
FACTS: A Framework for Anonymity towards
Comparability, Transparency, and Sharing

Exploratory Paper

Clemens Heidinger, Klemens Böhm, Erik Buchmann, and Kai Richter

Karlsruhe Institute of Technology (KIT), Germany

Abstract. In past years, many anonymization schemes, anonymity no-
tions, and anonymity measures have been proposed. When designing
information systems that feature anonymity, choosing a good approach
is a very important design choice. While experiments comparing such
approaches are enlightening, carrying out such experiments is a com-
plex task and is labor-intensive. To address this issue, we propose the
framework FACTS for the experimental evaluation of anonymization
schemes. It lets researchers implement their approaches against interfaces
and other standardizations that we have devised. Users can then define
benchmark suites that refer to those implementations. FACTS gives way
to comparability, and it includes many useful features, e.g., easy sharing
and reproduction of experiments. We evaluate FACTS (a) by specifying
and executing a comprehensive benchmark suite for data publishing and
(b) by means of a user study. Core results are that FACTS is useful for
a broad range of scenarios, that it allows to compare approaches with
ease, and that it lets users share and reproduce experiments.

Keywords: Privacy, Anonymity, Evaluation, Benchmarking

1 Introduction

In the recent past, many anonymization approaches have been proposed, i.e., an-
onymity notions, anonymization schemes (subsequently referred to as ’schemes’),
and measures for their evaluation. It is difficult to compare them and to decide
when to use which scheme. It is hard to answer important questions, e.g.:
– Given a data set, a scheme, and an attack, how much information can the

attack disclose?
– Given a data set and a set of queries, which scheme maximizes query accuracy

while offering, say, Differential Privacy?
We see three dimensions that must be considered when comparing approaches,

namely attacks, measures and benchmarks:
Attacks. Schemes have to make assumptions on the data set to be anon-

ymized, and on the capabilities required to break anonymization. This allows
to state if and to which degree the schemes give protection. Example 1 intro-
duces our running example. In order to ease presentation, we use well-known
approaches with well-researched vulnerabilities.

Example 1: Each row in Table 1a describes one individual. The data set
contains attributes (quasi-identifiers) which might allow to identify a person
(“Zip”, “Age” and “Sex”). It further has a sensitive attribute (“Disease”). Ta-
ble 1b shows how a k-Anonymization scheme has transformed this data. This
transformation cannot shield from attacks that disclose the sensitive attribute
value for an individual. This is because, for all tuples with the same values
of identifying attributes, the value of the sensitive attribute is the same. How-
ever, k-Anonymization implicitly assumes that there is no correlation between
quasi-identifying and sensitive attributes. The so-called homogeneity attack can
exploit this to break the anonymization of Table 1b. Another scheme is required;
see for instance Table 1c for an anonymization outcome with l-Diversity. •

Table 1: Examples for Anonymization.

(a) Original data set.

Zip Age Sex Disease

13053 28 F Lupus

13053 29 F Lupus

13068 21 M AIDS

13053 23 F AIDS

(b) Outcome with k-Ano-
nymity (k = 2).

Zip Age Sex Disease

130* [28, 29] F Lupus

130* [28, 29] F Lupus

130* [21, 23] * AIDS

130* [21, 23] * AIDS

(c) Outcome with l-Diversity
(k = l = 2).

Zip Age Sex Disease

130* [21, 28] * Lupus

130* [23, 29] F Lupus

130* [21, 28] * AIDS

130* [23, 29] F AIDS

[10] has shown that any scheme that preserves some utility has to rely on
assumptions. Attacks in turn exploit such assumptions. This may result in new
schemes to shield against them, i.e., we observe a stream of new attacks and
countermeasures, for many scenarios. We say that approaches belong to the same
scenario if they share certain basic requirements. For example, in scenario data
publishing of microdata (Spub) one releases modified data sets without any means
to undo these modifications. With scenario database-as-a-service (SDaaS) in turn,
a requirement is to have de-anonymization mechanisms for authorized individu-
als. Besides Spub and SDaaS there are many more scenarios, e.g., statistical da-
tabases (Sstats) and data mining (Smining). Differential Privacy [7] for example
assumes independent database records – [11] then describes an attack exploiting
dependencies between records, together with a respective new scheme. To find
out if a scheme can be used in a certain real-world context, it is important to
test the anonymized data against such attacks.

