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Abstract Support Vector Data Description (SVDD) is a popular one-class clas-
sifier for anomaly and novelty detection. But despite its effectiveness, SVDD does
not scale well with data size. To avoid prohibitive training times, sampling meth-
ods select small subsets of the training data on which SVDD trains a decision
boundary hopefully equivalent to the one obtained on the full data set. According
to the literature, a good sample should therefore contain so-called boundary obser-
vations that SVDD would select as support vectors on the full data set. However,
non-boundary observations also are essential to not fragment contiguous inlier re-
gions and avoid poor classification accuracy. Other aspects, such as selecting a
sufficiently representative sample, are important as well. But existing sampling
methods largely overlook them, resulting in poor classification accuracy.

In this article, we study how to select a sample considering these points. Our ap-
proach is to frame SVDD sampling as an optimization problem, where constraints
guarantee that sampling indeed approximates the original decision boundary. We
then propose RAPID, an efficient algorithm to solve this optimization problem.
RAPID does not require any tuning of parameters, is easy to implement and scales
well to large data sets. We evaluate our approach on real-world and synthetic data.
Our evaluation is the most comprehensive one for SVDD sampling so far. Our re-
sults show that RAPID outperforms its competitors in classification accuracy, in
sample size, and in runtime.

Keywords One-class Classification, Data Reduction, Outlier Detection, Anomaly
Detection

1 Introduction

Support Vector Data Description (SVDD) is one of the most popular and actively
researched one-class classifiers for anomaly and novelty detection Liu et al. (2010);
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Fig. 1 Sample and decision boundary of a state-of-the-art boundary-point method Alam et al.
(2020) and of our method RAPID.

Tax and Duin (2004); Trittenbach et al. (2018). The basic variant of SVDD is an
unsupervised classifier that fits a tight hypersphere around the majority of obser-
vations, the inliers, to distinguish them from irregular observations, the outliers.
Despite its resounding success, a downside is that SVDD and its progeny do not
scale well with data size Trittenbach et al. (2019b). Even efficient solvers like de-
composition methods Chaudhuri et al. (2018); Chu et al. (2004); Kim et al. (2007);
Platt (1998) result in training times prohibitive for many applications. In these
cases, sampling for data reduction is essential Alam et al. (2020); Hu et al. (2014);
Krawczyk et al. (2019); Li et al. (2018); Li (2011); Li et al. (2019); Qu et al. (2019);
Sun et al. (2016); Xiao et al. (2014); Zhu et al. (2014).

One of the defining characteristics of SVDD is that only a few observations,
the support vectors, define a decision boundary. Thus, a good sample is one for
which SVDD selects support vectors similar to the original ones, i.e., the ones
obtained on the full data set. This has spurred the design of sampling methods
that try to identify support-vector candidates in the original data, to retain them
in the sample Alam et al. (2020); Hu et al. (2014); Li et al. (2018); Li (2011); Li
et al. (2019); Qu et al. (2019); Xiao et al. (2014); Zhu et al. (2014). A common
approach is to select so-called “boundary points” as support-vector candidates,
e.g., observations that are dissimilar to each other Li (2011); Zhu et al. (2014).

But calibrating existing methods such that they indeed identify boundary
points is difficult. A reason is that the sample they return depends significantly
on the choice of exogenous parameters, and selecting suitable parameter values is
not intuitive (see Section 5). A further shortcoming is that including all boundary
points in a sample does not guarantee SVDD training to indeed yield the original
support vectors. The issue is that selection of support vectors hinges on other as-
pects, such as the ratio between inliers and outliers in the sample and a sufficient
number of non-boundary observations in the sample. Disregarding them may, for
instance, fragment contiguous inlier regions and yield wrong outlier classifications
after sampling, see Figure 1. The influence of these aspects on SVDD is known, but
their effects on sample selection are not well studied. It is an open question how to
select a sample where SVDD indeed approximates the original decision boundary.
Finally, a point largely orthogonal to these issues is that there also is very limited
experimental comparison among competitors. This makes an empirical selection
of suitable SVDD sampling methods difficult as well.
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Contributions. In this article, we propose a novel way to SVDD sampling.
We make three contributions. First, we reduce SVDD sampling to a decision-
theoretic problem of separating data using empirical density values. Based on this
reduction, we formulate SVDD sampling as a constrained optimization problem.
Its objective is to find a minimal sample where the density of all observations of
the data set is close-to-uniform. We provide theoretical justification that a sample
obtained in this way i) prevent a fragmentation of the inlier regions, and ii) retain
the observations necessary to identify the original support vectors.

Second, we propose Reducing sAmples by Pruning of Inlier Densities (RAPID),
an efficient algorithm to solve the optimization. RAPID is the first SVDD sampling
algorithm with theoretical guarantees on retaining the original decision boundaries.
RAPID does not require any parameters in addition to the ones already required
by SVDD. This lets RAPID stand out from existing methods, which all hinge on
mostly unintuitive, exogenous parameters. RAPID further is easy to implement,
and scales well to very large data sets.

Third, we conduct the – by far – most comprehensive comparison of SVDD
sampling methods. We compare RAPID against 8 methods on 23 real-world and
85 synthetic data sets. In all experiments, RAPID consistently produces a small
sample with high classification quality. Overall, RAPID outperforms all of its com-
petitors in the trade-off between algorithm runtime, sample size, and classification
accuracy, often by an order of magnitude.

2 Fundamentals

The data mining community differentiates between lazy and eager learners Aggar-
wal (2015a). This differentiation is available for outlier detection as well. There,
lazy learners perform instance-based learning by defining measures of “outlierness”
of an observation Aggarwal (2015b). Lazy learners delay the learning until pre-
dicting the class of an observation. For an overview and experimental comparison
of lazy learners we refer to Campos et al. (2016). For eager learners, the computa-
tional effort takes place before the predictions, since they do construct a classifica-
tion model. Eager learners perform explicit generalization, and the classification of
new observations tends to be much faster than for lazy learners Aggarwal (2015a).
In our article, we focus on the most popular eager learners for outlier detection,
Support Vector Data Description (SVDD) Tax and Duin (2004).

The objective of SVDD is to learn a description of a set of observations, the
target. A good description allows to distinguish the target from other, non-target
observations. In our article, we focus on unsupervised outlier detection. So the
targets, i.e., the class that SVDD explicitly learns, are inliers, and the non-targets
are outliers. However, one does not have any labels available when learning an
SVDD classifier, i.e., the learning scenario is unsupervised. First, we introduce
preliminaries and then the SVDD optimization problem.

