Efficient and Reliable Estimation of Cell Positions

Mirela T. Cazzolato, Agma J. M. Traina
Institute of Mathematics and Computer Sciences
University of Sdo Paulo, USP
S30 Carlos, Brazil
mirelac@usp.br,agma@icmec.usp.br

ABSTRACT

Sequences of microscopic images feature the dynamics of develop-
ing embryos. Automatically tracking the cells from such sequences
of images allows understanding the dynamics which a living ele-
ment demands to know its cells movement, which ideally should
take place in real-time. The traditional tracking pipeline starts with
image acquisition, data transfer, image segmentation to separate
cells from the background, and then the actual tracking step. To
speed up this pipeline, we hypothesize that a process capable of
predicting the cell motion according to previous observations is
useful. The solution must be accurate, fast and lightweight, and be
able to iterate between the various components. In this work we
propose CM-Predictor, which takes advantage of previous positions
of cells to estimate their motion. When estimation takes place, we
can omit costly acquisition, transfer and process of images, speed-
ing up the tracking pipeline. The designed solution monitors the
error of prediction, adapting the model whenever needed. For val-
idation, we use four different datasets with sequences of images
with developing embryos. Then we compare the estimated motion
vectors of CM-Predictor with traditional tracking methods. Experi-
mental results show that CM-Predictor is able to accurately estimate
the motion vectors. In fact, CM-Predictor maintains the prediction
quality of other algorithms and performs faster than them.

CCS CONCEPTS

« Computing methodologies — Tracking; - Applied comput-
ing — Life and medical sciences; Computational biology;
Imaging;

KEYWORDS

Cell tracking, moving objects, microscopic images, developing em-
bryo, predictive analysis

ACM Reference Format:

Mirela T. Cazzolato, Agma J. M. Traina and Klemens Béhm. 2018. Efficient
and Reliable Estimation of Cell Positions. In The 27th ACM International
Conference on Information and Knowledge Management (CIKM ’18), October
22-26, 2018, Torino, Italy. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3269206.3271734

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM 18, October 22-26, 2018, Torino, Italy

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6014-2/18/10...$15.00
https://doi.org/10.1145/3269206.3271734

Klemens Bohm
Institute for Program Structures and Data Organisation
Karlsruhe Institute of Technology, KIT
Karlsruhe, Germany

klemens.boehm@kit.edu
1 INTRODUCTION

Problem Statement. Tracking cells of developing embryos from
sequences of microscopic images is an important task regarding the
study of the dynamics of biological processes [3, 6]. Such tracking
must take place automatically, to facilitate scalability. Figure 1(a)
is the traditional pipeline of cell tracking. It encompasses image
acquisition, data transfer, image processing and then the actual
tracking. After each iteration, the pipeline is performed again; the
thin arrow represents this. These steps must be done in a timely
manner, to process the data ideally in real-time. The conventional
solution applies a segmentation algorithm to separate cells from
the background of the images and to collect their positions (spatial
coordinates). However, limitations of image capturing and segmen-
tation introduce artifacts in cell curvatures, making the tracking of
cells a difficult problem [4]. Tracking algorithms now establish cell-
to-cell correspondences along the sequence of images, by matching
cells according to their locations. When tracking cells, conventional
algorithms also do build vectors of cell trajectories, but this takes
place late in the data-processing chain, so the vectors are not used
for tracking. In this paper, we study whether and to which extent
establishing an explicit representation of the motion of cells from
the images early in the chain gives way to better cell tracking.

If such an explicit representation is given, one can use it to accu-
rately and efficiently predict/estimate the positions of the cells. This
in turn would avoid transmitting the full images and storing them
before any analysis takes place — in our institution, this currently
takes hours for one embryo and is the bottleneck of the entire
embryo-breeding workflow. There is a close relationship to moving
objects and moving objects databases [2, 13, 15], a field that the
database-research community has devoted much attention to over
the years, and we will elaborate on the connection. Briefly, while
moving objects traditionally are traffic participants (cars, pedestri-
ans etc.), investigating whether ideas from there also help with the
tracking of cells of developing embryos is worthwhile.

Figure 1(b) depicts the pipeline proposed in this paper. The steps
from the traditional pipeline (boxes inside the gray area) are omitted
in iterations when this estimation takes place. All this means that
different kinds of improvement should be possible (be it detection
quality, be it speed of tracking). However, different metrics to assess
the improvements are necessary, and we discuss such measures as
well. There are also alternative models of cell motion. For instance,
alternatives relate to the number of points used for interpolation,
and the distance threshold used for matches. We establish the design
space and evaluate the plausible options systematically.