Measures. Besides formal proofs of anonymity and complexity analyses,
quantitative measures are needed to assess the applicability of a scheme for real-
world applications. An example is the probability that the anonymity of a data
set can be broken if it has been anonymized with a certain scheme. Regarding
performance, it is interesting to know if there is an optimal scheme that can
anonymize a certain data set in reasonable time, or if a heuristic scheme is
needed. Further measures consider data quality and query accuracy – we address
them later in this article. However, the sheer number of schemes, attacks, and
application requirements makes it hard to identify the best scheme for a given
setting. Making the right choice is important to account for high-level privacy
requirements, cf. [3].

Benchmarks. Schemes may be related in that they aim at the same kind
of protection, e.g., against linking values of sensitive attributes to individuals.
However, related schemes typically have been evaluated with different experi-
ments. For example, [12] uses the UCI Adult data set, while the related scheme
[17] uses an IPUMS census data set: One cannot compare their measurements
of data quality or of query accuracy.

Example 2: Queries on non-anonymized data sets may need to be modified
to be executed on the anonymization output. Query-processing techniques then
must be tailored to schemes. With our running example, the query SELECT *

FROM Table 1a WHERE Age BETWEEN 22 AND 28 needs to be modified so that
values of “Age” map to the generalized intervals in Table 1b. Different measures
for the loss of accuracy exist. To have experiments that are comparable, not only
the data must be identical, but also those modifications of the queries and the
accuracy measures. •

The three dimensions of evaluation problems described above call for a frame-
work that supports a detailed comparison of schemes based on the requirements
of real-world applications. Such requirements exist in various categories that are
orthogonal to each other. At first, technical requirements must be considered,
e.g., the memory footprint or the scalability of an anonymization scheme re-
garding the number of input tuples. Secondly, the anonymization scheme must
consider the eventual use of the anonymized data. For example, if a scheme
removes all data values that deviate from the average, but the use case needs
to perform outlier detection, this scheme is inappropriate. The third category
considers privacy preferences, attacker models and how sensitive information is
represented in the data. For example, sensitive information could be material-
ized as set-valued data, e.g., from a shopping cart analysis, and an adversary
might know typical shopping carts. Thus, FACTS must be flexible enough to
implement a wide range of different schemes, attacks, and measures.

Designing such a framework is challenging, given the wide variety of possible
attacks, measures and benchmarks. Although in this paper we limit examples
and discussions to Spub and SDaaS, we strive for a framework that also works
for other scenarios, e.g., Sstats and Smining. In this context, the heterogeneity of
scenarios is challenging. For instance, data quality is not important for SDaaS,
but for Spub, it is.
In this paper, we propose FACTS, a Framework for Anonymity towards
Comparability, Transparency, and Sharing. It allows to compile benchmarks
together with the implementations of schemes and of attacks, data sets, query-
processing techniques etc. When designing FACTS, we have devised standards
for the anonymization application, namely for interfaces that researchers propos-
ing new approaches must implement and for data they must provide. Users can
then define, share, update, and execute benchmarks for anonymization that refer
to the standards. FACTS addresses comparability, as Example 3 illustrates.

Example 3: An author of a query must implement two methods whose inter-
faces are given by FACTS: one for the query on anonymized data sets, another
one for the query on the original data. In Spub, this allows to measure the loss of

query accuracy (cf. Example 2). In SDaaS, it allows to quantify the performance
costs of decrypting query results and to verify that results are the same as with-
out encryption. •

Our evaluation is twofold. On the one hand, we have developed various bench-
marks, including one Spub and one for SDaaS, described in a complementary
technical report [9]. Here, we report on a user study with 19 participants that
has continued for three months. The evaluation shows that FACTS addresses
its objectives well, e.g., FACTS standards allow to compare approaches fairly
by enforcing compliance with benchmarks. We have implemented the framework
and the benchmarks in full and make everything available under a free license
on our website [1]. The vision is that over time it will become common among
anonymization researchers to refer to suitable benchmarks.

2 Background: Terminology and Examples

We now introduce our terminology and discuss how schemes have been evaluated.

Anonymization. Our understanding of the term anonymity is broad and in-
cludes approaches such as encryption, see below. Any scheme takes an original
data set as input, with original values in its cells. With Sstats, a set of functions
that operate on the data is input as well. Schemes generate an anonymization
output. With Spub and SDaaS, this output is the entire anonymized data set,
with Sstats it is anonymized query results. Any scheme seeks to protect against
a certain kind of disclosure of sensitive information. The protection model states
which information to protect. Anonymity notions state characteristics the out-
put of or the information processed by schemes must have. An anonymity notion
may refer to a certain protection model, i.e., any scheme compliant with the
notion protects the information specified by the protection model. Adversaries
execute attacks that try to break the protection. Adversary models describe the
adversary, i.e., her capabilities and her background knowledge. An anonymity
notion may include a reference to an adversary model: A scheme complies with
the anonymity notion iff the adversary of the referenced adversary model cannot
get to the information it aims to protect. Finally, anonymity is given if a scheme
protects the information specified by the protection model against adversaries
as defined by the adversary model. Thus, schemes such as pseudonymization or
partitioning [2] can offer “anonymity” according to this definition.

