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Motivation

® Networks
® Communication networks
® Social networks
® Auction networks

® Co-purchased networks BB

® Application
® Fraud detection
® Spam detection
® Network intrusion analysis
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Example: Outlier Mining on Attributed Graphs ﬁ(".

W Input:
Node Attributes Graph Structure

s Your Ship. Management Technigues from e Bes!
Ship (Pagersack

Price Private Seller

20 30 40 50
Price Used Item

® Output: Is aranking of all nodes ordered by deviation w.r.t. subgraph
and relevant attribute subspaces
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Related Work: Outlier Mining ﬂ(".

Vector Data

(Rousseeuw. et al)

Full Dimensional Binary

2000

SOF (Aggarwal et al.) SuUbspace

.............................. - Selection B Ranking

SCAN (Xu et al.)

CODA (Gao et al.)
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Challenges

® (1) Selection of relevant subspaces and subgraphs
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® (2) Scoring of objects in multiple subspace clusters
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® (3) Availability of benchmark datasets
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Our GOutRank Framework

® We propose a decoupled process:

Subspace Subspace
Database P Clusters

Clustering

(1) Selection:
® subgraphs
® relevant subspaces

AT
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Scoring

(2) Scoring:
® multiple subspace
clusters
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(1) Selection of Subspaces and Subgraphs ﬂ(".

® Subspace clustering on attributed graphs
® Input: graph (V,E) and attributes A
® Output: Res ={(Cy,S5;)...(C,,Sy)} withC; S VandS; € A

® Algorithmic solutions: ®
® GAMerlll £ w0 P
; ) ® 0 ¢
® Cocainl@ g 0 (e o0 )
a. \\!__’,
B CoPambBl 3 10 20 30
. Price Used Item

® Provide models for groups of similar nodes

[1] GUunnemann et al. "Subspace clustering meets dense subgraph mining: A synthesis of two paradigms.” In IEEE ICDM 2010
[2] Zeng et al. "Coherent closed quasi-clique discovery from large dense graph databases." In ACM SIGKDD 2006
[3] Moser et al. "Mining cohesive patterns from graphs with feature vectors." In SIAM SDM 2009
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Our GOutRank Framework ﬂ(".

® We propose a decoupled process:.

Database Subspace Subspace Outlier Ranking
' Clusters
Clustering

Scoring

Scoring:
® multiple subspace
clusters

Price Private Seller

20 30
Price Used Item

® How to derive an outlier score based on subspace cluster results?
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(2) Scoring with Multiple Subspace Clusters ﬂ(IT

® Properties of subspace clusters:
® Overlap (i.e. objects belong to several clusters in different subspaces)
® Different cluster sizes and dimensionality

Res:
(C1,51) = ({03, 04, 05,07, 0g, 09,010}, {d1, d3})
(C2,S2) = ({04, 06,07, 09,010,011, 012,013,014}, {d3 })
(C5,S4) = ({02,05,00,013,014},{d1,d3, dy, ds, dg}

score(0)

objects

® Scoring function considering cluster properties!#
score(o) = f(Res) » Information loss

[4] Mlller et al.: “Outlier Ranking via Subspace Analysis in Multiple Views of the Data.” In IEEE ICDM 2012
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Combined Scored Function ﬁ(".

® Properties from the graph structure:
® centrality of a node
® Edge density of the subgraph (ongoing work)
® Analysis of neighboring subspace clusters (ongoing work)

Res: A

(C1,51) = ({03,04,05, 07,08,09,010},{d;, d>})
(C3,52) = ({04, 06,07, 09,010,011, 012,013,014}, {d3 })
(C3,54) = ({02, 05,09,013,014},{d;, d3, d4, ds, dg} O 9

+

score(0)

Graph: &

® Combine both sources of information:

objects

score(o) = f(Res, Graph)
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AT

Experimental Setup e

® Competitors
® Only on vector data: full dimensional vs. subspace selection
® Only on graph data: node outliers as by-product of graph clustering
® On vector and graph data: community outlier detection

® Instantiation of different cluster models and scoring functions

Subspace Subspace Outlier :
Database P Clusters Ranking

Clustering Scoring

® All experiments on:
® subgraph of the Amazon co-purchase network
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Outlier Identification

B Setting of our user experiment
® Users (high school students)
® No prior knowledge on outlier mining
® Expertise by domain knowledge
B Attributed graph:
® Disney DVDs (as Amazon products)

® Presentation of co-purchased products
(i.e. pre-computed graph clusters)

B Tasks:

1. Select outliers in each set of
co-purchased products

2. Write an explanation
for the deviation of outliers
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Micht bei Amazon zu kaufen
Anderer Verkauder: 9.95 €
Gebraucht zu verkaufen:

Platz bei den Top Verkaufen:

Product Visualization
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| *
Durchschnitt: * %k ke (45)
Nicht bei Amazon zu kaufen
Anderer Verkauder: 2098€

Gebraucht zu verkaufen: 699€
Platz bei den Top Verkaufen: 2854

Form for outlier
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Our Benchmark Database

® Disney subgraph with 124 products, 334 edges.
® Each product is labeled as outlier iff selected by >50% of the students

Examples:

Price: 100$
Suggested price: 14,99%
(2003)

High 1 Rating Rating and
low 5 Rating Ratio w.r.t. Pixar
Films

o L

ey
yi

ASIN:B0O0004T2S) Cluster 3
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Evaluation w.r.t. Competitors S(IT

® Comparison w.r.t. several outlier mining paradigms

Database Paradigm Algorithm AUC [%)]
full data space LOFU] 56,85
Vector data
Subspace selection SOFI6I 65,88
Graph structure graph clustering SCANL] 52,68
full data space CODAL! 50,56
Attributed Graph
selected subspaces GOutRank 86,86

[5] Breunig et al. "LOF: identifying density-based local outliers.” In ACM SIGMOD Record. Vol. 29. No. 2. 2000
[6] Aggarwal et al. "Outlier detection for high dimensional data." In ACM SIGMOD Record Vol 30 No. 2 2001

[7] Xu et al. "Scan: a structural clustering algorithm for networks."” In ACM SIGKDD 2007

[8] Gao et al. "On community outliers and their efficient detection in information networks." In ACM SIGKDD 2010
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Internal Evaluation -\\J(IT

Karlsruhe Institute of Technology

® Comparison of Res from different subspace clustering models
® Comparison of different scoring functions

Res Graph AUC [%)]
75,28
GAMer!! degree(o) 82,91
eigenvalue(o) 86,86
75,85
Extension of Cocainl? degree(0) 76,97
eigenvalue(o) 77.96
58,61
CoPaMEl degree(o) 69,49
eigenvalue(o) 72,45
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Conclusion & Outlook ﬁ(".

B Selection of subgraphs and subspaces
v Decoupled processing scheme exploiting subspace clusters

» Scalability to large attributed graphs ”
» Integration of outlier ranking into graph clustering algorithms

® Scoring of objects in multiple subspace clusters
v Ranking combining graph structure and subspace cluster analysis

» Improvement of the scoring functions o
» Extraction of more graph subspace cluster properties &

® Availability of benchmark datasets
v" First benchmark on a subgraph from the Amazon co-purchased network

» Complete benchmark graph (>300,000 nodes) :
with large user experiment (> 200 users) |
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Thank you for your
attention

Our benchmark database is available online:

http://www.ipd.kit.edu/~muellere/GOutRank/
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