Preliminaries Let X = 〈x1, x2, . . . , xN 〉 be a data set of N observations from the
domain X = RM where M is the number of dimensions. A sample is a subset
S ⊆ X of the data set with sampling ratio |S|/N. Further, we denote x ∈ S as
selected, and x /∈ S as not-selected observations. The probability density of X is
p(x). Further, let Y = 〈y1, y2, . . . , yN 〉 be a ground truth, i.e., each entry is the
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realization of a dichotomous variable Y = {in, out}. The ground truth densities
are the conditional probability densities pinlier(x) = P (X = x | Y = in), and
poutlier(x) = P (X = x | Y = out) respectively. One can estimate the empirical
density of X by kernel density estimation.

dX(x) =
∑
x′∈X

k(x, x′) (1)

where k is a kernel function with k(x, x) = 1. A popular choice is the Gaussian

kernel kγ(x, x′) = e−γ‖x−x
′‖, where γ ≥ 0 is the parameter to control the kernel

bandwidth. We use the shorthand dx = dX(x) when the reference to X is unam-
biguous. Note that dX requires normalization further to represent a probability
density. Densities can be used to characterize observations in different ways.

Definition 1 (Level Set) A level set is a set of observations with equal density
Lθ := {x ∈ X : dx = θ}. A super-level set is a set of observations with L+

θ := {x ∈
X : dx ≥ θ}.

One way to use level sets to categorize observations is to define a level-set classifier
as a function of type g : X→ Y with

gXθ (x) =

{
in if x ∈ L+

θ

out else.
(2)

Another useful categorization is to separate observations into boundary points
and inner points. There are different ways to define a boundary of X Alam et al.
(2020); Hu et al. (2014); Li et al. (2018); Li (2011); Li et al. (2019); Qu et al.
(2019); Xiao et al. (2014); Zhu et al. (2014). For this article, we define boundary
points as observations with density values close to the minimum empirical density.

Definition 2 (Boundary Point) Let dmin = minx∈X dx, and let δ be a small
positive value. An observation x ∈ X is a boundary point of X if x ∈ BX with
BX = L+

dmin
\ L+

(dmin+δ).

SVDD Classifier SVDD Tax and Duin (2004) is a quadratic optimization problem
that searches for a minimum enclosing hypersphere with center a and radius R
around the data. The linear formulation of the optimization problem is

SVDD: minimize
a, R, ξ

R2 + C ·
N∑
i=1

ξi

subject to ‖xi − a‖2 ≤ R2 + ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

with cost parameter C and slack variables ξ. Solving SVDD gives a fixed a and R
and a decision function

fX(x) =

{
in if ‖x− a‖2 ≤ R2

out else.
(3)
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Fig. 2 Categorization of literature on SVDD speedup.

When solving SVDD in the dual space, fX only relies on inner product calcula-
tions between x and some of the training observations, the support vectors. So
classification with SVDD is efficient if the number of support vectors is low. Also
note that under mild assumptions, SVDD is equivalent to ν-SVM Schölkopf et al.
(2001).

SVDD has two hyperparameters, C and a kernel function k. C ∈ R[0,1] is a
trade-off parameter. It allows some observations in the training data to fall out-
side the hypersphere if this reduces the radius significantly. Formally, observations
outside the hypersphere with positive slack ξ > 0 are weighted by a cost C. High
values for C make excluding observations expensive; based on the dual of SVDD,
one can see that if C = 1, SVDD degenerates to a hard-margin classifier Tax and
Duin (2004).

To allow decision boundaries of arbitrary shape, one can use the well-known
kernel trick to replace inner products in the dual of SVDD by a kernel function
k. The most popular kernel with SVDD is the Gaussian kernel. Its bandwidth
parameter γ controls the flexibility of the decision boundary. For γ→0, the decision
boundary in the data space approximates a hypersphere. Choosing good values
for the two hyperparameters γ and C is difficult Liao et al. (2018). There is no
established way of setting the parameter values, and one must choose one of the
many heuristics to tune SVDD in an unsupervised setting Liao et al. (2018); Scott
(2015); Tax and Duin (2004); Trittenbach et al. (2019a).

3 Related Work

SVDD is a quadratic problem (QP). The time complexity of solving SVDD is in
O(N3) Chu et al. (2004). Thus, training does not scale well to large data sets.
However, the time complexity for classification is only linear in the number of
support vectors. So for large N , training time is much larger than classification
time. Still, long classification times may be an issue, e.g., in time-critical applica-
tions. So curbing the runtimes has long become an important topic in the SVDD
literature. In Section 3.1, we categorize existing approaches that focus on SVDD



6 Adrian Englhardt et al.

speedup, see Figure 2 for an overview. In Section 3.2, we then turn to Sampling,
the category our current article belongs to.

3.1 Categorization

We distinguish between Fast Training and Fast Classification.

Fast Training To speed up training of SVDD, one has two options: reduction of
the problem size, and optimization of the solver. For Reduction, one can distin-
guish further: A first type reduces the number of observations by Sampling. This
is the category of methods mentioned in our introduction Alam et al. (2020); Hu
et al. (2014); Krawczyk et al. (2019); Li et al. (2018); Li (2011); Li et al. (2019);
Qu et al. (2019); Sun et al. (2016); Xiao et al. (2014); Zhu et al. (2014). A second
type reduces the size of the Kernel matrix, e.g., by approximation Achlioptas et al.
(2002); Fine and Scheinberg (2001); Nguyen et al. (2008); Schölkopf et al. (2000).
Examples are the Nyström-method Williams and Seeger (2001) and choosing ran-
dom Fourier features Yang et al. (2012).

Optimization on the other hand decomposes QP into smaller chunks that can
be solved efficiently. Literature features methods that decompose with cluster-
ing Kim et al. (2007) and with multiple random subsets Chaudhuri et al. (2018).
The most widely used decomposition methods are sequential minimal optimiza-
tion (SMO) Platt (1998) and its variants. These methods iteratively divide SVDD
into small QP sub-problems and solve them analytically. Finally, there are core-
set method that expands the decision boundary by iteratively updating an SVDD
solution Chen and Li (2019); Chu et al. (2004). Core-set approaches are (1 + ε)
approximations, i.e., they may not find the exact decision boundary, given training
data.

Reduction and Optimization are orthogonal to each other. Thus, one can use
problem-size reduction in a pre-processing step before solving SVDD efficiently.

Fast Classification When SVDD uses a non-linear kernel, one cannot compute the
pre-image of the center a. Instead, one must compute the distance of an observation
to a by a linear combination of the support vectors in the kernel space. However,
literature proposes several approaches to approximate the pre-image of a Bakır
et al. (2004); Kwok and Tsang (2004); Liu et al. (2010); Mika et al. (1999); Peng
and Xu (2012). With this, classification no longer depends on the support vectors,
and is in O(1). Fast Classification is orthogonal to Fast Training, i.e., it can come
as a post-processing step, after training.