Example 4: With Spub, the original data sets contain quasi-identifying and
sensitive attributes. An assumption is that each tuple belongs to one individual.
A protection model is that any sensitive attribute value must not be linked to the
respective individual. The anonymity notion k-Anonymity [15] specifies the fol-
lowing rule for anonymization output: For any tuple, there are at least k−1 other
tuples with the same values for the quasi-identifying attributes. Sk-Anonymity, a
scheme for k-Anonymity, with k set to 2, computes the output in Table 1b.
It generalizes original values, to build so-called QI blocks. This anonymization

however cannot protect from adversary Alice who wants to disclose the disease
Bob has. The adversary model is that Alice has knowledge about individuals,
as follows. Alice knows that Bob is in the database, lives in a zip-code area be-
ginning with 130, and is 21 years old. She concludes that Bob has AIDS. That
is, she executes the so-called homogeneity attack [13]. We refer to it as AHG.
l-Diversity [13] protects against AHG, see Table 1c. •

Experiments. ’Approach’ is our generic term for any new concept an anonym-
ization researcher might propose. Approaches include schemes, attacks, query
processing, and measures. Next to anonymity, schemes may have further goals:
With Spub, a goal is to maximize data quality for subsequent analyses. For Sstats,
the data set is hidden, and the user can enter a given set of statistical queries – a
goal is to maximize the accuracy of their results. For SDaaS, a goal is to maximize
performance of query processing. In general, researchers strive to find schemes
that are good regarding a combination of goals, as quantified by measures. Mea-
sures used in the literature are anonymity, data quality, query accuracy, and
performance. For instance, anonymity measures quantify to which degree an ad-
versary can break the anonymization, i.e., disclose the information specified in
the protection model, and data-quality measures quantify how much the an-
onymized data set differs from the original one. An experiment to evaluate an
approach has experiment parameters, at least an original data set and a measure.
With our terminology, a benchmark is a set of experiments. A benchmark suite
bundles benchmarks with schemes that use them, and contains their parameters
and runs such bundles. It yields measure values, i.e., values from the respective
experiments as output. One benchmark may be used in several suites. We differ-
entiate between benchmark specification and benchmark execution with suites.
This is because one might have an interesting benchmark, e.g., containing a new
data set, but might not have a scheme using it. In general, we see two user roles:
researchers and users. Researchers are inventors/implementer of an approach.
Users deploy approaches. They do not necessarily know the inner structure of
the approach they use. A researcher can also be a user.

Example 5: Continuing Example 4, we illustrate how the measure of [12]
(we refer to it as MAnon-Dist) quantifies the threat posed by AHG. MAnon-Dist

is the maximum distance between (a) any distribution of values of the sensitive
attribute of a QI block in the anonymized data set and (b) the distribution of
values of the sensitive attribute of the original data set. AHG can conclude that
an individual has a sensitive attribute value if the distance is large, as we now
explain. Experiment e quantifies anonymity with MAnon-Dist:

e = { original data set: Table 1a, anonymity measure: MAnon-Dist }

Benchmark B contains e as the only experiment, i.e., B = {e}. Benchmark
suite B runs B for two schemes.

B = { (experiment: e ∈ B, scheme: Sk-Anonymity, parameters: {k = 2}),
(experiment: e ∈ B, scheme: Sl-Diversity, parameters: {k = 2, l = 2}) }

B executes and generates Tables 1b and Table 1c as the anonymization out-
put. For Table 1b, the distributions (a) are {Lupus, Lupus} and {AIDS, AIDS}.

For Table 1c, the distributions (a) are {Lupus, AIDS}, both times. Distribution
(b) is {Lupus, Lupus, AIDS, AIDS}. The distributions (a) for Table 1b have
a greater distance to distribution (b) than the distributions (a) for Table 1c.
MAnon-Dist thus calculates a higher degree of disclosure for Table 1b. •

3 FACTS

We now present FACTS, our framework for easy comparability for anonymiza-
tion research. In this section we give an overview, describe the key concepts, and
say how to implement benchmarks.

