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Motivation 

Networks 

Communication networks 

Social networks 

Auction networks 

Co-purchased networks 

 

 

 

 

Application 

Fraud detection 

Spam detection 

Network intrusion analysis 
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Attributes 
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Example: Outlier Mining on Attributed Graphs 

Node Attributes Graph Structure 

Output: Is a ranking of all nodes ordered by deviation w.r.t. subgraph 

and relevant attribute subspaces 

 

Input: 

 

 

 

 

 

 

 

 

 

 

 

 

+ 
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𝑶𝟏 

 

𝑶𝟏 
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Related Work: Outlier Mining 

Müller, Iglesias, Mülle, Böhm – Ranking Outlier Nodes in Subspaces of Attributed Graphs 
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(1) Selection of relevant subspaces and subgraphs 

 

 

 

 

 

(2) Scoring of objects in multiple subspace clusters 

 

 

 

 

 

(3) Availability of benchmark datasets 

Challenges 

Müller, Iglesias, Mülle, Böhm – Ranking Outlier Nodes in Subspaces of Attributed Graphs 

𝑶𝟏 

 
𝑶𝟏 

 

𝑶𝟐 
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We propose a decoupled process: 

 

 

 

 

 

 

 

 

 

 

 

Our GOutRank Framework 
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Ranking 

 

 

Attribute Based:  

 OutRank[4] 

 Centrality Based: 

 Degree 

 Eigenvalue 
 

 

Subspace 

Clusters 

Subspace Clustering: 

 GAMer[1] 

 Cocain[2] 

 CoPam[3] 

Subspace 

Clustering 
Database Outlier 

Scoring 

       (1) Selection: 

subgraphs 

relevant subspaces 

       (2) Scoring: 

multiple subspace 

clusters  
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(1) Selection of Subspaces and Subgraphs 

Subspace clustering on attributed graphs 

Input: graph (V,E) and attributes A 

Output: 

 

 

  

Algorithmic solutions: 

GAMer[1] 

Cocain[2] 

CoPam[3] 

... 

 

Provide models for groups of similar nodes 

[1] Günnemann et al. "Subspace clustering meets dense subgraph mining: A synthesis of two paradigms." In IEEE ICDM 2010 

[2] Zeng et al. "Coherent closed quasi-clique discovery from large dense graph databases." In ACM SIGKDD 2006 

[3] Moser et al. "Mining cohesive patterns from graphs with feature vectors." In SIAM SDM 2009 
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𝑆1 

 𝐶1 

𝑅𝑒𝑠 =  𝐶1, 𝑆1 … Cn, Sn   with 𝐶𝑖  ⊆ 𝑉 and 𝑆𝑖 ⊆ 𝐴 
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We propose a decoupled process: 

 

 

 

 

 

 

 

 

 

 

 

 

How to derive an outlier score based on subspace cluster results? 

Our GOutRank Framework 
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Ranking 

 

 

Attribute Based:  

 OutRank[4] 

 Centrality Based: 

 Degree 

 Eigenvalue 
 

 

Subspace 

Clusters 

Subspace Clustering: 

 GAMer[1] 

 Cocain[2] 

 CoPam[3] 

Subspace 

Clustering 
Database Outlier 

Scoring 

       Scoring: 

multiple subspace 

clusters  

𝑆1 

 𝐶1 

𝑶𝟏 

 

𝑆1 

 𝐶1 

𝑶𝟏 
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Properties of subspace clusters: 

Overlap (i.e. objects belong to several clusters in different subspaces) 

Different cluster sizes and dimensionality 

 

 

 

 

 

 

 

 

 

Scoring function considering cluster properties[4] 

(2) Scoring with Multiple Subspace Clusters 

[4] Müller et al.: “Outlier Ranking via Subspace Analysis in Multiple Views of the Data.” In IEEE ICDM 2012 
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Information loss 

Res: 

𝐶1, 𝑆1 = ( 𝑜3, 𝑜4, 𝑜5, 𝑜7, 𝑜8, 𝒐𝟗, 𝑜10 , 𝑑1, 𝑑2 ) 

𝐶2, 𝑆2 = 𝒐𝟏, 𝑜6, 𝑜7, 𝒐𝟗, 𝑜10, 𝑜11, 𝑜12, 𝑜13, 𝑜14 , 𝑑3  

𝐶3, 𝑆4 = ( 𝒐𝟐, 𝑜5, 𝒐𝟗, 𝑜13, 𝑜14 , {𝑑1, 𝑑2, 𝑑4, 𝑑5, 𝑑6} 
 

Size and dimensionality scoring: 

 

𝑠𝑐𝑜𝑟𝑒 𝑜1 = 1.33 
𝑠𝑐𝑜𝑟𝑒 𝑜2 = 1.38 
𝑠𝑐𝑜𝑟𝑒 𝑜9 = 3.86 

 

 

 

 

 

𝑠𝑐𝑜𝑟𝑒 𝑜 = 𝑓(𝑅𝑒𝑠) 
𝑠𝑐

𝑜
𝑟𝑒

(𝑜
) 

in several 

clusters 

in small high dimensional 

clusters 

 in low dim. clusters  

in no cluster 

𝒐𝟏 
 

𝒐𝟐 
 

𝒐𝟗 
 

𝑜𝑏𝑗𝑒𝑐𝑡𝑠 
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Combined Scored Function 

Properties from the graph structure: 

centrality of a node  

Edge density of the subgraph (ongoing work) 

Analysis of neighboring subspace clusters (ongoing work) 

