Überwachtes Lernen: Klassifikation und Regression

Praktikum:
Data Warehousing und
Data Mining

Klassifikationsprobleme

Idee

- Bestimmung eines unbekannten kategorischen Attributwertes (ordinal mit Einschränkung)
- Unter Benutzung beliebiger bekannter Attributwerte

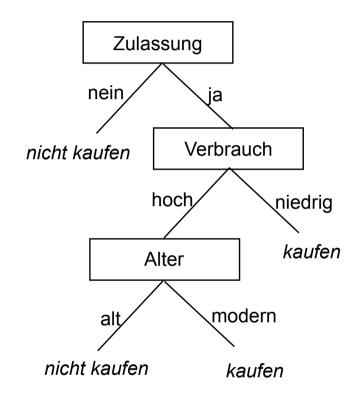
Beispiele:

- Klassifikation von Spam
- Vorhersage von Kundenverhalten wie Kündigungen (Churn)
- Vorhersage von Kreditwürdigkeit
- Beurteilung von industriellen Gütern
- •

Entscheidungsbäume

Klassifikation - Entscheidungsbäume

- Vorgehen
 - Aufbau eines Baums
 - Knoten entspricht Entscheidungskriterium
 - · Blatt entspricht Entscheidung
- Vorteile
 - Ergebnis leicht interpretierbar
 - Übersetzbar in Regelsystem
- Diverse Verfahren
 - ID3 / C4.5 / C5.0 / J48
 - C&R Tree
 - Quest
 - Chaid
 - ...



Eine Regel (von mehreren):

Wenn

Zulassung vorhanden und

Verbrauch niedrig,

dann kaufen.

Vorgehen bei der Konstruktion

- 01 Alle Datentupel im Wurzelknoten
- 02 IF Stoppkriterium erreicht THEN
- 03 Aktueller Knoten wird Blattknoten mit Majoritätsklasse
- 04 ELSE
- 05 Suche geeignetes Entscheidungssattribut (Splitattribut)
- Wende Algorithmus rekursiv auf Teilmengen an

Anschließend: Beschneide Baum (Pruning)

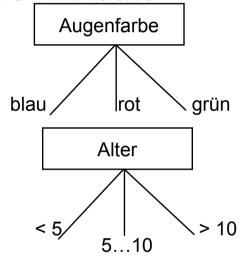
- Existierende Algorithmen unterscheiden sich in
 - ... der Wahl des Stoppkriteriums
 - ... der Art des Splits
 - ... dem Vorgehen zur Wahl des Splitattributs
- ... der Wahl des Pruningverfahrens Praktikum Data Warehousing und Mining

Wahl des Stoppkriteriums

- Natürliche Stoppkriterien
 - Knoten enthält (fast) nur Tupel einer Klasse
 - Alle Klassifikationsattribute ausgeschöpft
- Weitere Kriterien
 - Minimale Tupelzahl je Knoten
 - Minimaler Anteil falsch klassifizierter Tupel
 - Maximale Baumtiefe
 - Maximale Knotenanzahl

Art des Splits

- Diskrete vs. kontinuierliche Attribute
 - Diskret
 - Ein Knoten pro Attributwert
 - Kontinuierlich:
 - Ein Knoten pro Attributintervall



- Binäre vs. n-äre Bäume
 - Zwei oder mehrer Ausgangskanten
- Frage: Wie erreicht man binäre Bäume mit diskreten Attributen?

Wahl der Splitattribute

- Beispiel
 - Objektmenge: 1 0 0 0 0 0 1 0 0 0 1 1
 - Verschiedene Splits möglich:
 - Split A: 1 0 0 0 0 0 | 1 0 0 0 1 1
 - "Linke Seite": 17% Fehler
 - "Rechte Seite": 50% Fehler
 - Split B: 100000100 011
 - "Linke Seite": 22% Fehler
 - "Rechte Seite": 33% Fehler
 - Split C ...
- Welcher Split ist vorzuziehen?
 - Festlegung eines Fehlermaßes

Informationsgewinn

- Prinzip
 - Maximierung des Informationsgewinns
- Vorgehen
 - Basiert auf Shannon Entropie
 - $H = -\sum_{i=1}^{n} p_i \log_2 p_i$
 - Informationsgewinn
 - $I_{gain}(C,A) = H(C) H(C|A)$
 - $I_{gain}(C,A) = -\sum_{i=1}^{|C|} p_i \log_2 p_i \sum_{i=1}^{|A|} p_j (-\sum_{i=1}^{|C|} p_{i|j} \log_2 p_{i|j})$
 - H(C) Entropie der Klassenverteilung (mit C Klassenattribut)
 - H(C|A) Erwartete Entropie der Klassenverteilung, wenn Attribut A bekannt