3.2 Sampling Methods

Sampling methods take the original data X set as an input and produce a sample S.
All existing sampling methods assume the target-only scenario, i.e., all observations
in X are from the target class. This is equivalent to a supervised setting where
one has knowledge of the ground truth, and Y = 〈in, in, . . . , in〉. Thus, most of
the competitors therefore require modifications to apply to the outlier scenario,
see Section 4.1 for details. In the following, we discuss existing sampling methods
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Table 1 Sampling methods proposed for SVDD.

Method Publication Year Exogenous Parameters*

BPS Li 2011 k= b10 lnNc, ε=0.05

DAEDS Hu et al. 2014 k=30, ε=0.1, δ=0.3

DBSRSVDD Li et al. 2019 minPts=7, ε=0.5

FBPE Alam et al. 2020 n=360

HSR Sun et al. 2016 k=20, ε=0.01 ·M
HSC† Qu et al. 2019 k=20

IESRSVDD Li et al. 2018 ε=0.5

KFNCBD Xiao et al. 2014 k=100, ε=0.2

NDPSR Zhu et al. 2014 k=20, ε=10

OCSFLSDE† Krawczyk et al. 2019 8 different parameters

* The listed values for the exogenous parameters are the ones used
in our experiments.
† Not included in our experiments, see Section 5.1 for details.

for the target-only scenario. We categorize them into different types: Edge-point
detectors, Pruning methods and Others. Table 1 provides an overview.

Edge-point Most sampling approaches focus on selecting observations that demar-
cate pinlier from poutlier, and therefore are expected to be support vectors. Such
observations are called “edge points” or “boundary points”. Literature proposes
different ways to identify edge points. One idea is to use the angle between an ob-
servation and its k nearest neighbors Li (2011); Zhu et al. (2014) as an indication.
An observation is selected as edge point if most of its neighbors lie within a small,
convex cone with the observation as the apex. One has to specify a threshold for
the share of neighbors and the width of the cone Li (2011) as exogenous param-
eters. Others suggest to identify edge points through a farthest neighbor search.
For instance, one suggestion is to first sort the observations by decreasing distance
to its k-farthest neighbors (KFN) Xiao et al. (2014), and then select the top ε per-
cent as edge points. The rationale presented in the paper is that inner points are
expected to have a lower KFN distance than edge points. A more recent variant
uses angle-based search Alam et al. (2020). The idea of the paper is to initialize
the method by the mean over all observations as the apex and divide the space
into a pre-specified number of cones. For each cone, one only keeps the farthest
observation as edge points.

Next, there are methods that select edge points by density-based outlier rank-
ings, e.g., DBSCAN Li et al. (2019) and LOF Hu et al. (2014). Here, the assumption
is that edge points occur in sparse regions of the data space. A similar idea is to
rank observations with a high distance to all other observations Li et al. (2018).
Others have suggested to rank observation highly if they have low density and
a large distance to high-density observations Qu et al. (2019). Naturally, rank-
ing methods require to set a cutoff value to distinguish edge points from other
observations.
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Pruning The idea of pruning is to iteratively remove observations from high-
density regions as long as the sample remains “density-connected”. One way to
achieve this is by pruning all neighbors of an observation closer than a mini-
mum distance, starting from the observation closest to the cluster mean Sun et al.
(2016). Yet this approach requires to set the minimum distance threshold, and a
good choice is data dependent.

Others There is one method that differs significantly from the other ones Krawczyk
et al. (2019). The basic idea is to generate artificial outliers to transform the prob-
lem into a binary classification problem. Based on the augmented data, one can
apply conventional sampling methods such as binary instance reduction. The sam-
pling method then relies on an evolutionary algorithm where the fitness function
is the prediction quality on the augmented data. Finally, the method only retains
the remaining inliers and discards all artificial observations. However, this requires
to solve many SVDD instances in each iteration.

To summarize, there are many methods to select a sample for SVDD. However,
they are based upon some intuition regarding the SVDD and do not come with any
formal guarantee. Edge point detectors in particular return a poor sample in some
cases, since they do not guarantee coherence of a selected sample, see Figure 1.
Further, all existing approaches require to set some exogenous parameter. But
the influence of the parameter values on the sample is difficult to grasp. Finally,
existing sampling methods are designed for the target-only scenario. It is unclear
whether they can be modified to work well with the outlier scenario.

4 Density-based Sampling for SVDD

In this section, we present an efficient and effective sampling method for scaling
SVDD to very large data sets. In a nutshell, we exploit that an SVDD decision
boundary is in fact a level-set estimate Vert and Vert (2006), and that inliers are
a super-level set. The idea behind our sampling method is to remove observations
from a data set such that the inlier super-level set does not change. To this end, we
show that for the Gaussian kernel the super-level set of inliers does not change as
long as not-selected observations have higher density than the minimum density of
selected observations. If this density rule is violated, sampling may produce “gaps”,
i.e., regions of inliers that become regions of outliers. Such gaps curb the SVDD
quality. Thus, we strive for a sample of minimal size that satisfies the density rule.

Figure 3 illustrates our approach. In a first step, we separate the unlabeled data
into outlier and inlier regions based on their empirical density, see Section 4.1. We
then frame sample selection as a optimization problem where the constraints en-
force the density rule in Section 4.2. In Section 4.3 we propose RAPID, an efficient
and easy-to-implement algorithm to solve the optimization problem. RAPID re-
turns a small sample which has a close-to-uniform density, i.e., a small sample that
still obeys the density rule, and also contains the boundary points of the original
data.
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Fig. 3 The idea of density-based sampling for SVDD.

Algorithm 1: Pre-filtering

Input : Data set X ∈ RN×M Kernel function k(xi, xj),

Outlier percentage pout ∈ [0, 1]

Output: Indices for inliers I and outliers O, density d

1 d = 〈
∑N
j=1 k(x1, xj), . . . ,

∑N
j=1 k(xN , xj)〉 . O(N2)

2 θpre = sort-ascending(d)bpout·Nc . O(N logN)

3 I = {i | i ∈ {1, . . . , N}, di ≥ θpre} . O(N)

4 O = {i | i ∈ {1, . . . , N}} \ I . O(1)

5 d = d−〈
∑
j∈O k(x1, xj), . . . ,

∑
j∈O k(xN , xj)〉 . O(N2)

6 return I, O, d

4.1 Density-based Pre-Filtering

Any sampling method faces an inherent trade-off: reducing the size of the data as
much as possible while maintaining a good classification accuracy on the sample.
One can frame this as an optimization problem

minimize
S⊆X

|S| (4)

subject to diff(fS, fX) ≤ ε,

where diff is a similarity between two decision functions and ε a tolerable dete-
rioration in accuracy. Solving Optimization Problem 4 requires knowledge of fX.
But obtaining this knowledge is infeasible. The reason is that |X| is too large to
solve — SVDD would not need any sampling in the first place otherwise. Thus,
one cannot infer which observations fX classify as inlier or outlier. However, we
know that the SVDD hyperparameter C defines a lower bound on the share of
observations predicted as outliers in the training data Tax and Duin (2004). A
special case is if C = 1, since fX(x; C = 1) = in,∀x ∈ X. Recall that this is the
upper bound of the cost parameter C where SVDD degenerates to a hard-margin
classifier, cf. Section 2. In this case, diff is zero if SVDD trained on S, i.e., fS,
also includes all observations within the hypersphere. Further, we can make use of
the following characteristic of SVDD.