Difficulties. Our solutions must update the representation of
the motions as new data arrives. Accordingly, when taking advan-
tage of previous cell positions for prediction, the solution must
monitor the prediction error at each iteration, in order to adapt


https://doi.org/10.1145/3269206.3271734
https://doi.org/10.1145/3269206.3271734
https://doi.org/10.1145/3269206.3271734

Segmented
» image

Image Processing

=9

Segmentation

» Cell
Tracking »

Im.a.g? Data Algorithm Metadata

acquisition transfer

______ s
s Image Processing Segmented
oy image Cell
! | \4\, d Segmentation Tracking
i Image Data Algorithm
iacquisition e Metadata
é I Renew the acquisition . /\
| yes to improve prediction MO.t'O.n
i 7 no Prediction

» Cell Motion

error > maxError? —‘

(b) The proposed pipeline

Figure 1: Difference between (a) the traditional pipeline of cell tracking and (b) the proposed one: by predicting cell positions,
most steps of the traditional pipeline can be skipped for many iterations, speeding-up the entire process.

the model when necessary. Extreme solutions like just throwing
away the previous model or adapting the model only minimally
do not appear to be promising. Our proposal also requires reor-
ganizing the interaction between the various components such as
image segmentation or tracking. At the same time, the solution
must be light-weight. Very importantly, it must work orthogonally
to existing tracking tools, i.e., be combinable with existing imple-
mentations of the other components of the pipeline. In fact, our
objective is not to “replace” existing techniques for image segmen-
tation and tracking, but to use available implementations and focus
on the establishment of vectors describing cell motions. Finally,
modularity is a related yet different requirement. Dealing with im-
age segmentation and tracking separately makes the pipeline more
flexible, by being able to replace individual components.

Contributions. In this paper we propose CM-Predictor, which
takes advantage of cell locations from previous images, to estimate
their motion along time. By estimating cell motion, we can speed
up the generation of the output. We perform a motion estimation
after the acquisition of sufficiently many cell points, taking advan-
tage of Lagrange’s polynomials [1]. We show this to be adequate
for the problem at hand. CM-Predictor relies on existing segmenta-
tion algorithms to obtain the position of cells in previous images.
We compare the estimated motion vectors of CM-Predictor with
the results of conventional tracking methods, for four different
datasets. CM-Predictor can accurately estimate cell-motion vectors,
improving the tracking pipeline by presenting better results than
the existing tracking approaches. It is able to maintain prediction
quality while being faster than other algorithms.

Paper Outline. Section 2 describes relevant background; Sec-
tion 3 presents related work; Section 4 describes two algorithms
for cell tracking; Section 5 introduces the CM-Predictor; Section 6
features experiments; Section 7 concludes.

2 BACKGROUND

This section features fundamental concepts related to cell motion.
A sequence of microscopic images depicts the development of an
embryo: It starts with a single cell that splits over time, as the em-
bryo is developing. The images are obtained after fixed intervals of
time, depending on the quality and configuration of the acquisition
equipment. Each cell detected in the image by the segmentation
algorithm has a spatial location, referred to as seed (or seed point)
at time ¢. A match of a new seed point and an already existing cell
is a seed-to-cell correspondence. The accurate monitoring of topolog-
ical changes, e.g., splitting objects over time, relies on the accuracy
of cell detection in each time frame [12]. An image-processing
algorithm is applied to the images, to separate objects from the
background, thus detecting and segmenting cells. One such algo-
rithm is TWANG [14]. We have used TWANG in this work, as it is
fast and segments images with high accuracy. Such an algorithm
outputs segmented images, with the detected cells, as well as meta-
data information, containing the position of each cell in each image.
The literature also reports the problem of segmenting overlapping
and touching cells [11, 17]. While this is a challenge as well, it is
beyond the scope of this current article.

Given a sequence of images, and since a cell changes its position
in each image, we can represent the trajectory of a cell as a list
of seeds. For example, given a Cell ¢, detected in the images in
time interval (3, n], its trajectory is T = (sc3, ..., Scn), where sc; is
the seed of ¢ at time i with 3 < i < n. The next section reviews
algorithms for the tracking of cells from sequences of images.