 

 

 

 

 

 

 

 

Combine both sources of information: 
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𝑠𝑐𝑜𝑟𝑒 𝑜 = 𝑓(𝑅𝑒𝑠, 𝐺𝑟𝑎𝑝ℎ) 

Res: 
𝐶1, 𝑆1 = ( 𝑜3, 𝑜4, 𝑜5, 𝑜7, 𝑜8, 𝒐𝟗, 𝑜10 , 𝑑1, 𝑑2 ) 

𝐶2, 𝑆2 = 𝒐𝟏, 𝑜6, 𝑜7, 𝒐𝟗, 𝑜10, 𝑜11, 𝑜12, 𝑜13, 𝑜14 , 𝑑3  

𝐶3, 𝑆4 = ( 𝒐𝟐, 𝑜5, 𝒐𝟗, 𝑜13, 𝑜14 , {𝑑1, 𝑑2, 𝑑4, 𝑑5, 𝑑6} 

 + 
Graph:  

 

 

𝑠𝑐
𝑜

𝑟𝑒
(𝑜

) 
𝑜𝑏𝑗𝑒𝑐𝑡𝑠 

𝒐𝟏 
 

𝒐𝟐 
 

𝒐𝟗 
 

in small high 

dimensional clusters 

and low connected  

in low dimensional 

clusters and high 

connected  

in several clusters 

and high connected 
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Experimental Setup 

Competitors  

Only on vector data: full dimensional vs. subspace selection 

Only on graph data: node outliers as by-product of graph clustering 

On vector and graph data: community outlier detection 

 

Instantiation of different cluster models and scoring functions 

 

 

 

 

 

All experiments on: 

subgraph of the Amazon co-purchase network 
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Ranking 

 

 

𝒇(𝑹𝒆𝒔):  
 OutRank[4] 

𝒇(𝑹𝒆𝒔, 𝑮𝒓𝒂𝒑𝒉):  
 Degree 

 Eigenvalue 
 

 

Subspace Clustering: 

 GAMer[1] 

 Cocain[2] 

 CoPam[3] 

Subspace 

Clustering 
Database Outlier 

Scoring 

Subspace 

Clusters 
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Outlier Identification 

Setting of our user experiment 

Users (high school students) 

No prior knowledge on outlier mining 

Expertise by domain knowledge 

Attributed graph: 

Disney DVDs (as Amazon products)  

Presentation of co-purchased products 

(i.e. pre-computed graph clusters) 

 

Tasks: 

1. Select outliers in each set of  

co-purchased products 

2. Write an explanation  

for the deviation of outliers  

 

 

  

 

 

Product Visualization 

Form for outlier 
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Our Benchmark Database 

Disney subgraph with 124 products, 334 edges. 

Each product is labeled as outlier iff selected by >50% of the students 

 

Examples: 

Price: 100$ 

Suggested price: 14,99$ 

(2003) 

High 1 Rating Rating  and 

low 5 Rating Ratio w.r.t. Pixar 

Films 
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Evaluation w.r.t. Competitors 

Comparison w.r.t. several outlier mining paradigms 

 

 

 

 

Database Paradigm Algorithm AUC [%] 

Vector data 

full data space 

 

Subspace selection 

LOF[5] 

 

SOF[6] 

56,85 

 

65,88 

Graph structure graph clustering SCAN[7] 52,68 

Attributed Graph 

full data space 

 

selected subspaces 

CODA[8] 

 

GOutRank 

50,56 

 

86,86 

[5] Breunig et al. "LOF: identifying density-based local outliers." In ACM SIGMOD Record. Vol. 29. No. 2. 2000 

[6] Aggarwal et al. "Outlier detection for high dimensional data." In  ACM SIGMOD Record Vol 30 No. 2 2001 

[7] Xu et al. "Scan: a structural clustering algorithm for networks." In ACM SIGKDD 2007 

[8] Gao et al. "On community outliers and their efficient detection in information networks." In ACM SIGKDD 2010 
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Internal Evaluation 

Comparison of Res from different subspace clustering models 

Comparison of different scoring functions 

 

Res Graph AUC [%] 

GAMer[1] 

-- 

 

𝑑𝑒𝑔𝑟𝑒𝑒(𝑜) 

 

𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑜) 

75,28 

 

82,91 

 

86,86 

Extension of Cocain[2] 

-- 

 

𝑑𝑒𝑔𝑟𝑒𝑒(𝑜) 

 

𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑜) 

 

75,85 

 

76,97 

 

77,96 

CoPaM[3] 

-- 

 

𝑑𝑒𝑔𝑟𝑒𝑒(𝑜) 

 

𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑜) 

58,61 

 

69,49 

 

72,45 
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Conclusion & Outlook  

Selection of subgraphs and subspaces  
 Decoupled processing scheme exploiting subspace clusters  

 

 

 

Scoring of objects in multiple subspace clusters 
 Ranking combining graph structure and subspace cluster analysis  

 

 

 

Availability of benchmark datasets 
 First benchmark on a subgraph from the Amazon co-purchased network  

 

 

 

 

 

 

 

 

 Scalability to large attributed graphs 

 Integration of outlier ranking into graph clustering algorithms 

 

 Improvement of the scoring functions 

 Extraction of more graph subspace cluster properties 
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 Complete benchmark graph (>300,000 nodes)  

with large user experiment (> 200 users) 
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Thank you for your 

attention 

Our benchmark database is available online: 

 

http://www.ipd.kit.edu/~muellere/GOutRank/ 
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