Informationsgewinn - Beispiel

- Berechnung des Informationsgewinns
 - Allgemein:

$$I_{gain}(C,A) = -\sum_{i=1}^{|C|} p_i \log_2 p_i - \sum_{i=1}^{|A|} p_i (-\sum_{i=1}^{|C|} p_{i|j} \log_2 p_{i|j})$$

- $H(C) = -(4/12 * log_2(4/12) + 8/12 * log_2(8/12)) = 0.918$
- Split A:
 - 100000 100011
 - $I_{gain}(C,A) = 0.918 (6/12 * (-1) * (1/6 * log_2(1/6) + 5/6 * log_2(5/6)) + 6/12 * (-1) * (3/6 * log_2(3/6) + 3/6 * log_2(3/6)))$ = 0.918 - 0.325 - 0.500= 0.918 - 0.825 = 0.093
- Split B:
 - 100000100|011

•
$$I_{gain}(C,B) = 0.918 - (9/12 * (-1) * (2/9 * log_2(2/9) + 7/9 * log_2(7/9)) + 3/12 * (-1) * (1/3 * log_2(1/3) + 2/3 * log_2(2/3)))$$

= $0.918 - 0.573 - 0.230$
= $0.918 - 0.803 = 0.115$

Hier würde B bevorzugt

Gini Index

- Prinzip
 - Minimierung der Heterogenität
- Vorgehen
 - Wahrscheinlichkeitsmaß, bei Stichprobe Datentupel aus 2 unterschiedlichen Klassen zu erhalten:
 - Gini = $1 p(0)^2 p(1)^2$
 - Minimum = 0.0
 - alle Objekte aus einer Klasse
 - Maximale Homogenität
 - Maximum = 0,5
 - Objekte zweier Klassen gleich häufig
 - Maximale Heterogenität

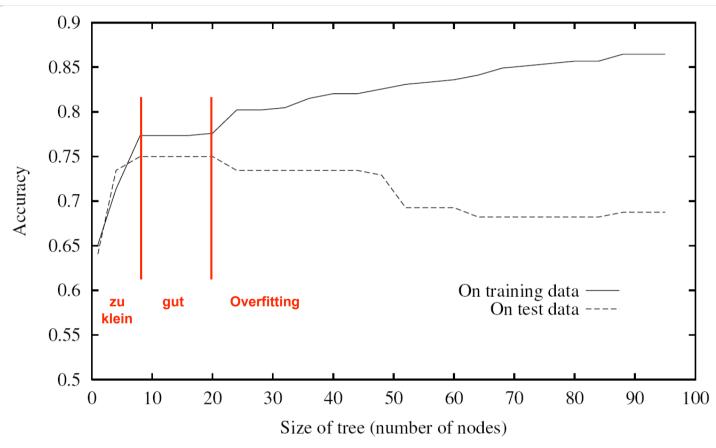
Gini Index - Beispiel

- Berechnung der Heterogenität
 - Split A:
 - 100000 100011
 - Linke Seite = $1 (1/6)^2 (5/6)^2 = 0.278$
 - Rechte Seite = $1 (3/6)^2 (3/6)^2 = 0,500$
 - Split B:
 - 100000100|011
 - Linke Seite = $1 (2/9)^2 (7/9)^2 = 0,346$
 - Rechte Seite = $1 (1/3)^2 (2/3)^2 = 0,444$
 - Einfacher Durchschnitt
 - A: (0.278 + 0.500) / 2 = 0.389
 - B: (0.346 + 0.444) / 2 = 0.395
- Hier würde A bevorzugt

Weitere Fehlermaße

- Chi-Quadrat-Test
 - Maß für die Abhängigkeit zwischen Merkmal und Zielgröße
 - Auswahl des Merkmals mit dem höchsten Chi-Quadrat-Wert (= stärkste Abhängigkeit)
- Minimale Beschreibungslänge (MDL)
 - Ähnlich Informationsgewinn
 - Zusätzlich "Strafe" für zunehmende Komplexität des Baums

Pruning - Motivation



 Achtung: Die optimale Baumgröße ist bei jedem Datensatz unterschiedlich!

Pruningverfahren

- Gründe für Pruning komplexer Bäume
 - Einfachheit / Verständlichkeit
 - Verhinderung von Overfitting / Generalisierungsfähigkeit
- Pre-Pruning: Stopkriterien bei Baumerstellung
- Post-Pruning: Nachträgliches Stutzen
 - Subtree Replacement
 - Ersetzen von Entscheidungsknoten durch Blattknoten wenn Klassifikationsbeitrag gering
 - Optimal: Entscheidung zum Ersetzen mit "frischen" Daten evaluieren
 - Subtree Raising
 - Verschiebung von Teilbäumen nach oben
 - Insbesondere dann, wenn es Attribute gibt, die einzeln wenig, aber in Kombination sehr stark zur Klassifikation beitragen.
 - Solche Attribute rutschen sonst sehr leicht weit nach unten.