Characteristic 1 (SVDD Level-Set Estimator) SVDD is a consistent level
set estimator for the Gaussian kernel Vert and Vert (2006).
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In consequence, inliers form a super-level set with respect to the decision boundary.
Formally, this means that there exists a level set Lθ and a corresponding level-set
classifier gXθ such that gXθ ≡ fX. We can exploit this characteristic as follows. First,
we pre-filter the data based on their empirical density, such that a share of pout

observations are outliers. Formally, pout is equivalent to choosing a threshold θpre

on the empirical density, where θpre is the pout-th quantile of the empirical density
distribution. Using this threshold in a level-set classifier separates observations
into inliers I and outliers O.

I = {x ∈ X : gXθpre = in} O = {x ∈ X : gXθpre = out}.

Second, we replace fX with f I and set C = 1. With this, we know that f I(x) =
in,∀x ∈ I, without training f I. Put differently, pre-filtering the data with an
explicit threshold allows to get rid of an implicit outlier threshold C. This in turn
allows to estimate the level set estimated by SVDD without actually training the
classifier. Algorithm 1 is the pseudo code for the pre-filtering.

Pre-filtering does not add any new exogenous parameter, but replaces the
SVDD trade-off parameter C with pout. Further, pout is a parameter of SVDD,
not of our sampling method. We also deem pout slightly more intuitive than C,
since it makes the lower bound defined by C tight, i.e., pre-filtering assumes an
exact outlier ratio of pout = |O|/|X|. This in turn makes the behavior of SVDD
more predictable. We note further that in an unsupervised case the C parameter
of the SVDD is commonly coupled with the “target error estimate” introduced
in Tax and Duin (2004): The “target error estimate” is exactly the expected out-
lier percentage pout, and one sets C ≤ 1/(N ∗ pout). So our pre-filtering step uses
exactly the pout estimate that one would use for parametrization of SVDD in an
unsupervised scenario. We close the discussion of pre-filtering with two remarks.

Remark 1 Technically, one may directly use the level-set classifier gXθpre instead of
SVDD. However, classification times are very high, since calculating the kernel
density of an unseen observation is in O(N). So one would give up fast classifica-
tion, one of the main benefits of SVDD. Next, one may be tempted to interpret this
pre-filtering step as a way to transform an unsupervised problem into a supervised
one to train a binary classifier (e.g., SVM) on O and I. However, binary classifica-
tion assumes the training data to be representative of the underlying distributions.
This assumption is not met with outlier detection, since outliers may not come
from a well-defined distribution. Thus, binary classification is not applicable.

Remark 2 Pre-filtering is a necessary step with all sampling methods discussed
in related work. In Section 3, we have explained that existing sampling methods
assume to only have inliers in the data set, i.e., I = X and O = ∅. However, if
X contains outliers, this affects the sampling quality negatively and leads to poor
SVDD results, see Section 5.3.

4.2 Optimal Sample Selection

After pre-filtering, we can reduce Optimization Problem 4 to a feasible optimiza-
tion problem. We begin by replacing fX with f I. With Characteristic 1, we further
know that both classifiers have equivalent level-set classifiers. We set gIθpre as the
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equivalent level-set classifier for f I. For fS, there also exists a level-set classifier
gSθ′ , but the level set θ′ depends on the choice of S. Thus, we must additionally en-
sure that θ′ indeed is the level set estimated by training SVDD on S. The modified
optimization problem is

minimize
S⊆X

|S| (5)

subject to diff(gSθ′ , g
I
θ) ≤ ε (5a)

gSθ′ ≡ fS, (5b)

where ≡ denotes the equivalence in classifying S. Constraint 5b is necessary, since
one may select a sample that yields a level-set classifier similar to the one ob-
tained from I, but on which SVDD returns another decision boundary. This can,
for instance, occur if S does not contain the boundary points of I. Optimization
Problem 5 still is very abstract. We will now elaborate on both of its constraints
and show how to reduce them so that the problem becomes practically solvable.

Constraint 5a We now discuss how to obtain a sample that minimizes diff(gSθ′ , g
I
θ).

To this end, we use the following theorem.

Theorem 1 gSθ′ ≡ gIθ if dS is uniform on I.

Proof Think of a sample S ⊆ I with uniform empirical density dS. Then S has
exactly one level set θ′ = θmin = minx∈S dS(x). Further, it also holds that dS(x) =
θmin, ∀x ∈ I. It follows that minx∈I\S dS(x) = minx∈S dS(x), and consequently

gSθmin
(x) = gIθ(x),∀x ∈ I. ut

Theorem 1 implies that one can satisfy Constraint 5a with ε = 0 if one reduces the
sample to one with a uniform empirical distribution dS. However, any empirical
density estimate on a finite sample can only approximate a uniform distribution.
So one should strive for solutions of Optimization Problem 5 where epsilon is small.
Put differently, one can interpret the difference between a perfect uniform distri-
bution and the empirical density to assess the quality of a sample. We propose to
quantify the fit with a uniform distribution as the difference between the maximum
density θmax = maxx∈S dS(x) and minimum density θmin = minx∈S dS(x):

∆S
fit = θmax − θmin (6)

There certainly are other ways to evaluate the goodness of fit between distribu-
tions. However, ∆S

fit has some desirable properties of the sample, which we discuss
in Theorem 2.

One further consequence of only approximating a uniform density is that there
may be some not-selected observations x ∈ I\S with a density value dS(x) less than
θmin. Since the level set estimated by fS is Lθmin

, these not-selected observations
would be wrongly classified as outliers. Thus, we must also ensure that S is selected
so that dS(x) ≥ θmin,∀x ∈ I \ S. We can now re-formulate Constraint 5a as a
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sample optimization problem SOP.