3.1 Overview

FACTS is a framework for easy comparison of anonymization approaches. A
core issue when designing FACTS has been to come up with class models of
approaches. Class models are our standardizations of behavior and of processes
in the context of anonymization. In FACTS, researchers provide implementa-
tions of class models, by implementing them against interfaces we, the designers
of FACTS, have specified. Researchers further have to comply with the stan-
dards class models specify for data generation. Users configure benchmarks and
benchmark suites within FACTS that refer to these implementations. Bench-
mark suites bundle all data, i.e., data sets, the implementations of class models,
and experiment results. FACTS stores everything in a central repository. Users
can execute benchmark suites to compare the state of the art with ease. The idea
is that users who are experts of an anonymization sub-domain create benchmark
suites for approaches where a comparison is interesting.

Fig. 1: FACTS – Overview.

3.2 Aspects

FACTS covers four aspects. First, users define benchmark suites, i.e., the speci-
fication which approaches to compare based on which data, parameter settings
etc. Benchmark suites refer to implementations of class models. We have defined
class models as the second aspect, and there are class models of schemes, attacks,
and queries. The third aspect is that FACTS executes these class models and
performs the benchmarking. FACTS stores all results and protocols of executing
benchmark suites in a repository, this is the fourth aspect. See Figure 1.

3.3 Benchmarks

We now describe how to realize benchmarks by means of the four aspects. For
specifics of our implementation in Java, we refer to the documentation on the
FACTS website [1].

Aspect A1: Input In this aspect, a user configures benchmark suites. Stan-
dardized interfaces and data representations ensure that all input plays well
together, e.g., the scheme knows how to access the input data set. Benchmark
suites refer to one or more experiments. An experiment has the following pa-
rameters:
1. An original data set D.
2. A scheme anon, possibly with parameters, referred to as params(anon).
3. An attack attack . It may have parameters, referred to as params(attack).
4. A set of queries Q where each q ∈ Q may have parameters params(q).
5. A measure M.

Users may omit (3) or (4) if the experiment does not make use of attacks or
queries, e.g., experiments on the performance of schemes.

Aspect A2: Class Models Class models let researchers model approaches
with a set of interfaces they need to implement and standardized formats of
the data they need to generate. For example, there is an interface for attacks
that lets researchers make background knowledge explicit, and methods ac-
cessing such background knowledge return it in a format standardized within
FACTS. This for example allows authors of anonymity measures to use the
knowledge. Our evaluation will show that the FACTS interfaces are on the
one hand sufficiently generic and, on the other hand, specific enough to
make comparisons indeed easier. Further, FACTS allows to compose com-
plex schemes, attacks, and queries from so-called operations. Operations can
be used individually, or they can be combined by means of so-called macros.
Operations and macros allow to encapsulate and combine logical operations
such as encryption or randomization, to reduce the necessary implementation
work.

Aspect A3: Execution This aspect performs the benchmarking, with mea-
surements. FACTS instantiates the implementations of class models of As-
pect A2 with the data of Aspect A1. That is, FACTS runs the schemes,
attacks, and queries. Experiments are logged, including time, date of execu-
tion, and the input data set.

Aspect A4: Data This aspect stores all data, i.e., benchmark suites (A1), the
class models and their implementations (A2), and the measurement results
and execution logs (A3). FACTS stores all data sets and implementations of
approaches for later runs of the same suite. This is transparent to the users;
FACTS takes care of the data storage. For instance, users and researchers
do not need to know the schema of the database or other internals of the
framework. They do not need to concern themselves with logging or with
the storage of implementations. They only have to comply with a few stan-
dardizations for data generation. One example of such a standardization is
that a user has to provide a name for a benchmark suite.

3.4 Illustration

We now exemplarily describe how to implement an anonymity benchmark in
FACTS. Our benchmark lets an adversary attack a copy of the data that has
been anonymized with some scheme one wants to test. The benchmark specifies
a fragment of the original data as background knowledge of the adversary, and
it allows to quantify the effect of various parameters of interest. In the following,
we discuss the implementation of the four aspects of FACTS.

Aspect A1: Input Listing 3 shows how to configure the input of the anonym-
ity benchmark suite by invoking the respective methods implemented in FACTS.
First, we import the input data from a file (Lines 1-3) and set up up a new exper-
iment (Line 4-5). We further specify a scheme anon (Line 6) and an attack attack
(Line 8), and link them to the experiment and the benchmark suite (Lines 7 and
9). Note that anon and attack must have been modeled in Aspect 2. Finally,
we tell FACTS to use the anonymity measure AnonDist (Line 10). AnonDist
implements the distance measure MAnon-Dist, as introduced in Example 5.