Bayes Klassifikator

Bayes Klassifikation - Idee

- Gegeben sei
 - Ereignis X
 - Hypothese H: Data Tupel X gehört zu Klasse C
- Ziel der Klassifikation
 - Maximiere p(H | X)
 - p(H | X): Bedingte Wahrscheinlichkeit, dass H stimmt, gegeben Tupel X
 - Problem:
 - P(H | X) lässt sich nicht aus Daten bestimmen
- Bayes Theorem

•
$$p(H \mid X) = \frac{p(X \mid H) p(H)}{p(X)}$$

Vorteil: p(X), p(H) und p(X | H) lassen sich hier bestimmen

Naive Bayes Klassifikator

- Geben sei
 - Trainingsmenge D
 - Attribute A_i mit i = {1, 2, ..., n}
 - m Klassen C_j mit j = {1, 2, ..., m}
- Tupel gehört zu C_i, wenn
 p(C_i | X) > p(C_j | X) für 1 ≤ j ≤ m, j ≠ i
- Ziel also
 - Maximierung von $p(C_i | X) = \frac{p(X | C_i) p(C_i)}{p(X)}$
 - p(X) ist konstant f
 ür alle Klassen, also
 - Maximierung von p(X | C_i) p(C_i)

Naive Bayes Klassifikator II

- Vereinfachungen für die Berechnung
 - Bestimmung von p(C_i)
 - Abschätzung:
 - $p(C_i) = |C_{i,D}| / |D|$
 - $|C_{i,D}|$ ist Anzahl der Trainingstupel von Klasse C_i in D
 - Bestimmung von p(X | C_i):
 - Unabhängigkeit der Klassen angenommen, dann gilt: $p(X \mid C_i) = \pi^n_{k=1} p(x_k \mid C_i)$
 - $p(x_k | C_i) = z / |C_{i,D}|$
 - z ist die Anzahl der Tupel in Klasse C_i mit Attributwert x_k
 - |C_{i,D}| ist die Anzahl der Trainingstupel von Klasse C_i in D
- Klassifikation
 - Klasse von X bestimmt durch Berechnung von p(X | C_i) p(C_i) für alle Klassen

Naiver Bayes Klassifikator - Beispiel

Gesucht: Klassifikation für:

X = {jung, mittel, ja, schlecht}

C₁: Kauft PC

C₂: Kauft keinen PC

 $p(C_1) = 9/14$

 $p(C_2) = 5/14$

 $p(jung | C_1) = 2/9$

 $p(jung | C_2) = 3/5$

p(mittel | C_1) = 4/9

p(mittel | C_2) = 2/5

 $p(ja \mid C_1) = 6/9$

 $p(ja | C_2) = 1/5$

 $p(schlecht | C_1) = 6/9$

 $p(schlecht | C_2) = 2/5$

 $P(X \mid C_1) = 2/9*4/9*6/9*6/9 = 0.044$

 $P(X \mid C_2) = 3/5*2/5*1/5*2/5 = 0.019$

Vorhersage: Kauft PC!

Alter	Einkommen	Student	Kreditwürdigkeit	Klasse: Kauft PC
Jung	Hoch	Nein	Schlecht	Nein
Jung	Hoch	Nein	Gut	Nein
Mittelalt	Hoch	Nein	Schlecht	Ja
Senior	Mittel	Nein	Schlecht	Ja
Senior	Niedrig	Ja	Schlecht	Ja
Senior	Niedrig	Ja	Gut	Nein
Mittelalt	Niedrig	Ja	Gut	Ja
Jung	Mittel	Nein	Schlecht	Nein
Jung	Niedrig	Ja	Schlecht	Ja
Senior	Mittel	Ja	Schlecht	Ja
Jung	Mittel	Ja	Gut	Ja
Mittelalt	Mittel	Nein	Gut	Ja
Mittelalt	Hoch	Ja	Schlecht	Ja
Senior	Mittel	Nein	Gut	Nein

Weitere Klassifikationstechniken

Regelbasierte Klassifikatoren

- Klassifikation durch Regelsatz
 - Beispiel:
 - 1. petalwidth <= 0.6: Iris-setosa
 - 2. petalwidth <= 1.7 AND petallength <= 4.9: Iris-versicolor
 - 3. Sonst: Iris-virginica
- Übliches Vorgehen:
 - Entscheidungsbaum lernen
 - Deduktion der wichtigsten Regeln aus Baum
 - Nicht alle Tupel klassifiziert:
 - Default-Regel klassifiziert einige Tupel
 - Im Beispiel: Default-Regel: Iris-virginica
- Regelsätze oft einfacher als Entscheidungsbäume
 - ⇒ Generalisierung