SOP: minimize
v,w,θmin,θmax

θmax − θmin (7)

s.t.
∑
j∈I

vj ·k(xi, xj)︸ ︷︷ ︸
dS(xi)

≥ θmin, ∀i ∈ I (7a)

∑
j∈I

vj ·k(xi, xj) ≤ θmax, ∀i ∈ I (7b)

∑
j∈I

wi ·vj ·k(xi, xj) ≤ θmin, ∀i ∈ I (7c)

∑
j∈I

vj > 0;
∑
j∈I

wj = 1; vj ≥ wj , ∀j ∈ I ∪ O (7d)

vj = 0,∀j ∈ O; vj , wj ∈ {0, 1},∀j ∈ I ∪ O (7e)

where I = {i | i ∈ {1, . . . , N}, xi ∈ I}, O = {1, . . . , N} \ I. The decision variable
vj = 1 indicates if an observation xj is in S, i.e., S = {xi ∈ X | vi = 1}.
Constraint 7b is a technical necessity to obtain the maximum density of dS. The
first constraint in 7d rules out the trivial solution v = ~0. The first constraint in 7e
results from the pre-filtering, cf. Section 4.1. If the solution set of SOP is not
singular, we select the solution where |S| is minimal to minimize training time.

Constraints 7a, 7c, and 7d together guarantee that the density of not-selected
observations is at least θmin, as follows. Only for one observation j we have wj = 1
and for all other observations i 6= j, wi = 0. Then for Constraint 7c and 7d to
hold, j must be the observation with the minimum density and dS(xj) = θmin.
Additionally, with vj ≥ wj it follows that vj = 1, thus observation j is in the
sample S. So, for any feasible solution of SOP all not-selected observations have a
density of at least the minimum density of the selected observations. From 7a, it
follows that dS(x) ≥ θmin, ∀x ∈ I. So any solution of SOP satisfies Inequality 5a
with a small ε.

Constraint 5b We now show that a solution of SOP also satisfies Constraint 5b.
To this end, we make use of the following characteristic.

Characteristic 2 (Boundary Points) The set of boundary points are a super-
set of the support vectors of SVDD Tax and Duin (2004).

So for Constraint 5b to hold, an optimum of SOP must contain boundary points
of I. We show that a solution with boundary points is preferred over one without
boundary points by the following theorem.

Theorem 2 The set of boundary points does not change when solving SOP iter-
atively.

Proof Suppose that there exists a sample S which is not a local optimum of SOP.
Then there is a boundary point xmin = arg minx∈S dS(x), an observations xmax =
arg maxx∈S dS(x) and xp ∈ S. Let Sp = S\{xp} and Smax = S\{xmax}. If removing
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xp from S is an optimal choice, there must be no other observation that reduces
the objective more than xp. Thus, the following specific case must hold:

∆
Sp

fit ≤ ∆
Smax

fit

⇔ θmax−k(xp, xmax)−(θmin−k(xp, xmin))
≤ θmax−k(xmax, xmax)−(θmin−k(xmax, xmin))

⇔ k(xp, xmax)−k(xp, xmin) ≥ 1−k(xmax, xmin).

(8)

For one, we conclude that xp = xmin is not feasible, because in this case the left
hand side of Inequality 8 is strictly negative, and right hand side positive. Since
boundary points have, per Definition 2, a density close to θmin, they cannot be a
candidate for removal.

Next, under two assumptions that (A1) the locations of the maximum and
of the minimum density are distant from each other, and that (A2) the kernel
bandwidth is sufficiently small, we have k(xmax, xmin) → 0, and k(xp, xmax) −
k(xp, xmin) ≥ 1 ⇔ xp = xmax. So in this case, removing xmax is optimal. From
this, it also follows that the minimum density does not change significantly when
removing xmax. With Definition 2, it follows that also the set of boundary points
does not change after removing xmax. ut
Remark 3 Our proof hinges on two assumptions: (A1) A sufficiently large distance
between xmax and xmin. This assumption is intuitive, since removing an observa-
tion with a density close to maxx∈S dS(x) improves ∆fit more than removing one
close to minx∈S dS(x). Generally, the distance between xmax and xmin depends
on the data distribution. However, we find that this is not a limitation in prac-
tice, see Section 5. (A2) A sufficiently small kernel bandwidth. This assumption is
reasonable, because when selecting the kernel bandwidth, one strives to avoid un-
derfitting, i.e., avoid kernels bandwidth that are too wide. This holds empirically
as well, see Section 5.

Remark 4 Overfitting the kernel parameter of SVDD affects all sampling methods.
When the kernel bandwidth is very small, removing any observations from a sample
yields a decision boundary that is different from the one obtained with training
on the full data set. For SOP an overfitted kernel bandwidth results in density
values of approximately 1 for all observations with the Gaussian kernel, i.e., the
density is already uniform. The objective function of SOP then is already minimal,
with a value of 0. Thus, SOP does not remove any observation from the sample
and retains the original decision boundary. In practice, one can rely on one of the
many heuristics to choose a suitable kernel parameter to avoid overfitting, see for
example our choice in Section 5.

SOP is appealing in theory. However, it is a mixed-integer problem with non-
convex constraints, and it is hard to solve. Thus, solver runtimes quickly become
prohibitive, even for relatively small problem instances. This contradicts the mo-
tivation for sampling. We therefore propose RAPID, a fast algorithm to search for
a local optimum of SOP.

4.3 A RAPID Approximation

The idea of our approximation is to initialize S = I, which is a feasible solution
to SOP, and remove observations from S iteratively as long as S remains feasible,
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Algorithm 2: RAPID

Input : Data set X ∈ RN×M Kernel function k(xi, xj),

Outlier percentage pout ∈ [0, 1]

Output: Sample indices S

. Pre-filtering, see Algorithm 1

1 I,O, d = pre-filtering(X, k, pout) . O(N2)

. Sampling

2 for iter← 1 . . . |I| − 1 do . O(N2)

3 r = arg maxi∈S di
4 d = d− 〈k(x1, xr), . . . , k(xN , xr)〉
5 θmin = mini∈S (di)

6 if ∃ i ∈ I : di < θmin then

7 return S
8 end

9 S = S \ {r}
10 end

11 return S

see Algorithm 2. RAPID is a fast greedy algorithm, i.e., it may not produce the
smallest sample with uniformity, cf. objective function of SOP. However, the proofs
for SOP that sampling retains the decision boundary also hold for RAPID.

As input parameters RAPID takes the data set X, the expected outlier per-
centage pout and a kernel function k. Line 1 is the pre-filtering. RAPID then itera-
tively selects the most dense observation xmax in the current sample S for removal
(Line 3) and updates the densities (Line 4). If S \ {xmax} is infeasible, RAPID
terminates (Line 5–7). Line 6 checks whether there is an observation xi ∈ I that
violates Constraint 7a. As required by SOP, RAPID does not remove boundary
points. This is because xmax must not be a boundary point, as long as S is not
uniform, i.e., ∆S

fit > 0. Thus, a solution of RAPID satisfies both Constraint 5a
and Constraint 5b. The return in Line 11 is the special case where a single ob-
servations remains in the sample. In this case uniformity is achieved with one
observations, i.e., all observations are equal.