1 CSV csv = new CSV(new File(inputData));
2 Dataset input = csv.importDataset ();
3 Datasets original = new Datasets ().add(input);
4 Measurement m = benchmarkSuite.createMeasurement ();
5 m.setInputDatasets(original);
6 AnonymityClassModel anon = new anon();
7 m.setAnonymityClassModelImplementation(anon);
8 AttackClassModel attack = new attack ();
9 m.setAttackClassModelImplementation(attack);

10 m.setMeasure(new AnonDist ());

Listing 3: Configuration of anonymity benchmarks.

Aspect A2: Class Models With this aspect, we provide implementations of anon
and attack , which inherit from the FACTS classes AnonymityClassModel and
AttackClassModel. Listing 4 illustrates the implementation of background knowl-
edge, which is part of attack . In our example, we consider the distribution of the
attribute “Disease” of the original data. Thus, backgroundKnowledge (Line 1)
has the original data set as one parameter. We use methods implemented in
FACTS to count each value of the attribute named “Disease” (Lines 3-6). An-
other FACTS method adds the background knowledge to the framework (Line 7).

1 public void backgroundKnowledge(Dataset original , Dataset anonymized ,
Dataset preconditions , Parameters p, OperationAssembler
knowledgeLogic)

2 {
3 Attribute a = original.getAttribute (" Disease ");
4 a.setAggregate(AggregateType.COUNT);
5 a.setGroupByAttribute(true);
6 Dataset knowledge = original.aggregateSelect(a);
7 knowledgeLogic.addOperation(new NullOperation (), knowledge);
8 }

Listing 4: Statistics of original data set as background knowledge.

Aspect A3: Execution The third aspect is about running our anonymity bench-
mark (Listing 5). Line 1 runs the scheme anon, which produces the anonymized
data set anon(D). Next, Line 2 executes attack . Finally, Line 3 executes the
anonymity measure. It accesses the values guessed by attack and compares them
to the original values specified during anonymization anon.

1 m.runAnonymization ();
2 m.runAttack ();
3 m.runMeasure ();

Listing 5: Execution of anonymity benchmarks.

Aspect A4: Data The final aspect is storing and logging of all classes, models
and test data in a relational database. Since FACTS handles this internally, no
additional code is required.

4 Features and Use Cases

In this section, we describe important features of our framework, namely com-
parability, reproducibility, workability, collaboration, and understandability, to-
gether with respective use cases. These use cases will form the basis of our
evaluation in the next section.

Feature 1 (Comparability). Comparability means quantifying anonymity, data
quality, query accuracy, and performance of approaches. This is to decide which
approach is best for a given real-world problem.

FACTS gives way to comparability by means of benchmarks.

Use Case (Ubenchmark). FACTS lets users define, update, and access bench-
marks for anonymization. For anonymization approaches that are related, e.g.,
approaches that aim for the same protection model, a user creates a benchmark
suite that compares them, together with attacks and queries, under a set of mea-
sures. When a researcher proposes a new attack, users can update benchmark
suites to include it, or create new ones.

Feature 2 (Reproducibility). Reproducibility lets unbiased third parties repeat
and verify experiments.

Experts in their respective scientific fields have stressed the importance of re-
producibility. For example, [4] states that more research is necessary to get to
good experiment tools. FACTS supports reproducibility use cases such as the
following one:

Use Case (Ucommittee). Authors of a new scheme, attack, or query-processing
technique add an implementation of their approach to the FACTS repository
and to a benchmark suite. They use this benchmark suite to evaluate their
technique. A respective conference committee can later retrieve the benchmark
suite. The committee can rerun measurements without difficulty and award a
reproducibility label.

Feature 3 (Workability). Workability lets one explore effects of modifications
of evaluation parameters.

Workability allows to evaluate if an approach achieves good results solely because
experiment parameters were chosen to its advantage. Parameter values however
may be hidden in an implementation. It can be hard to identify and to vary
them subsequently. FACTS addresses this:

Use Case (Uworkability). Alice is developing a new approach. FACTS requires
Alice to specify the parameters with interfaces she has to implement, be it for an-
onymization, attacks, or queries. Bob now wants to evaluate this new approach.
He retrieves and changes parameters of any benchmark with the approach. To
this end, he can use FACTS methods that we have already implemented. He
does not need to search for parameters in the code. This lets Bob observe how
parameters affect benchmark results with ease.

Feature 4 (Collaboration). Collaboration within the community allows for
faster development of new approaches.