Assoziationsregeln zur Klassifikation - Beispiel

- Gegeben: Folgende Assoziationsregeln
 - Saft -> Cola; conf: 80%
 - Cola -> Saft; conf: 100%
 - Cola -> Bier; conf: 75%
 - Bier -> Cola; conf: 100%
- Vorhersageattribut:
 - Kauft Kunde Cola?
- Beispieltupel:
 - Kunde kauft Bier
 - ⇒ Kunde kauft Cola (4. Regel)

Assoziationsregeln zur Klassifikation -Vorgehen

- Eine Regel passt:
 - ⇒ Klassifikation eindeutig (mit Konfidenz der Regel)
- Keine Regel passt:
 - ⇒ Mehrheits-Klasse bzw. unklassifiziert
- Mehrere Regeln passen:
 - Berücksichtigung der Regel mit höchster Konfidenz
 - Regel entscheidet
 - Berücksichtigung der *k* Regeln mit höchster Konfidenz (oder auch aller Regeln)
 - Häufigste auftretende Klasse
 - Klasse mit höchster durchschnittlicher Konfidenz der Regeln
- Hinweis:

Verfahren eignet sich auch für sequentielle Regeln. Praktikum Data Warehousing und Mining

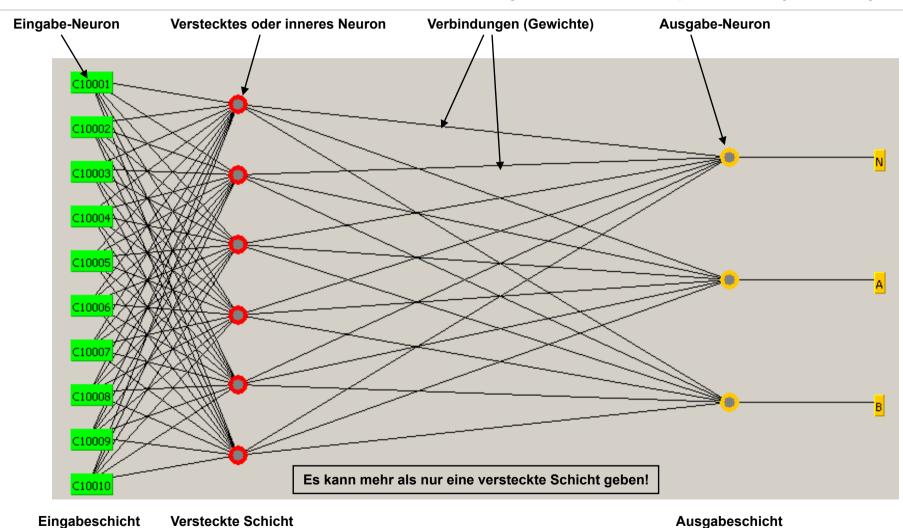
k-Nearest Neighbour

- Gegeben:
 - Lerndatensatz L
- Vorgehen zur Klassifikation eines Tupels t:
 - Menge S: k nächsten Nachbarn von t in L
 - Klassifikation von t durch Klasse mit meisten Elementen in S
- Anmerkungen:
 - "Nähe" über Distanzmaß (z.B. euklidische Distanz)
 - Kein Lernen im engeren Sinn
 - Klassifikation rechenaufwändig für große L
 - Ggf. Einsatz einer (repräsentativen) Stichprobe von L
 - Einsatz nur sinnvoll bei wenigen, numerischen Attributen
 - Kann auch auf Regressionsprobleme angewendet werden

Künstliche Neuronale Netze - Grundlagen

- Ausgangssituation
 - Eingabegrößen: Verschiedene Attribute
 - Zielgröße: Vorhersageklasse geg. Attribute
- Idee: Neuron im menschlichen Gehirn
 - "Verknüpft" Eingabegröße mit Zielgröße
 - Beispiel: Auge sieht Bier, Gehirn meldet Durst
 - Definition
 - Binäres Schaltelement mit zwei Zuständen (aktiv, inaktiv)
- Vorgehen Klassifikation
 - Gegeben: Netzwerk aus Neuronen
 - Alle Neuronen inaktiv, senden keine Signale
 - Neuronen gemäß Eingabegrößen gereizt
 ⇒ Gereizte Neuronen senden Signale
 - Signale werden über Netzwerk zum Ausgabeneuron weitergeleitet
 - Ausgabeneuron mit "höchstem Reiz" definiert Klasse

Neuronale Netze - Multilayer-Perceptron (MLP)