The overall time complexity of RAPID is in O(N2), see Algorithm 1 and
Algorithm 2 for the step-wise time complexities. Further, RAPID is simple to
implement with only a few lines of code. It is efficient, since each iteration (Line
3–7) requires only one pass over the data set to update the densities, compute the
new xmax, θmin and minimum inlier density for the termination criterion. One may
further pre-compute the Gram matrix K for X to avoid redundant kernel function
evaluations.

Remark 5 RAPID does not require any hyperparameters in addition to the ones
already required by SVDD. The two parameters are: a parametrized kernel func-
tion k and the outlier percentage pout. The outlier percentage pout is commonly
estimated to calculate the C parameter of SVDD Tax and Duin (2004). Since we
guarantee that RAPID retains the decision boundary one would learn on the full
data set, the kernel parametrization affects the sampling. However, due to the
density rule, the parametrization only affects how many observations RAPID re-
moves from the sample Yet RAPID always retains the decision boundary. While
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RAPID (|S| = 31, |FP| = 0) BPS (|S| = 8, |FP| = 13) DAEDS (|S| = 77, |FP| = 0) DBSRSVDD (|S| = 9, |FP| = 227)

IESRSVDD (|S| = 195, |FP| = 0) FBPE (|S| = 36, |FP| = 6) KFNCBD (|S| = 80, |FP| = 139) NDPSR (|S| = 95, |FP| = 0)

Fig. 4 Sampling strategies applied to a synthetic Gaussian mixture with two components and
N = 400. The grey points are the original data set and the red/blue diamonds the selected
observations. The original decision boundary is the grey line and the red/blue one is the
boundary trained on the sample. |S| is the sample size and |FP| the number of misclassified
inliers. We omit HSR since it returns S = X with recommended parameter values.

the exact sampling always depends on the data set, the general intuition is that,
with a higher kernel width, RAPID can remove more observations than with a
more narrow one. In the extreme case of a very small kernel width, RAPID cannot
remove any observations without violating the density rule, c.f. our discussion in
Remark 4. Ultimately, given a novel data set, one must set the same parameters for
SVDD with or without sampling with RAPID. One commonly relies on one of the
many heuristics to parametrize SVDD, see our discussion at the end of Section 2.

5 Experiments

We now turn to an empirical evaluation of RAPID. Our evaluation consists of two
parts. In the first part, we evaluate how well RAPID copes with different char-
acteristics of the data, i.e., with the dimensionality, the number of observations,
and the complexity of the data distribution, see Section 5.2. The second part is an
evaluation on a large real-world benchmark for outlier detection. We have imple-
mented RAPID as well as the competitors in an open-source framework written
in Julia Bezanson et al. (2017). Our implementation, data sets, raw results, and
evaluation notebooks are publicly available. 1

5.1 Setup

We first introduce our experimental setup, including evaluation metrics, as well as
the parametrization of SVDD and its competitors. Recall that RAPID does not
have any exogenous parameter. One must only specify pout instead of the SVDD
hyperparameter C, cf. Section 4.1.

Metrics Sampling methods trade classification quality for sample size, and one
must evaluate this trade-off explicitly. We report the sample size |S| and sam-
ple ratio |S|/|X| for each result. To evaluate the classification quality, we use the
Matthews Correlation Coefficient (MCC) on X. MCC is well-suited for imbalanced
data and returns values in [−1, 1]; higher values are better. SVDD returns a binary

1 https://www.ipd.kit.edu/ocs

https://www.ipd.kit.edu/ocs
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classification which is different from many other outlier-detection methods which
produce score-based outputs Aggarwal (2015b). For such score-based outputs, one
usually calculates ROC-AUC. ROC-AUC and MCC are statistically consistent
with each other Halimu et al. (2019), we report the values for other evaluation
metrics (ROC-AUC, F1-score and Cohen’s kappa coefficient) in the appendix of
this article. For a full analysis see our supplementary material. We report the
averages over five runs on synthetic data and perform 5-fold cross-validation on
real-world data. For non-deterministic methods, we report average values over five
repetitions. Our experiments ran on an AMD Ryzen Threadripper 2990WX with
64 virtual cores and 128 GB RAM.

SVDD SVDD requires to set two hyperparameters: the Gaussian kernel parameter
γ and the trade-off parameter C. We tune γ with Scott’s Rule Scott (2015) for
real-world data. For high-dimensional synthetic data, however, we found that the
Modified Mean Criterion Liao et al. (2018) is a better choice. The Modified Mean
Criterion in these cases yields a higher kernel bandwidth. This allows sampling to
remove more observations, c.f. Remark 5. Because of pre-filtering we set C = 1,
cf. Section 4.1.

Competitors We compare our method against 8 competitors, see Table 1. The
approaches from Qu et al. (2019) and Krawczyk et al. (2019) require to solve
several hundreds of SVDDs, resulting in prohibitive runtimes. We do not include
them in our evaluation. We initialize the exogenous parameters according to the
guidelines in the original publications. In some cases, the recommendations do not
lead to a useful sample, e.g., S = ∅. To ensure a fair comparison, we mitigate these
issues by fine-tuning the parameter values through preliminary experiments.

Next, we compare two variants of each competitor: sampling on X as in their
original version, and sampling on I, i.e., after applying our pre-filtering. The pre-
filtering requires to specify the expected outlier percentage pout. In practice, one
can rely on domain knowledge or estimate it Achtert et al. (2010). To avoid any
bias when over- or under-estimating the outlier percentage, we set it to the true
percentage. Nevertheless, we have run additional experiments where we deliber-
ately deviate from the true percentage. We found that deviating affects the per-
formance of all sampling methods similarly. So, our conclusions do not depend
on this variation, and we report the respective results only in the supplementary
materials.1

We also evaluate against random baselines. Each baseline Randr returns a
random subset with a specified sample ratio r. We report results for a range of
sample ratios r ∈ [0.01, 1.0] to put the quality of competitors into perspective.
When choosing the C parameter of SVDD for the random baseline, one must
observe that outliers may be part of the selected sample. However, in experiments
of ours, we have observed that C = 1 generally yields the most competitive baseline
even if some outliers are part of the training data. Training a r = 1 baseline on
the full data set is prohibitive for large data sets. So we only report the values for
the smaller data sets.
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(a) Scaling N
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(b) Scaling M
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(c) Scaling #Components
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Fig. 5 Evaluation on synthetic data with varying data size (N), dimensionality (M), and
complexity (#Components).