3 RELATED WORK

This section does not cover all related work; we discuss more when
introducing our approach, to enable more direct comparisons.



Tracking microscopic objects. Biologists use the outputs of
cell tracking to analyze changes induced by the use of substances,
such as contrast agents, observing the evolution in cell motion and
morphology [7]. There is a lot of work regarding the tracking of
cells. Chakraborty et al. [5] propose to represent the cells of an
embryo using a graph structure. Their method works with cells
that are in close contact with each other, i.e., share an edge. The
method constructs a graph structure for the cells every time a new
image is processed. Jiuging et al. [9] define six local events (move,
divide, appear, disappear, split, merge) to describe linking patterns
between pairs of consecutive images. Unlike our proposed pipeline,
their proposal consists of a joint detection and tracking method,
predicting cell trajectories by solving a linear programming problem
and learning the model parameters with a structured SVM.

Hielsenbeck et al. [8] present a review of existing tools. Among
the tools mentioned is the TLM-Tracker [10]. We use this tool as a
reference, to compare with our methods, since it attempts to per-
form a fully automated cell tracking and is available online. TLM-
Tracker has several steps, which range from the pre-processing of
input images, the detection and tracking of cells, to the visualiza-
tion of the motion vector of the embryo. TLM-Tracker applies a
segmentation algorithm to the images and searches for seed-to-cell
correspondences in two consecutive images, using two different
approaches: (i) based on the areas of cells, (ii) based on the center
points of cells. The first approach (i) gets the minimum bounding
rectangle (MBR) of each cell, from two consecutive images. Then
it gets the distance between the cells in time by computing the
relative overlap of their MBRs. If there is no overlap, the second
approach (ii) computes the Euclidean distance between the cen-
ter points of cells. TLM-Tracker has a joint detection and tracking
step to predict the cell positions. This prediction is computed us-
ing a fitted polynome: the approaches restrain the search space
for the segmentation algorithm, to look for the probable match
point of a certain cell in the next image. Although the tool was
originally proposed to work with elongated cells, the authors state
that TLM-Tracker works well with different kinds of cells [10].

The aforementioned state-of-the-art tracking approaches work
with cell points detected from sequences of images. However, the
traditional pipeline to obtain the motion vector of embryo cells can
be computationally expensive. To overcome this issue, in Section 5
we propose CM-Predictor to establish the motion vectors of cells,
based on cell points from previous images.

Moving objects. The movement of objects and its concise repre-
sentation, possibly together with uncertainty, have been of interest
to the database community. For instance, Tao et al. [15] focus on the
problem of predicting motion pattern. They argue that individual
trajectories may vary significantly, but most motion types show
self-similar behavior, in the sense that one can often predict the
current location from the ones in the recent past. They propose a
framework to index object locations and to process queries, based
on estimated position of objects. More recently, AlMuhisen et al.
[2] have proposed a characterization of the behavior of moving
objects, obtained by GPS locations of smartphones, cars etc. They
look for correspondences between hidden patterns and trajectories,
using frequent pattern mining. They tag city maps to visualize the
behavior of different spatio-temporal values. Saltenis et al. [13]
have modeled the positions of moving objects as functions of time.

According to them, modeling the movement of objects not only
facilitates predictions, but also solves the problem of frequent up-
dates that would be required to approximate continuous movement
in a traditional setting. Borrowing from these ideas, we now tar-
get at useful representations of a specific kind of moving object,
developing cells in microscopic images.

4 THE TRADITIONAL PIPELINE:
TRACKING CELLS

When applied to the images, the segmentation algorithm generates
the segmented image and metadata. The metadata contains the
position of each detected cell and represents them as seed points.
These seed points serve as input to the tracking algorithm, which
is responsible to add each newly detected seed point to its corre-
sponding cell (i.e., a previously detected cell). In this section we
present two algorithms: Direct-Tracker and Clever-Tracker. They
are basic building blocks which we will employ for the task of
tracking cells. The segmentation algorithm used in this work is
TWANG [14]. However, any segmentation algorithm that outputs
the cell positions in a given image can be used here.