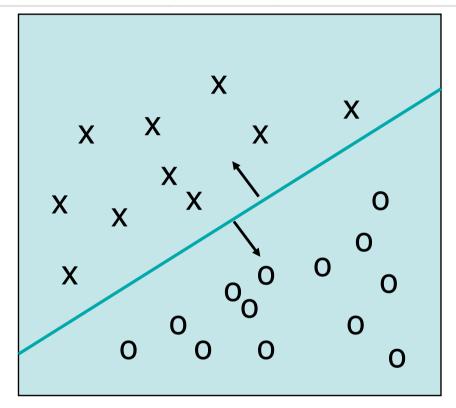


Neuronale Netze - Bewertung

- Herausforderungen
 - Aufbereiten der Daten
 - Üblich: Normalisierung auf 0...1
 - Bei kategorischen Daten: ggf. ein Eingabeneuron pro Attribut-Ausprägung
 - Aufbau des Netzes
 - Erfahrungswerte oder "Trial and Error"
 - Lernen der Gewichtungen für die Verbindungen
 - Häufiges Verfahren: Backpropagation
- Vorteile
 - Gutes Verhalten bei neuen und verrauschten Daten
 - Kann auch auf Regressionsprobleme angewendet werden
- Nachteile
 - Lernen oft vergleichsweise aufwändig
 - Ergebnis schwer zu interpretieren

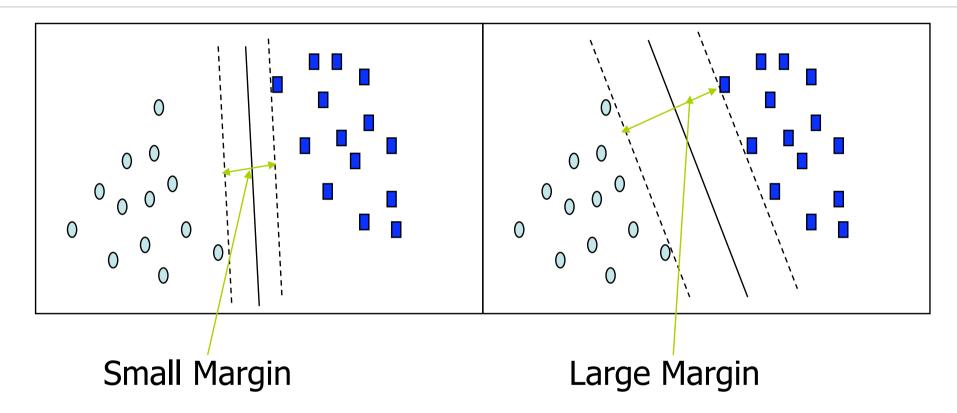
Support Vector Maschinen (SVM)

- Relativ neue
 Klassifikationstechnik
- Nativ f
 ür bin
 äre Probleme
- Suchen Hyperebenen, die optimal zwei Klassen separieren
 - 1D: Grenzwert
 - 2D: Gerade
 - 3D: Ebene
 - 4D etc.: Hyperebene
- Auch nicht linear separierbare Fälle lösbar...



Linear separierbares Beispiel für den 2D-Fall

SVM - Finden von Hyperebenen (linear separierbar)



- Finden der Hyperebene mit maximalem Margin
 - Quadratisches Optimierungsproblem

SVM – Nicht linear separierbare Probleme

- Trainingsdaten werden nichtlinear in einen höherdimensionalen Raum gemappt.
- Mit geeigneten Mapping-Techniken und hinreichend hohen Dimensionen kann immer eine separierende Hyperebene gefunden werden.
- Viele Mapping-Techniken (Kernels) verfügbar
 - Z.B.: Aus (x, y, z) wird (x, y, z, x², xy, xz)