5.2 Evaluation of Sample Characteristics

The first part of our experiments validates different properties of RAPID and of
its competitors. Our intention is to give an intuition of how a sample is selected,
and to explore under which conditions the sampling methods work well. The basis
for our experiments are synthetic data sets with controlled characteristics. Specif-
ically, we generate data from Gaussian mixtures with varying number of mixture
components, data dimensions, and number of observations, see Algorithm 3 for
the data generation algorithm. We run these experiments to answer the following
two questions.

Q1 How are observations in a sample distributed?

To get an intuition about the sample distribution, we run RAPID and the competi-
tors on a bi-modal Gaussian mixture, see Figure 4. The tendencies of the methods
to select boundary points and inner points are clearly visible. For instance, BPS
only selects a sparse set of boundary points; IESRSVDD only prunes high-density
areas. As expected, RAPID selects both the boundary points and a uniformly
distributed set of inner points. The decision boundary of RAPID matches the
one obtained from the full data set perfectly. Only three competitors (DAEDS,
IESRSVDD, and NDPSR) also result in an accurate decision boundary. But all of
them produce significantly larger sample sizes than RAPID.

Q2 To what extent do data characteristics influence a sample and the re-
sulting classification quality?

To explore this question, we individually vary the number of observations, the
dimensionality, and the number of the mixture components. In the following vi-
sualizations, an optimal sampling always yields a MCC of 1 in the upper row and
very small sample sizes in the bottom row, i.e., altering any data characteristic
does not influence the sampling. Some values for the competitors are missing since
the sample has been empty.
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Number of observations: Ceteris paribus, increasing the number of observations
should not have a significant impact on the observations selected. This expecta-
tion is reasonable, since increasing the data size does not change the underlying
distribution and the true decision boundary. Figure 5a graphs the sample quality
and sample size for the different methods. Many competitors (BPS, IESRSVDD,
KFNCB, and DAEDS) do not scale well with more observations, i.e., the sample
sizes increase significantly. BPS scales worst and only removes a tiny fraction of
observations. Further, the sample quality drops significantly with more than 500
observations for some competitors (DBSRSVDD and HSR). RAPID on the other
hand is robust with increasing data size, for both sample quality and sample size.
The sample sizes returned are small, even for large data sets, and the resulting
quality is always close to MCC = 1.0.

Dimensionality : The expectation is that the sample quality does not deteriorate
with increasing dimensionality. However, sample sizes may increase slightly. This is
because determining a decision boundary of a high-dimensional manifold requires
more observations than of a low-dimensional one. Figure 5b shows the sample
quality and size. For some competitors (HSR, NDPSR, and KFNCBD), sample
quality decreases with increasing dimensionality. This indicates that they do not
select observations in all regions. This in turn leads to misclassification. Even
tuning exogenous parameter values does not mitigate these effects. As desired,
RAPID returns a small sample in all cases, with high classification accuracy.

Number of Mixture Components: Finally, we make the data set more difficult
by increasing the number of Gaussian mixture components. Like before, we expect
sample sizes to increase slightly, since the generated manifolds are more difficult to
classify. Figure 5c shows the sample quality and size. For HSR and DBSRSVDD,
sampling quality fluctuates significantly. NDPSR and DBSRSVDD do not prune
any observation with only one component. We think that these effects are due to
the sensitivity to the exogenous parameters of the various methods. This is, meth-
ods with fluctuating results would require different parameter values for data sets
of different difficulties. However, the competitors do not come with a systematic
way to choose parameter values to adapt to varying data set difficulty. RAPID
in turn is very robust to changes in difficulty. As expected, the sample size in-
creases only slightly with increasing difficulty. The classification accuracy is close
to MCC = 1.0, even for high difficulties.

In summary, our experiments on synthetic data reveal that many competitors
are sensitive to data size, dimensionality, and complexity. Different parameter val-
ues may mitigate the effects in a few cases, but selecting good values is difficult.
RAPID on the other hand is very robust. It adapts well to different data charac-
teristics and does not require any parameter tuning.

5.3 Benchmark on Real-World Data

Next, we turn to data sets with real distributions and more diverse data charac-
teristics. The basis for our experiments are 23 standard benchmark data sets for
outlier detection Campos et al. (2016). Campos et al. constructed this benchmark

2 Because of limited space, we report median statistics, but results also hold for mean values
and individual comparisons (ranks), see https://www.ipd.kit.edu/ocs.

https://www.ipd.kit.edu/ocs
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Fig. 6 Median MCC and ratio of observations removed by sampling (1 - sample ratio =
(N−|S|)/|X|) over real-world data.2

Table 2 Median metrics over real-world data.2

runtimes sample quality
tsamp ttrain tclass

∗ size ratio MCC

RAPID 0.01 0.02 0.00 18.0 0.04 0.14

BPS† 0.08 0.29 0.01 279.0 0.60 †
DAEDS 0.35 0.03 0.00 77.0 0.17 0.06
DBSRSVDD 0.01 0.02 0.00 35.0 0.09 0.08
FBPE 0.04 0.02 0.00 40.0 0.07 0.08
HSR 0.12 0.04 0.00 111.0 0.40 0.06
IESRSVDD 0.01 0.05 0.00 127.0 0.22 0.13
KFNCBD 0.27 0.03 0.00 80.0 0.18 0.04
NDPSR 0.04 0.04 0.00 87.0 0.23 0.14

* time for classification in seconds per 1000 observations.
† did not solve for large data sets.

from classification data where one of the classes is downsampled and labeled as
outlier. The data sets have different sizes (80 to 49 534 observations), dimension-
ality (3 to 1555 dimensions) and outlier ratios (0.2 % to 75.38 %, median 9.12 %3).
Again, we structure our experiments along two questions.

Q3 How well do methods adapt to real-world data sets?

First, we compare RAPID against competitors without any pre-processing. Fig-
ure 6 plots the median sample ratio against the SVDD quality over all data sets.2

Good sampling methods return small sample ratios and yield high SVDD quality,
i.e., they appear in the upper right corner of the plot. Rand is shown for different
r ∈ [0.01, 1.0]. All of the competitors in their original version, i.e., without pre-
filtering, result in poor SVDD quality, much lower than the Rand baselines. The
reason is that they expect all observations to be inliers. BPS with pre-filtering did
not yield any solution for large data sets.

With our pre-filtering, SVDD qualities of competitors improve considerably,
see Figure 6 and Table 2. Still, RAPID outperforms its competitors; none of them
produces a sample with higher SVDD quality or smaller sample size than RAPID.

3 Only the data set “Parkinson” has an outlier percentage higher than 40%.
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The methods closest to RAPID are IESRSVDD and NDPSR, with similar SVDD
quality, but significantly larger sample sizes. On average, the sample selected by
RAPID even yields the same quality as training a SVDD without sampling.4 Fig-
ure 7 in the Appendix of this article features a more detailed evaluation per data
set.