4.1 Data Structures

The tracking approaches use a distance-threshold value th to decide
if a pair of seeds is a match. This pair consists of seed points from
time ¢t — 1 that have already been added to the description of cells
of the embryo and the new seeds, detected at time ¢. Given this
threshold, the approaches do not need to test all possible combi-
nations of seeds to determine a match, speeding up the matching.
Thus the tracking algorithms receive as input:

o S;_1: alist with all seeds at time ¢ — 1, sorted by the order
of detection. These seeds have already been inserted to the
description of cells from an embryo;

o S;:alist with all seeds detected at time ¢, sorted by the order
of detection;

e th: the distance threshold.

And as output, the approaches return:

e embryo: an embryo, composed of moving cells, each one
represented as a sequence of seed points.

4.2 Adding a Cell Match

Let C be the set of cells of an embryo, seen so far in the sequence
of images. Recall that each seed in S;—; stands for a cell ¢ € C. To
decide whether a pair of points is a match we employ the Euclidean
Distance (Lz). The approaches we will propose use the Function
AddMatch to add a new match: The new seed point sy € Sy is added
to a cell C which contains the matching seed point s; € S; (Lines 1—-
3). Then both seeds, which are from ¢ — 1 and ¢, are removed from
the lists S;—1 and S; (Lines 4-5). If an existing cell has more than
one new seed point as a match at time ¢, this means that the cell
has been split. Thus, the tracking approach creates a new cell for
each match with a new seed.

The data structures and the method for adding another cell to
the embryo are the same for both Direct-Tracker and Clever-Tracker.



Function AddMatch(embryo, s1, s2, S1, S2)

1 Let C be the set of cells of embryo seen so far
2 ¢ « cell € C containing seed s1;

3 c.addSeed(sz);

4 Remove s; from Sy;

5 Remove sy from Sy;

6 return embryo

4.3 Tracking Approaches

Direct-Tracker and Clever-Tracker are as follows. They select the

pair of seeds to be matched p(s;—1, s;) based on a specific criterion:
o Direct-Tracker works in a greedy manner, matching the seed

point of the existing cell to the first seed point within a
distance threshold;

o Clever-Tracker maps each new seed point to its nearest cell.

Direct-Tracker

Algorithm 1 presents Direct-Tracker. For each newly detected seed
at time ¢ (s;), Direct-Tracker searches for a matching seed at time
t — 1 (s¢—1) (Lines 3-5). Here, s;—1 belongs to an existing cell and
is less than th of the distance from s;. Accordingly, if the distance
between s; and s;—1 is less than a distance threshold, we consider
them a match (Line 7). Direct-Tracker works in a greedy manner: It
deems the first existing seed point (s;—1), which is close to a new
seed point (s;) according to a distance threshold, a match. Note that
this does not ensure that the seed point s;— is the nearest seed
point of s;. However, Clever-Tracker can do that.

Algorithm 1: Direct-Tracker
Input : S;_;: alist with all seeds from time ¢ — 1

Sy: a list with all seeds from time ¢
th: the distance threshold

Output: The embryo, containing seed points of already
existing cells and new seeds.

1 begin
2 initialization;
3 foreach seeds; € S; do
4 matched_t «— —1;
5 foreach seed s;—1 € S;—1 do
6 d < ComputeDistance(st, s¢—1);
7 if (d < th AND matched_t = —1) then
8 AddMatch(embryo, st, st—1, St St—1);
9 L matched _t « 1,
10 Create new cells for remaining seeds and add them to
embryo
11 return embryo

The result of Direct-Tracker depends on the order of seeds. The
segmentation algorithm usually searches for cells following the
order of pixels: for example, from the pixel in the top left corner
of the image to the one at the bottom right. Thus, the cells tend to

maintain the same order when listed by the segmentation algorithm,
with minor changes due to new cells, resulting from cell splits.

Clever-Tracker

For each new seed point, Clever-Tracker uses the Function Check-
NearestSeed (Algorithm 2) to search for its nearest existing cell that
is already in the embryo. Given a seed sq existing at time ¢, Func-
tion CheckNearestSeed checks if there is a seed s;—1 in S;—1; where
d(sq,st-1) < mindist, i.e,, if there is a seed close to s4 (Lines 10-14).
The distance between two seed points must be less than a distance
threshold to be considered a match.

Algorithm 2 is the pseudo-code of Clever-Tracker. For each new
seed at time ¢ (Line 3), Clever-Tracker searches its closest seed
(belonging to an existing cell) at time ¢ — 1 (Line 5). Function Check-
NearestSeed (Line 5) searches the nearest seed, and the matches are
added by calling Function AddMatch (Line 7).