SVM - Bewertung

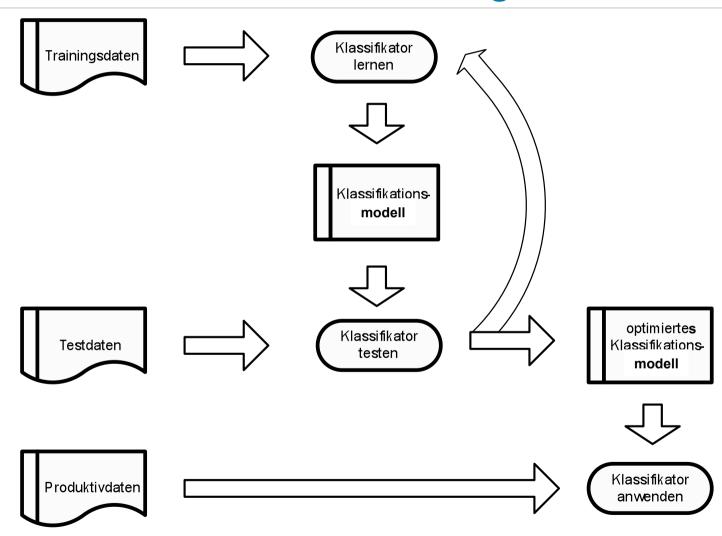
- Herausforderungen
 - Anwendung auf allgemeine Klassifikationsprobleme: Lernen mehrerer SVM und Zusammenführung der Ergebnisse
 - Wahl von Kernel-Funktion und Dimensionalität
- Vorteile
 - Oft hervorragende Ergebnisse
 - Kann auch auf Regressionsprobleme angewendet werden
- Nachteile
 - Skaliert schlecht für viele Lerndatensätze (Dimensionalität nicht problematisch)
 - Ergebnis im extrem hochdimensionalen Raum schwer zu interpretieren
- Häufige Anwendungen:
 - Handschrifterkennung, Objekterkennung,
 Zuordnung Sprache <-> Person

Evaluation von Klassifikatoren

Sampling bzw. Holdout

- Die Leistung eines Klassifikators kann nicht mit dem Lerndatensatz beurteilt werden!
 - Overfitting! Vgl. Motivation Pruning.
- Deshalb: Unterteilung der Ausgangsdaten in
 - Training Set zum Lernen des Klassifikators (oft zwei Drittel)
 - Test Set zur Evaluation des Klassifikators (oft ein Drittel)
- Beide Mengen sollten möglichst repräsentativ sein:
 - **Stratifikation:** Aus jeder Klasse wird ein proportionaler Anteil in das Training- und Test Set übernommen.
- Eine Unterteilung in Training- und Test Set ist oft nicht möglich, wenn nicht genug Daten zur Verfügung stehen:
 - Ein kleines Test Set ist ggf. nicht mehr repräsentativ.
 - Ein kleines Training Set bietet ggf. zu wenig zum Lernen.

Klassifikation - Vorgehen



Cross-Validation

- Unterteilung der Ausgangsdaten in k Partitionen
 - Typischerweise wird k=10 gewählt
 - Eine Partition bildet Test Set
 - *k*–1 Partitionen bilden Training Set
- Berechnung und Evaluation von k Klassifikatoren:
 - In *k* Runden wird jedes Datentupel *k-1* mal zum lernen verwendet und genau ein mal klassifiziert.
- Stratifizierte Cross-Validation ist in vielen Fällen die zu empfehlende Evaluationstechnik, besonders aber bei kleinen Datensätzen.
- Achtung: Cross-Validation ist sehr Rechenaufwändig
- "Leave-One-Out" ist Spezialfall für k=n

Evaluationsmasse für Klassifikatoren

Konfusions-Matrix

Vorhersage

	Ja	Nein
Ja	True Positives (TP)	False Negatives (FN)
Nein	False Positives (FP)	True Negatives (TN)

- accuracy = (TP + TN) / (TP + FN + FP + TN)
- sensitivity = TP / (TP + FN)
- specificity = TN / (FP + TN)
- precision = TP / (TP + FP)
- lift = precision / P(ja); P(ja) = (TP + FN) / (TP + FN + FP + TN)

Evaluationsmasse – Beispiel 1 ("Traum")

Konfusions-Matrix

Vorhersage

	Ja		Nein	
Ja	490	(TP)	10	(FN)
Nein	10	(FP)	490	(TN)

- accuracy = 0,98
- sensitivity = 0,98
- specificity = 0,98
- precision = 0,98
- lift = 1,96; P(ja) = 0,50

Evaluationsmasse – Beispiel 2 ("schlecht")

Konfusions-Matrix

Vorhersage

	Ja		Nein	
Ja	10	(TP)	90	(FN)
Nein	95	(FP)	805	(TN)

- accuracy = 0,82
- sensitivity = 0,10
- specificity = 0,89
- precision = 0,10
- lift = 0.95; P(ja) = 0.10

Evaluationsmasse – Beispiel 2a ("besser")

Konfusions-Matrix

Vorhersage

	Ja		Nein	
Ja	0	(TP)	100	(FN)
Nein	0	(FP)	900	(TN)

- accuracy = 0,90 (besser!)
- sensitivity = 0,00 (schlechter)
- specificity = 1,00 (besser!)
- precision = undef.
- lift = undef. bzw. "1,00" (besser!); P(ja) = 0,10

Evaluationsmasse – Beispiel 3 ("brauchbar")

Konfusions-Matrix

Vorhersage

	Ja		Nein	
Ja	259	(TP)	1,077	(FN)
Nein	578	(FP)	21,664	(TN)