Q4 What are the runtime benefits of sampling?

Next, we look at the impact of sampling on algorithm runtimes, see Table 2. We
measure the execution runtimes of the sampling method (tsamp), of SVDD training
on the sample (ttrain), and of the classification (tclass). Overall, all methods have
reasonable runtimes for sampling, with DAEDS being the slowest with 0.35 s on
average. However, RAPID is the fastest method overall Methods with runtimes
similar to RAPID, such as DBSRSVDD, feature significantly lower SVDD quality.
For the big data sets (ALOI and KDDCup99), RAPID, DBSRSVDD, FBPE, and
HSR have a tsamp of around one minute or less, see Figure 8 and Table 3 in the
Appendix of this article. RAPID achieves the highest classification quality nev-
ertheless, even compared to the slower competitors. Compared to SVDD applied
to large original data sets without sampling, RAPID reduces training times from
over one hour to only a few seconds.4

Finally, we look at the statistical significance of our results. We perform a
Friedman test with a pairwise comparison of the methods via a post-hoc Neményi
test for three metrics: SVDD quality (MCC), sample ratio (|S|/|X|) and algorithm
runtime tsamp. The test on SVDD quality confirms that no other method is sig-
nificantly better than RAPID. Yet RAPID produces significantly smaller samples
(p < 0.01 for all competitors except for FBPE where p < 0.05). RAPID also is
significantly faster at sampling the data set than BPS, DAEDS, DBSRSVDD,
KFNCBD, and NDPSR, the closest competitor in terms of quality (p < 0.01). For
more details see Figure 9, Figure 10, and Figure 11 in the Appendix of the article.

In summary, RAPID outperforms its competitors on real-world data as well.
There is no other method with higher SVDD quality and similarly small sample
sizes. RAPID scales very well to very large data sets and reduces overall runtimes
by up to an order of magnitude.

6 Conclusions

SVDD does not scale well to large data sets due to long training runtimes. There-
fore, working with a sample instead of the original data has received much attention
in the literature. Various existing sampling approaches guess the support vectors
of the original SVDD solution from data characteristics. These methods are dif-
ficult to calibrate because of unintuitive exogenous parameters. They also tend
to perform poorly regarding outlier detection. One reason is that including sup-
port vector candidates in the sample does not guarantee them to indeed become
support vectors.

Our article addresses these issues. We formalize SVDD sample selection as an
optimization problem, where constraints guarantee that SVDD indeed yields the

4 Based on data sets with non-prohibitive runtime, i.e., N < 25 000, see https://www.ipd.
kit.edu/ocs for details.

https://www.ipd.kit.edu/ocs
https://www.ipd.kit.edu/ocs
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correct decision boundaries. We achieve this by reducing SVDD to a density-based
decision problem, which gives way to rigorous arguments why a sample indeed
retains the decision boundary. To solve this problem effectively, we propose a novel
iterative algorithm RAPID. RAPID does not rely on any parameter tuning beyond
the one already required by SVDD. It is efficient and consistently produces a small
high-quality sample. Experiments show that the way we have framed sampling as
an optimization problem improves substantially on existing methods with respect
to runtimes, sample sizes, and classification accuracy.
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Appendix

Algorithm 3: Synthetic data generation

Input : number inliers Nin, number outliers Nout, dimensionality M , number of

clusters Nc, cluster standard deviation σcluster, Kernel function k(xi, xj),

threshold probability θpre ∈ [0, 1], data range rmin, rmax = 0, 1

Output: Synthetic inliers I and outliers O

1 N1, . . . , NNc = bNin/Ncc
2 for i← 1 . . . (Nin mod Nc) do . distribute remaining inliers

3 Ni = Ni + 1

4 end

. Create Gaussian Mixture

5 center-box = (rmin + (rmax − rmin) · 0.2, rmin + (rmax − rmin) · 0.8)

6 for i← 1 . . . Nc do

7 Draw M -dimensional vector µi from Ucenter-box

8 θi = (µi, σcluster)

9 end

. Generate Inliers

10 Ii, . . . INc = ∅
11 for i← 1 . . . Nc do

12 while |Ii| ≤ Ni do
13 Draw M -dimensional vector x from N (µi, σi) with p(x | θi) ≥ θpre

14 Ii = Ii ∪ {x}
15 end

16 end

17 I =
⋃

i←1,...,Nc

Ii

. Generate Outliers

18 O = ∅
19 while |O| ≤ Nout do

20 Draw M dimensional vector x from U[rmin,rmax] where

∀i ∈ {1, . . . , Nc} : p(x | θi) < θpre

21 O = O ∪ {x}
22 end

23 return I, O
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Fig. 9 Statistical significance p-values after a Friedman and post-hoc Neményi test for the
resulting SVDD quality measured via MCC over real-world data.
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Fig. 10 Statistical significance p-values after a Friedman and post-hoc Neményi test for sam-
pling ratio (|S|/|X|) over real-world data.
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Fig. 11 Statistical significance p-values after a Friedman and post-hoc Neményi test for the
sampling time tsamp over real-world data.
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Table 3 Metrics over two large real-world data sets.

tsamp ttrain tclass
∗ ratio MCC

Data set Method

ALOI DAEDS 344.2817 3847.4930 13.1636 0.1844 0.0410
DBSRSVDD 55.0896 0.7726 0.9503 0.0106 0.0357
FBPE 21.1945 0.0198 0.4990 0.0010 0.0392
HSR 24.0747 0.0204 0.1129 0.0010 0.0306
IESRSVDD 134.3110 296.5463 8.7749 0.0777 0.0416
KFNCBD 247.4868 4607.4732 12.9629 0.1939 0.0412
NDPSR 92.1190 8.3500 2.5350 0.0250 0.0375
RAPID 45.8714 0.0184 0.0638 0.0005 0.0420

KDDCup99 DAEDS 309.7272 3865.6893 14.6692 0.1885 0.3501
DBSRSVDD 70.2679 0.1531 0.5541 0.0057 0.1966
FBPE 27.3335 0.0207 0.4622 0.0010 0.0826
HSR 34.2100 0.2661 0.5596 0.0069 0.2296
IESRSVDD 161.1876 3969.8312 17.6572 0.1913 0.4056
KFNCBD 256.9911 4591.3423 16.2102 0.1992 0.4025
NDPSR 90.1258 0.1127 0.4317 0.0050 0.2667
RAPID 58.3369 0.0229 0.1312 0.0013 0.4501
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Fig. 12 Median Cohen’s kappa coefficient and ratio of observations removed by sampling (1
- sample ratio = (N−|S|)/|X|) over real-world data.
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