultiClust 2010] [Full Text PDF] [Talk Slides]

Müller E., Schiffer M., Gerwert P., Hannen M., Jansen T., Seidl T.:
SOREX: Subspace Outlier Ranking Exploration Toolkit
Proc. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2010), Barcelona, Spain, Springer, LNAI 6323 P.607-610 (2010) (Demo)
[ECML PKDD 2010][SOREX Project]

Meyer U., Müller E., Seidl T.:
Sichere und energieeffiziente Mobilfunkkommunikation: Energieeffiziente Lösungen für sichere Datenübertragung in zukünftigen mobilen Kommunikationsgeräten
RWTH Themen 1/2010: Erste Ergebnisse der Exzellenzinitiative P.36-38 (2010)
[RWTH-Themen]

2009 Müller E., Günnemann S., Assent I., Seidl T.:
Evaluating Clustering in Subspace Projections of High Dimensional Data
Proc. 35th International Conference on Very Large Data Bases (VLDB 2009), Lyon, France, PVLDB Journal, Vol. 2, No. 1, P.1270-1281 (2009) (Experiments and Analyses track, acceptance rate 23.1%)
[VLDB 2009] [Full Text PDF] [Supplementary material]

Müller E., Assent I., Günnemann S., Krieger R., Seidl T.:
Relevant Subspace Clustering: Mining the Most Interesting Non-Redundant Concepts in High Dimensional Data
Proc. IEEE International Conference on Data Mining (ICDM 2009), Miami, USA P.377-386 (2009) (full paper acceptance rate 8.9%)
[ICDM 2009]
[Full Text PDF][Supplementary material]

Müller E., Assent I., Krieger R., Günnemann S., Seidl T.:
DensEst: Density Estimation for Data Mining in High Dimensional Spaces
Proc. SIAM International Conference on Data Mining (SDM 2009), Sparks, Nevada, USA. P.173-184 (2009) (full paper acceptance rate 15.6%)
[SDM 2009][Full Text PDF]

Günnemann S., Müller E., Färber I., Seidl T.:
Detection of Orthogonal Concepts in Subspaces of High Dimensional Data
Proc. 18th ACM Conference on Information and Knowledge Management (CIKM 2009), Hong Kong, China P.1317-1326 (2009) (full paper acceptance rate 14.5%)
[CIKM 2009] [Full Text PDF]

Müller E., Assent I., Seidl T.:
HSM: Heterogeneous Subspace Mining in High Dimensional Data
Proc. 21st International Conference on Scientific and Statistical Database Management (SSDBM 2009), New Orleans, Louisiana, USA P.497-516 (2009)
[SSDBM 2009]

Wang L., Oertel N., Müller E., Seidl T.:
Counterfeit Detection by Extracting Rules from Product Traces
Proc. 12th IASTED International Conference on Intelligent Systems and Control (ISC 2009), Cambridge, USA (2009)
[IASTED ISC 2009]

Hassani M., Müller E., Seidl T.:
EDISKCO: Energy Efficient Distributed In-Sensor-Network K-center Clustering with Outliers
Proc. 3rd International Workshop on Knowledge Discovery from Sensor Data (SensorKDD 2009) in conjunction with 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2009), Paris, France P.39-48 (2009)
[SensorKDD 2009][Full Text PDF]

Müller E., Assent I., Günnemann S., Jansen T., Seidl T.:
OpenSubspace: An Open Source Framework for Evaluation and Exploration of Subspace Clustering Algorithms in WEKA
Proc. 1st Open Source in Data Mining Workshop (OSDM 2009) in conjunction with 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2009), Bangkok, Thailand P.2-13 (2009)
[OSDM 2009][Full Text PDF]
[OpenSubspace Project]

Schiffer M., Müller E., Seidl T.:
SubRank: Ranking Local Outliers in Projections of High-Dimensional Spaces
Datenbank-Spektrum Vol. 9 Issue 29 P.53-55 (2009) (BTW-Studierendenprogramm)
[DB Spektrum][Full Text PDF]

2008 Assent I., Krieger R., Müller E., Seidl T.:
INSCY: Indexing Subspace Clusters with In-Process-Removal of Redundancy
Proc. IEEE International Conference on Data Mining (ICDM 2008), Pisa, Italy P.719-724 (2008) (acceptance rate 20%)
[ICDM 2008]
[Full Text PDF]

Assent I., Krieger R., Müller E., Seidl T.:
EDSC: Efficient Density-Based Subspace Clustering
Proc. ACM 17th Conference on Information and Knowledge Management (CIKM 2008), Napa Valley, USA P.1093-1102 (2008) (full paper acceptance rate 17%)
[CIKM 2008][Full Text PDF]

Müller E., Assent I., Steinhausen U., Seidl T.:
OutRank: ranking outliers in high dimensional data
Proc. 2nd International Workshop on Ranking in Databases (DBRank 2008) in conjunction with IEEE 24th International Conference on Data Engineering (ICDE 2008), Cancun, Mexico P.600-603 (2008)
[ICDE 2008] [DBRank 2008]
[Full Text PDF]