In publications, details such as the concrete data set, initialization or termination
procedures and the values of parameters are not always given [16]. This makes
it hard for researchers to build upon existing work, i.e., when implementing a
new approach by reusing some of the implementation of an existing one.

Use Case (Usharing). FACTS gives way to sharing of operations. Suppose that
researchers have developed a new scheme for SDaaS that protects against ad-
versaries trying to find out the order of tuples. The authors search the FACTS
repository and find an operation which randomizes a data set. It might have
been developed for schemes of Spub originally.

Another use case of collaboration is to let the community assist in solving a task:

Use Case (Uassistance). A user wants to find out if her data set can be anon-
ymized such that her quality criteria are met. The community helps her to find
suitable schemes. For example, suppose that Alice wants to outsource her data
to a SDaaS provider. She wants to know if there exists an anonymization that
allows executing certain queries in under one second on her data set. Alice cre-
ates a benchmark suite with her data set and queries. Other users can retrieve
it and add schemes and query-processing techniques.

Feature 5 (Understandability). Understandability lets the user perceive the
impact of all input parameters of an experiment on the experimental results.

Given an experimental result such as a diagram, it can be hard to understand
how exactly it has been computed, e.g., why one value is larger than another
one: For example, there may be several (parametrized) schemes and attacks, op-
erating on different background knowledge. FACTS supports understandability
by allowing the user to execute series of anonymization experiments with vary-
ing parameters, by providing logs of intermediate results that one can analyzes
with data-analyitcs tools, and by providing convenience methods to generate
diagrams. A use case for understandability, but also for reproducibility and col-
laboration, is as follows:

Use Case (Udiagram). Researcher Carl is developing a new scheme. He uses
FACTS to implement it and creates a new benchmark suite with performance
experiments. Carl wants to graph anonymization performance, to find settings
where the scheme is slow. His workflow is to implement the scheme, generate
the graph, and to refine the implementation. Our final use case is to simplify
benchmarks for understandability:

Use Case (Usimplify). Tony has a large data set with activities of his waste-
management business. He wants his business associate Silvio to access the data,
but conceal it from the authorities. This is a SDaaS scenario and requires an-
onymization. However, Silvio complains that certain queries are slow. Tony lets
Christopher evaluate which data the problem occurs with. To this end, Christo-
pher gradually reduces the data set size and measures query-execution times.
With FACTS, he can use methods already implemented to retrieve an evalua-
tion data set, to reduce its size, and to start measurements. Christopher observes
that processing is slow if a certain client is in the data set. Tony is now able to
eliminate the problem, once and for all.

Discussion Our evaluation will show that FACTS is general enough to be ap-
plicable to the very different scenarios Spub and SDaaS. Furthermore, FACTS is
directly applicable to many other scenarios where input and output data can be
represented as relations, e.g., association-rule mining of shopping carts, search
histories, location-based services, social networks, or statistical databases. An-
onymization scenarios for continuously changing data, e.g., data streams or in-
crementally updated databases, would require to adapt our interfaces and their
implementations of Aspects A1 and A4. However, generic benchmark function-
ality, e.g., performance measurements, should work as is.

5 Evaluation

We evaluate FACTS by means of an exploratory study. We declare success if
FACTS allows to model state-of-the-art schemes, attacks, and measures, and if
FACTS allows to execute and to compare them by means of benchmark suites.
Further, we seek confirmation that the framework indeed has the features we
have identified earlier.

We have conducted a user study to evaluate how well FACTS realizes repro-
ducibility and collaboration. We reenact the use cases Uassistance and Ucommittee

with this study. It is based on an instance of Ubenchmark and a benchmark suite,
BDaaS, for scenario SDaaS. We stress however that our main contribution is not
one specific benchmark suite but the idea of a framework to build and share such
suites. Additionally, our technical report [9] includes a benchmark suite Bpub,
the use case Udiagram and an alternative instance of Ubenchmark. Supplementary
evaluation material is available on the project website [1].

We now describe the user study that was realized as an instance of use case
Uassistance and has led to the development of benchmark suite BDaaS. We have
specified three tasks with Uassistance: (1) Anonymize specific data sets in a SDaaS

scenario and produce anonymization output, (2) develop query-processing tech-
niques for each anonymization (cf. Example 2), and (3) attack the anonymization
output of other study participants. In a user experiment, we have let participants
solve these tasks. After the solutions were handed in, we have verified their repro-
ducibility (Ucommittee). We have further compared the different solutions with
performance and anonymity measures (Ubenchmark).