Algorithm 2: Clever-Tracker

Input : S;_j:alist with all seeds from time ¢ — 1
S;: a list with all seeds from time ¢
th: the distance threshold

Output: The embryo, containing seed points of already
existing cells and new seeds.

1 begin

2 initialization;

3 foreach seed s; € S; do

4 mindist « +oo;

5 (matched_t, mindist) < CheckNearestSeed(ss, S¢—1, th,

mindist, —1)

6 if (matched_t > —1) then

7 L AddMatch(embryo, st, Smarched t»St> St—1);

8 Create new cells for remaining seeds and add them to
embryo

9 return embryo

10 Function CheckNearestSeed(sq, S, th, mindist, matched_t)
11 foreach seeds; € S do

12 d < ComputeDistance(sq, s;);

13 if (d < mindist AND d < th) then
14 mindist < d;

15 L matched_t « i;

16 return matched_t, mindist;

The next section describes the estimation of cell positions based
on seed points detected previously.

5 THE PROPOSED PIPELINE: ESTABLISHING
CELL MOTION ALONG TIME

As just discussed, tracking algorithms use seed points detected in
sequences of images to construct cell trajectories, following the tra-
ditional pipeline. We propose modifications to this pipeline. It now
predicts future positions of cells, taking advantage of previously
detected ones, to estimate cell motion. When we have enough cell



points for motion estimation, prediction takes place. We propose the
CM-Predictor (Cell Motion Predictor) algorithm, described next.

5.1 Motion Estimation

CM-Predictor estimates new positions of points by using Lagrange’s
polynomials [1], see Equation 1. P(x) is the polynomial of degree <
n—1 passing through n data points. (xo, yo), ..., (xj, ), ..., (Xn—1, Yn-1)
are these n points, where no two x; are equal, and 0 < j<n

n
P(x) = )" Pj(x), (1)
j=1
where 1_[ X —x
Pj(x) = y; - P
ket,...ny-{j) 7 Tk

Here, Pj(x) is the polynomial at j. Function Interpolate-Points is
the pseudo-code for estimating the points of each cell belonging
to an embryo, relying on Equation 1. Note that we estimate the
position of a new seed point based on last observed points of a cell.
Thus, the algorithm assigns the estimated point to this cell (Line 7),
without looking for a matching cell.

If the next cell position predicted by Interpolate-Points is at least
th of the distance from the last position, we deem the prediction
of this point correct; otherwise this is an interpolation error. The
interpolation continues as long as the percentage of cells wrongly
predicted is less than maxError, where 0 < maxError < 1. When
the error is higher, CM-Predictor discards the oldest points of each
sequence of points (cell) which are used for interpolation, see Sub-
section 5.3.

Function Interpolate-Points(embryo)

1 foreach cell ¢ in embryo do

2 S « c.getSeeds();

3 for (i = 0 to S.size() — 1) do

4 newSeed.x « Predict x using Eq. 1;
5 newSeed.y « Predict y using Eq. 1;
6 newSeed.z « Predict z using Eq. 1;

7 Add newSeed to cell ¢ of the embryo;

8 return embryo;

5.2 Parameters
CM-Predictor receives as input:

e S;_1:alist with all seeds detected at time t — 1;

e S;: alist with all seeds detected at time ¢;

e th: a distance threshold;

e w: the window size;

o pw:share of the window discarded after maxError is reached;

e maxError: maximum error allowed when interpolating points.
We use the current motion vector for prediction until the error

exceeds a threshold. Then the oldest points of the current motion

vector are discarded, and the window is renewed, i.e., new points

are added to the window used for the interpolation. The size of the

window w is an exogenous parameter in this current study, and we

will study its influence experimentally.

5.3 The Cell Motion Predictor

Algorithm 4 is the pseudocode of CM-Predictor. The tracking takes
place until all images have been processed. As long as CM-Predictor
has not processed w images (Line 4), a tracker matches the cells.
CM-Predictor deploys one of the approaches from Section 4. It does
so by calling Function PerformTracking (Lines 5 and 6). The window
is incremented (Line 7), and the algorithm checks if w images have
been processed (Lines 8 and 9). If so, the algorithm uses the last
w seeds of each cell for the interpolation. In the next iteration,
the algorithm predicts the next points by calling Interpolate-Points
(Line 11). This function uses the w last seeds added to the embryo
to estimate the next points (Lines 16-22).