Müller E., Assent I., Krieger R., Jansen T., Seidl T.:
Morpheus: Interactive Exploration of Subspace Clustering
Proc. 14th ACM SIGKDD International Conference on Knowledge Discovery in Databases (KDD 2008), Las Vegas, USA P.1089-1092 (2008) (Demo)
[KDD 2008][Full Text PDF]

Assent I., Müller E., Krieger R., Jansen T., Seidl T.:
Pleiades: Subspace Clustering and Evaluation
Proc. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2008), Antwerp, Belgium, Springer LNCS 5212. P.666-671 (2008) (Demo)
[ECML PKKD 2008] [Springer LNCS 5212]

Kranen P., Kensche D., Kim S., Zimmermann N., Müller E., Quix C., Li X., Gries T., Seidl T., Jarke M., Leonhardt S.:
Mobile Mining and Information Management in HealthNet Scenarios
Proceedings of the 9th IEEE MDM International Conference on Mobile Data Management (MDM 2008), Beijing, China P.215-216 (2008) (Demo)
[MDM 2008]

Müller E., Kranen P., Nett M., Reidl F., Seidl T.:
A General Framework for Data Dissemination Simulation for Real World Scenarios
Proceedings of the 14th ACM SIGMOBILE International Conference on Mobile Computing and Networking (MobiCom 2008), San Francisco, USA (2008) (Demo)
[MobiCom 2008]

Ruau D., Kolarik C., Mevissen H.-T., Müller E., Assent I., Krieger R., Seidl T., Hofmann-Apitius M., Zenke M.:
Public microarray repository semantic annotation with ontologies employing text mining and expression profile correlation
BMC Bioinformatics 2008, 9(Suppl 10):O5 doi:10.1186/1471-2105-9-S10-O54th ISCB Student Council Symposium in conjunction with International Conference Intelligent Systems for Molecular Biology (ISMB 2008), Toronto, Canada (2008) (poster and oral presentation)
[ISCB 2008] [ISMB 2008]

Kim S., Leonhardt S., Zimmermann N., Kranen P., Kensche D., Müller E., Quix C.:
Influence of contact pressure and moisture on the signal quality of a newly developed textile ECG sensor shirt
5th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2008), Hong Kong, China (2008)
[BSN 2008]

Seidl T., Müller E., Assent I., Steinhausen U.:
Outlier detection and ranking based on subspace clustering
Dagstuhl Seminar 08421 on Uncertainty Management in Information Systems. (2008)
[Dagstuhl Seminar] [Full Text PDF]

2007 Assent I., Krieger R., Müller E., Seidl T.:
VISA: Visual Subspace Clustering Analysis
ACM SIGKDD Explorations Special Issue on Visual Analytics, Vol. 9, Issue 2 P.5-12 (2007)
[SIGKDD Explorations] [Full Text PDF]

Assent I., Krieger R., Müller E., Seidl T.:
DUSC: Dimensionality Unbiased Subspace Clustering
Proc. IEEE International Conference on Data Mining (ICDM 2007), Omaha, Nebraska, USA P.409-414 (2007) (acceptance rate 19%)
[ICDM 2007]
[Full Text PDF]

Müller E.:
Density-based clustering in arbitrary subspaces
Proc. Workshop on Nature-inspired Methods for Local Pattern Detection (NiLOP 2007) in conjunction with NiSIS 2007, St. Julians, Malta (2007)

Assent I., Krieger R., Müller E., Steffens A., Seidl T.:
Evolutionary Subspace Search in biologically-inspired Optimal Niches
Proc. Annual Symposium on Nature inspired Smart Information Systems (NiSIS 2007), St Julians, Malta (2007)
[NiSIS 2007]

Assent I., Krieger R., Müller E., Seidl T.:
Removing Dimensionality Bias in Density-based Subspace Clustering
Abstract in Dutch-Belgian Data Base Day (DBDBD 2007), Eindhoven, NL (2007)
[DBDBD 2007]

Aleksandrowicz A., Kensche D., Kim S., Kranen P., Müller E., Quix C.:
Mobile and Wearable P2P Information Management in HEALTHNET Applications
IEEE Benelux Chapter on Engineering in Medicine and Biology (EMB) (2007)

Assent I., Krieger R., Müller E., Seidl T.:
Subspace outlier mining in large multimedia databases
In: M. Berthold, K. Morik, A. Siebes(eds.): Parallel Universes and Local Patterns, Dagstuhl Seminar 07181 (2007)
[Dagstuhl Seminar] [Full Text PDF]

Müller E.:
Subspace Clustering für die Analyse von CGH Daten
Studierendenprogramm at the 12th GI-conference on Databases, Technology and Web (BTW 2007), Aachen, Germany: 31-33 (2007)
[BTW 2007] [BTW Studierendenprogramm][Full Text PDF]

2006 Möllers M., Müller E., Neider D., Seweryn L.:
MediSign - Secure Pharmaceutic Distribution
GI Informatiktage 31. März - 01. April 2006 in Bonn P.113-115 (2006)
[Informatiktage][Full Text PDF]