Evaluation Setup. Our experiment consists of three phases where users solve
different tasks with FACTS. After the three phases were completed, we handed
out a user survey regarding FACTS. It is available on our website [1]. We de-
signed the survey with care so as to not enforce positive results with the way
of asking questions. Likert-scale questions did not follow patterns, i.e., positive
answers have been sometimes to the left, sometimes to the right. Further, our
participants answered the survey anonymously, and they knew that we could
not trace negative answers back to them. We now describe the tasks, followed
by a description of the participants, and incentives. Our three tasks are:

Task 1 Folksonomies [14] let users annotate digital objects with free-text labels.
For example, with Last.fm, users annotate music, with Flickr photos. Folk-
sonomies contain data that is sensitive regarding privacy. A user study [5]
confirms that users see a significant benefit in being able to control who is
allowed to see which data. Schemes let users only access data when the data
creators have given the respective authorization. Thus, the first task is to
develop schemes for CiteULike folksonomies of varying size.

Task 2 Users issue queries against folksonomies for various reasons, e.g., per-
sonal organization or communication with other users. We have identified
seven types of common folksonomy queries [8]. For example, one type of
query is “retrieve all tags applied to a specific object”. BDaaS includes pa-
rameters suitable for each of these seven query types for each CiteULike
folksonomy data set. To continue the example, BDaaS computes the most
frequent object as one of the query parameters for each data set. This is
because the most frequent object results in a large query result and thus a
long query-processing time. This is an interesting extreme case that should
be included in a meaningful benchmark. Thus, the second task is to develop
fast processing techniques for each query type given and its parameters.

Task 3 The frequency of attribute values in folksonomies follows a power-law
distribution. With improper anonymization, this leaves room for statistical
attacks [6]. BDaaS specifies as the adversary model someone with statistical
background knowledge. BDaaS computes this knowledge from the original
data sets and makes the frequency of values of each attribute of the original
data set available to an adversary. Thus, the third task of BDaaS is develop
attacks against the schemes developed in Task 1, given this adversary model.

Participants. We have let 19 students of computer science solve the tasks.
We divided the students into four groups where three groups had five members
and one group had four members. We instructed them in the fundamentals of
(i) database anonymization, (ii) query processing on anonymized data, and (iii)
statistical attacks. To test their understanding regarding (i) to (iii), we issued
assignments to them. Two of originally 21 students did not pass them, and we
did not let them participate in the subsequent evaluation.

Incentives. The participants joined the experiment as part of a practical
course. Their main incentive for participation was to pass the course. To do so,
participants had to earn points. Completion of the three tasks (i)-(iii) had earned
them points. We had issued bonus points if participants committed their imple-
mentations of FACTS class models to the repository, or if they had developed
and shared FACTS operations.

Results

Comparability with BDaaS One outcome of the study has been the FACTS bench-
mark suite BDaaS. We have imported the data set, queries, and adversary model
(along with the data representing statistical background knowledge) from a pre-
vious research project of ours [8] into FACTS. BDaaS thus allows us to compare
the approaches of students in an evaluation setup actually used in research. We
have observed that FACTS allows us, the conductors of the study, to compare
approaches with ease. We justify this claim in different ways. (1) The final result
of queries on the anonymization output does always equal that of the queries
on the respective original data set, for all approaches by different participants.
(2) The same set of queries executes for each approach. In the past years, we
had lectured this practical course without FACTS. There have been many com-
parison tasks that were cumbersome without the standardizations. Participants
had submitted query-processing techniques that returned fewer result tuples,
and they had used other query parameters than what we had specified. With
FACTS, (1) its benchmarking checks correctness of results, and (2) always runs
the same queries.

Reproducibility with BDaaS We evaluate reproducibility by letting participants
upload solutions and then letting them rerun them.

Our first indicator for reproducibility is if participants are able to execute ap-
proaches without errors. We say that schemes are without error if they produce
an anonymization output. We say that query-execution techniques are without

error if they terminate, and if they compute the correct result for all queries.
We say that attacks are without error if they write their guesses for original
values for each anonymized cell in the proper place for FACTS, and anonymity
measures compute. A scheme writing only zeros to all cells would thus be error-
free, but query execution based on it would fail. To evaluate if participants were
able to reproduce the results of approaches by other participants, we have asked
respective questions in the survey about the total number of schemes, queries,
and attacks that participants had executed, and for how many of them partici-
pants have observed no errors. By means of answers to these questions, we have
calculated the share of error-free executions, cf. Table 2. Our apriori expecta-
tions have been that the values are close to our measurements. The numbers
reflect that one group has had errors with queries and attacks with our bench-
mark runs. The values calculated with the survey are lower, but relatively close
to ours. We conclude from these observations that FACTS allows users to run
approaches from the FACTS repository without difficulty and that FACTS stan-
dardizations allow to observe implementation errors that would be in the way
of (fair) comparisons and reproducibility otherwise.