CM-Predictor estimates the new points using Equation 1, return-
ing the embryo with the predicted seeds in the cells. The algorithm
uses a multiple of the distance threshold c - th to bound the distance
between the existing cell and its predicted new position. The pa-
rameter c forces the estimation of points to be near the previous
position of the cell, ensuring that the predicted point is closer to
its original cell than th and not totally off. Alternatively, when
¢ = 1, the algorithm employs the same threshold th used during
the tracking step. If a predicted point is not closer than the distance
threshold ¢ - th to its original cell, the algorithm deems the pre-
diction a mistake and increments the number of errors. At each
iteration, CM-Predictor checks if the number of errors is greater
than maxError (Line 12). If so, the percentage pw of oldest points
in the window is removed, and the algorithm processes the next
image (from time ¢ + 1) (Line 13). The next image is captured and
processed by the segmentation algorithm, before CM-Predictor con-
tinues working. These pw oldest points are at the beginning of each
sequence of seed points, which configures the movement of a cell.
If the number of errors is not greater than maxError, CM-Predictor
performs the interpolation again, predicting the points at time ¢ + 1.
This process is repeated until all images from the sequence are
processed (Line 3).

As mentioned, CM-Predictor has the parameters w (size of the
window), pw (percentage of the window discarded after reaching
the maximum error allowed), and th (the distance threshold). Sec-
tion 6 will study their effects experimentally.

6 EXPERIMENTAL ANALYSIS

In this section we present the experimental analysis of the vari-
ous methods. All experiments have been executed in an Intel(R)
Core(TM) i7-4770 CPU 3.40GHz 1TB-HD 16GB machine, running
the Ubuntu 16.04.3LTS operating system.

6.1 Evaluation Measures

We employ the following measures to validate our method: the
total number of cells created by the trackers, the tracking error,
and the trajectory of cells (by plotting their distance to the image
centroid), which are quality measures; and the average execution
time, to assess the performance of the algorithms. These measures
are as follows. For each image of the sequence, the tracker matches
new seed points with existing cells and creates new cells for seed
points that have not been matched. We compute the total number
of cells created by the tracker and added to the embryo. Ideally,
this number must be close to the number of cells reported by the



ground truth and TWANG, as depicted in Figure 3. We consider
both numbers because the ground truth reports the actual number
of cells present in the image, while the output of TWANG is the
cells that the trackers must work with.

Algorithm 3: CM-Predictor

Input : S;_;:alist of seeds from time t — 1
S;: a list of seeds from timet
th: a distance threshold
w: the window size
pw: percentage of the window to be discarded
maxError: the maximum error allowed

Output: The embryo, containing seed points of already
existing cells and new seeds.

1 begin

2 initialization;

3 while (t < sizeOfSequence) do

4 if (window < w) then

5 foreach seed sy € S; do

6 L embryo < PerformTracking();

7 window++;

8 if (window = w) then

9 L Initialize polynomial;

10 else

11 embryo < Interpolate-Points(embryo);

12 if (error > maxError) then

13 Remove pw% of the oldest points in the
L window and process next image

14 t++;

A tracking error occurs when the algorithm misses a seed-to-
cell correspondence or adds a non-existing one. In other words,
if the algorithm erroneously creates a new cell, this is a tracking
error. If the algorithm adds the new seed point to an existing cell
when it should have created a new cell, this is a tracking error as
well. With the number of tracking errors we compute the Tracker
Detection Rate (TDR) [4]. It is TDR = TP/n, where True Positives
(TP) is the number of images with no tracking errors, and n is the
number of images in the sequence. TDR allows to evaluate seed-to-
cell correspondences, and TDR values close to 1 represent optimal
results. We also evaluate motion vectors of cells estimated by CM-
Predictor by computing the distance of all cell points to the
centroid of the image. This distance is important to observe how
the cells were matched along time, and to compare the position of
cells detected in the image to the ones predicted by CM-Predictor.

To evaluate the performance of trackers, we look at the average
execution times (during the tracking step only). More specifically,
we run each algorithm 1, 000 times, and we then take the average.