- accuracy = 0,93
- sensitivity = 0,19
- specificity = 0,97
- precision = 0,31
- lift = 5,46; P(ja) = 0,06

Kostenbewusstes Lernen (1)

- "Falsch ist nicht gleich falsch!"
- Kosten-Matrix wenn keine Kosten vorgegeben:

Vorhersage

	Ja		Nein	
Ja	0	(TP)	1	(FN)
Nein	1	(FP)	0	(TN)

- Die Einträge in der Matrix beschreiben die Kosten die bei FP und FN entstehen.
- Beispiel Geldscheinprüfer:
 - FP=50,00 EUR; FN=0,01 EUR

Kostenbewusstes Lernen (2)

- Kostenbewusstes Lernen:
 - Detaillierte Vorgaben über Kosten für Fehlklassifizierungen
 - Variante: Gewinn-Matrix gegeben
- Möglichkeiten zum kostenbewussten Lernen:
 - Variieren der Klassengrößen im Lerndatensatz (durch Vervielfachung von Instanzen)
 - Einführen von Klassengewichtungen
 (z.B. Terminierungsbedingungen und Werte in Blattknoten von Entscheidungsbäumen)
 - Variieren von versch. Parametern und anschließendes Evaluieren ("ausprobieren")
- Verschiedene Tools wie WEKA und C5.0 in Clementine bieten Kosten-Matrizen von Haus aus an.

Evaluationsverfahren beim Praktikum

- O. The first ticket has not been paid for.
- 1. Only the ticket for the first class has been paid for.
- 2. Only the first two classes were played.
- 3. The lottery was played until the end but no ticket was purchased for the following lottery 122.
- 4. At least the first ticket for lottery 122 was played as well.

Gewinnmatrix (nicht Kostenmatrix!)

Prediction	Target feature				
Acht	rauscht!	1	2	3	4
0	20	0	-10	-20	-40
1	5	20	0	-10	-20
2	0	5	20	0	-10
3	-5	0	5	20	0
4	-10	-5	0	5	20

Evaluationsverfahren für Zwischenpräsentaion

- 10-fold Cross Validation
 - Zufällige Partitionen, nicht unbedingt stratifiziert
 - Enthalten in KNIME, WEKA
 - Super-Node f
 ür Clementine auf Homepage
- Angabe von
 - Konfusionsmatrix
 - Accuracy
 - Gewinn (Punkte)
- Präsentierte Ergebnisse werden zuvor vom Tutor abgenommen

Zwischenpräsentaion

- Jede Gruppe hat max. 10 Minuten
- Es soll das oder die verwendeten Verfahren vorgestellt werden
- Außerdem die erreichten Ergebnisse
- Anschließend:
 - Kurze Diskussion und Fragen
- Vortrag:
 - Einer oder wechselnd
 - Aber: Alle müssen Bescheid wissen!

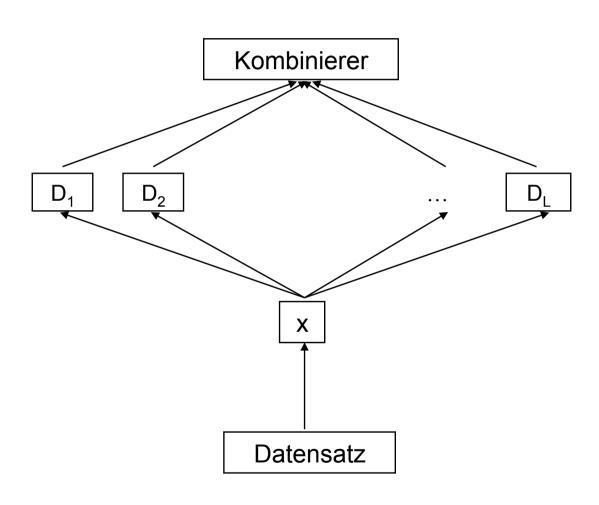
Kombinierte Klassifikatoren

Combined Classifiers / Multiple Classifier System / Classifier Fusion / Ensemble Techniques / Committee of Machines

Kombinierte Klassifikatoren - Motivation

- Im "banalen Leben"
 - Bei wichtiger Entscheidung
 - Konsultation mehrer Experten
 - Beispiel: Ärzte vor kritischer OP, Freunde vor Pferdewette
 - Entscheidungsfindung
 - Mehrheit der Experten oder
 - Vertrauenswürdigste Experten
- Im Data Mining
 - Bei wichtiger Entscheidung
 - Mehrere Klassifikatoren
 - Entscheidungsfindung
 - Kombination der Klassifikatoren oder
 - Classifier Selection

Kombinierte Klassifikatoren - Ansatzpunkte



Kombinations-Ebene:

Einsatz verschiedener Kombinationstechniken

Klassifikator-Ebene:

Einsatz verschiedener Klassifikatoren

Feature-Ebene:

Einsatz verschiedener Feature-Mengen

Daten-Ebene:

Einsatz verschiedener Teilmengen

Daten-Ebene: Bagging & Boosting

- Ursprünglicher Datensatz D, d = |D|
- Bagging
 - Zufällige Auswahl von k Lerndatensätzen
 - Vorgehen: Ziehen mit Zurücklegen von d Tupeln
 - Lernen je eines Klassifikators pro Lerndatensatz
 - Resultierende k Klassifikatoren oft erstaunlich unterschiedlich
- Boosting
 - Ähnlich Bagging
 - Ausnahme (i+1)ter Klassifikator:
 Fokus auf falsch klassifizierte Tupel in (i)tem Klassifikator
- Optionaler Schritt
 - Evaluation aller k Klassifikatoren
 - Ergebnisse gewichtet (z.B. mit Accuracy)

Feature-Ebene: Feature Selection

- Problem: "Curse of Dimensionality"
 - Lernen sehr aufwändig
 - Viele Attribute irrelevant
- Optimal:
 - Domänen-Experte identifiziert relevante Features (Attribute)
- Alternativ: Feature Selection
 - Meist Entropie-basierte Algorithmen
 - (Kombination verschiedener Selektionsstrategien denkbar)
- Bei Kombinierten Klassifikatoren:
 - Verschiedene Klassifikatoren durch verschiedene Attribut-Mengen von verschiedenen Feature Selection Strategien

Klassifikator-Ebene

Alternativen:

- Einsatz eines Klassifikators mit verschiedenen Parametern, z.B. maximale Baumhöhe, ...
- Verwendung verschiedener Klassifikatoren,
 z.B. Entscheidungsbaum, Neuronales Netzwerk,
 Naive Bayes, ...
- Ein Klassifikator für jede Klasse (bei mehr als 2 Klassen)

Ziel:

 Klassifikatoren mit möglichst unterschiedlichen Ergebnissen

Kombinations-Ebene: Strategien

- Problem:
 - Unterschiedliche Vorgehensweisen zur Wahl der Vorhersageklasse
- Alternativen
 - Majority Vote
 - Vorhersageklasse: Ergebnis der meisten Klassifikatoren
 - Weighted Majority Vote
 - Gewichtung mit Konfidenzwerten
 (z.B. von Entscheidungsbäumen, Nearest Neighbour)
 - Stacking
 - Ein weiterer Klassifikator zur Vorhersage der endgültigen Klasse
 - Scoring
 - Bei binären Entscheidungsproblemen, wenn Konfidenzen bekannt
 - score = confidence if class=pos
 score = 1-confidence if class=neg
 Gesamt-Score: Mittel der Scores aller Klassifikatoren
 - Setzen eines Schwellwertes zur Klassifikation
 - Weitere Strategien in der Literatur...

Regressionsprobleme

Idee

- Bestimmung eines unbekannten *numerischen* Attributwertes (oridinale und kategorische (zumindest binäre) Vorhersagen durch Schwellwertsetzung)
- Unter Benutzung beliebiger bekannter Attributwerte

Beispiele:

- Vorhersage von Kundenverhalten wie "Zeit bis Kündigung"
- Vorhersage von Kosten/Aufwand/Bedarf/Verkaufszahlen/...
- Berechnung von diversen Scores/Wahrscheinlichkeiten
- •

Regression

- Varianten von Klassifikationstechniken:
 - Entscheidungsbäume
 - Regressionsbäume ("numerische Werte in Blättern")
 - Model Trees ("ein Regressionsmodell in jedem Blatt")
 - k-Nearest Neighbour
 - Neuronale Netze
 - Support Vector Maschinen (SVM)
- Außerdem viele weitere Techniken
 - Lineare Regression
 - Vorhersage von y anhand eines Attributs x
 - Finden der besten Geraden: $y = w_0 + w_1 x$
 - Numerische Methoden zum Bestimmen von w_0 , w_1
 - Mehrfache lineare Regression (mehrere Attribute, Mittel)
 - Polynomiale Regression, Logistic Regression etc.

Quellen

- J. Han und M. Kamber: "Data Mining: Concepts and Techniques", Morgan Kaufmann, 2006.
- T. M. Mitchell: "Machine Learning", Mc Graw Hill, 1997
- L. I. Kuncheva: "Combining Pattern Classifiers", Wiley-Interscience, 2004.
- C. Borgelt: Folien zur Vorlesung "Intelligent Data Analysis", 2004.
- F. Klawonn: Folien zur Vorlesung "Data Mining", 2006.
- M. Spiliopoulou: Vorlesung "Data Mining for Business Applications", 2003.