Table 2: Reproducibility: Error-Free Executions.
Approach Study Answers Our Measurements
Schemes 85 % 100 %
Query-Processing
Techniques

68 % 75 %

Attacks 61 % 75 %

Our second indicator for reproducibility is if measurement values from several
experiment runs on varying platforms lead to similar results. To do this com-
parison, we could rely on our execution of BDaaS and the executions of BDaaS by
each group. We did observe similar results. For example, all performance mea-
surements have had Group 4 as the fastest before Group 1 and Group 3 and have
reported errors for Group 2. Results are not identical however because execution
times depend on the computational power of clients.

We state that there is reproducibility with three of four groups (Ucommittee)
because we were able to execute all of their approaches without error, and our
measurement results were similar to theirs. We thus see strong indications that
FACTS does allow for reproducibility.

Collaboration with BDaaS To evaluate the collaboration feature, we have asked
respective questions in the survey. In a nutshell, users deem that the concept
to collaborate with anonymization operations through the FACTS repository is
useful. Our complementary technical report provides more details, also on other
aspects of our evaluation.

6 Conclusions

Nowadays, a broad variety of anonymization approaches exists. We observe that
requirements, goals, adversary models, implementations, or evaluation parame-

ters are publicly available only for a few of them. It is very difficult to answer
which approach is best regarding anonymity, data quality, query accuracy, and
performance. To deal with this situation, we have proposed a framework, FACTS,
that allows to compare anonymization approaches with ease. Researchers can im-
plement their approaches within FACTS against so-called class models. We have
systematically devised interfaces of class models that ease comparing and bench-
marking approaches. Besides comparability, FACTS has other useful features,
e.g., to support researchers in the documentation and presentation of experi-
ment results. Our evaluation shows that FACTS allows to define comprehensive
benchmark suites for anonymization scenarios, and that it addresses user needs
well. Our vision is that FACTS will give way to a higher degree of comparability
within the research area.

References

1. http://facts.ipd.kit.edu/.
2. J. Abramov, A. Sturm, and P. Shoval. A Pattern Based Approach for Secure

Database Design. In CAiSE Workshops, 2011.
3. M. Barhamgi et al. Secure and Privacy-Preserving Execution Model for Data

Services. In CAiSE, 2013.
4. P. Bonnet et al. Repeatability and workability evaluation of SIGMOD 2011. ACM

SIGMOD Record, 40(2), 2011.
5. T. Burghardt et al. Understanding User Preferences and Awareness: Privacy Mech-

anisms in Location-Based Services. In CoopIS, 2009.
6. A. Ceselli et al. Modeling and Assessing Inference Exposure in Encrypted Data-

bases. TISSEC, 8(1), 2005.
7. C. Dwork. Differential Privacy. In ICALP, 2006.
8. C. Heidinger et al. Efficient and secure exact-match queries in outsourced data-

bases. World Wide Web, pages 1–39, 2013.
9. C. Heidinger et al. FACTS: A Framework for Anonymity towards Comparabil-

ity, Transparency, and Sharing (Extended Version). Technical report, Karlsruhe
Institute of Technology (KIT), 2013. http://digbib.ubka.uni-karlsruhe.de/

volltexte/1000037502.
10. D. Kifer and A. Machanavajjhala. No Free Lunch in Data Privacy. In SIGMOD,

2011.
11. D. Kifer and A. Machanavajjhala. A Rigorous and Customizable Framework for

Privacy. In PODS, 2012.
12. T. Li and N. Li. On the Tradeoff Between Privacy and Utility in Data Publishing.

In KDD, 2009.
13. A. Machanavajjhala et al. l-Diversity: Privacy Beyond k-Anonymity. In ICDE,

2006.
14. I. Peters. Folksonomies: Indexing and Retrieval in the Web 2.0. Walter de Gruyter,

2009.
15. L. Sweeney. k-Anonymity: A Model for Protecting Privacy. IJUFKS, 10(5), 2002.
16. P. Vandewalle et al. Reproducible research in signal processing. SPM, 26(3), 2009.
17. H. Wang and R. Liu. Privacy-preserving publishing microdata with full functional

dependencies. DKE, 70(3), 2011.

http://facts.ipd.kit.edu/
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000037502
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000037502

	FACTS: A Framework for Anonymity towards Comparability, Transparency, and Sharing

