
Single Instruction Multiple Data –
Not Everything is a Nail for this Hammer

David Broneske
University of Magdeburg
Magdeburg, Germany

david.broneske@ovgu.de

Martin Schäler
Karlsruhe Institute of Technology

Karlsruhe, Germany

martin.schaeler@kit.edu

ABSTRACT
Hardware vendors have been struggling to fight the power
and memory wall for decades [1, 2]. Since most of the pro-
cessing time depends on the number of instructions, number
of used registers and dependencies between instructions, but
not on the size of a register, independent data items of a vec-
tor (i.e., a column) could be processed in parallel. Hence,
a silver lining seems to be Single Instruction Multiple Data
(SIMD) – a processing paradigm available on current CPUs,
but also accelerator cards such as GPUs and MICs (i.e., Intel
Xeon Phi). For instance, aggregations could perform sum
or count instructions on several data items in parallel. By
loading four 32-bit integers in an 128-bit SSE register and
performing the addition in one cycle for all four data items, a
four-fold performance benefit should be possible. However,
these high expectations are rarely met in practice.

In this talk, we elaborate about pitfalls that we encoun-
tered while optimizing database operators with SIMD. Over-
all, these pitfalls can be found at different levels: especially
the data movement within the operator and the data layout
plays a vital role for the performance improvements.

Data Movement
A primary challenge is to avoid mixing vectorized (i.e., SIMD)
and scalar code as this results in moving data from SSE reg-
isters to normal registers. For instance we implemented a
vectorized selection with a position list as a result. The vec-
torized predicate evaluation produces a bit mask, which has
to be evaluated in a scalar fashion to produce the position
list. However, our results show that this is mostly inefficient
on several modern processors [3]. In particular, the vector-
ized scan that we used has a performance penalty between
Factor 0.2 - 2, while it only outperforms the scalar version
for selectivity factors of 0.05 and less.

To reduce data movement and to get the best out of SIMD,
operators should reuse the content of a SIMD register as of-
ten as possible. That is multiple operators should operate on
current data in the register. For instance, when using query

compilation, several selection predicates can be merged in
order to reuse the intermediate bit mask [5]. Moreover, if
we add also aggregations to the code, the usability of SIMD
increases further (i.e., the selectivity range in which the vec-
torized version outperforms the scalar one).

Data Layout
SIMD operates best if the vector content is aligned to 16-
bit boundaries, because unaligned reads will lead to accesses
across cache lines which may bring a penalty.1 Hence, data
alignment is a vital task, which becomes complicated for
data structures such as indexes. For our index structure
Elf [4] having an explicit memory layout, we tested several
linearization strategies, but faced three main problems: (1)
Storing node entries at aligned storage will blow up the size
of the structure due to padding space. (2) Storing values
and pointers in an intermixed fashion diminishes the n-fold
performance benefit while separate storage leads to an ex-
tra cache miss. (3) SIMD does not work well for nodes with
little amount of entries, because the glue code deteriorates
the performance benefits.

In summary, SIMD performs best for operators that do the
whole work using SIMD with little or no amount of scalar
code. Furthermore, a clever data layout is necessary to ex-
ploit SIMD at most – this does not only apply to tree-based
index structures, but also hash tables.

1. REFERENCES
[1] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu.

Multi-core, main-memory joins: Sort vs. hash revisited.
PVLDB, 7(1):85–96, 2013.

[2] D. Broneske, S. Breß, M. Heimel, and G. Saake.
Toward hardware-sensitive database operations. In
EDBT, pages 229–234, 2014.

[3] D. Broneske, S. Breß, and G. Saake. Database scan
variants on modern CPUs: A performance study. In
VLDB Workshop IMDM, volume 8921 of LNCS, pages
97–111. Springer, 2014.

[4] D. Broneske, V. Köppen, G. Saake, and M. Schäler.
Accelerating multi-column selection predicates in
main-memory - the Elf approach. In ICDE, pages
647–658, April 2017.

[5] D. Broneske, A. Meister, and G. Saake.
Hardware-sensitive scan operator variants for compiled
selection pipelines. In BTW, 2017.

1Recent CPU architectures are said to have the same per-
formance for unaligned as for aligned memory access.

1

schaeler
Textfeld
FADS @VLDB 2017