6.2 Dataset and Parameters Setup

We use the datasets provided by the Cell Tracking Challenge!. In
this benchmark, each dataset has its original images, ground truth

The Cell Tracking Challenge: www.celltrackingchallenge.net [16] — Last access in
August 15th, 2018.

annotations and segmented images. The annotations have been
done manually. They are available in the following format: “id
of cell”, “initial time” (indicating the first time the cell has been
detected), “final time” (indicating the last time the cell has been
detected), and “id of parent cell” (if this cell has been generated
from the split of another one). Table 1 lists the datasets used in
each experiment, with the original name and the number of images,
and the type of images in the dataset (2D + t and 3D + t). Figure 2
contains examples of such images.

Table 1: Datasets used in each experiment.

Experiment Dataset Set Type # images
Expl.1 Fluo-N3DH-SIM+ 01 3D+t 150
Expl.2 Fluo-N3DH-SIM+ 02 3D+t 80
Exp2.1 Fluo-N2DH-GOWT1 01 2D+t 92
Exp2.2 Fluo-N2DH-GOWT1 02 2D+t 92
\ Expl.1 Exp2.1 Exp2.2
B
B
20
~
Q
=
2
g
g
&

(95

Figure 2: Examples of original and segmented images.

In the segmentation step, TWANG has the parameter values
SpacingX = 0.3, SpacingY = 0.3 and SpacingZ = 2 for the four
used datasets, obtained experimentally. All other parameters have
their default values, see [14]. TLM-Tracker includes several segmen-
tation algorithms to detect cells from images. We use TLM-Tracker
with the segmentation algorithm Chan-Vese for Exp2.1 and Wa-
tershed for Exp2.2, since they had yielded the best segmentation
results. We have not used TLM-Tracker in Experiments Exp1.1 and
Exp1.2, since it does not support 3D+t images.

6.3 Pre-processing;:
Detecting Cells from Images

We have applied TWANG and TLM-Tracker to the images (in the
segmentation step) to obtain the seed points of the cells, which the
trackers can then use subsequently. Detecting seed points can be
seen as a preprocessing step of our proposal, which extracts the
cell information from images. Figure 3 compares the total number
of cells obtained with TWANG, TLM-Tracker and the ground truth.
Both approaches result in different numbers of cells. The TLM-
Tracker features more divergence than TWANG compared to the
ground truth. TLM-Tracker did not detect all cells in the images
from Exp2.1 and Exp2.2. This is because most cells from Exp2.1 and
Exp2.2 are faded, i.e., they are not easy to recognize, see Figure 2.


www.celltrackingchallenge.net

Once we have the positions of the cells, we proceed to the track-
ing and prediction steps.

Expl.1 Exp1.2
P 60
-748 40
[ 40
5
T 20
2 20
g
s
Z 0 0
0 50 100 150 0 20 40 60 80
Exp2.2
2
=
(5]
Q
G
5
S
|5
e
g
=] i y
Z ol 0
0 25 50 75 0 25 50 75

Time (image number) Time (image number)

| ----- #:« TWANG Grount Truth ~ ssssssssass TLM-Tracker

Figure 3: Number of cells detected by TWANG and TLM-
Tracker, compared to the number of the ground truth data.

6.4 Tracking and Predicting
Trajectories of Cells

We first define the distance threshold th to be used in each ex-
periment. Figure 4 shows the TDR results with Direct-Tracker and
Clever-Tracker. Each point represents the TDR result obtained after
processing all images of the sequence, using a specific distance-
threshold value. The size of the dots represents the number of cells
created by the algorithms. We also plot the total number of cells
from the ground truth as dark dots in the middle of each point.
The best threshold value must yield high TDR values and dot sizes
close to the ground truth. The total number of cells created by the
algorithm also needs to be close to the ground truth. We can see
that, as th increases, the number of cells created is higher, diverging
even more from the ground truth. For small values of th, i.e., about
less than 10, the TDR results also tend to be low. Accordingly, the
best values are those between approximately 10 and 30. The dashed
vertical lines represent threshold values th used in the remaining
experiments: th = 18 for Exp1.1, th = 22 for Exp1.2, th = 18 for
Exp2.1 and th = 15 for Exp2.2.

Using these threshold values, we generate all combinations for
the following parameter values of CM-Predictor: w from 1 to 15
(increment of 1), pw and maxError from 0.1 to 1.0 (increment of
0.1), and threshold from 0.1 - th to 1.0 - th (increment of 0.1). This
results in 15 X 10 X 10 X 10 = 15,000 combinations, from now
on called configurations. Figure 5 shows the TDR results of all
configurations, where the size of the dots corresponds to the number
of cells created, and the dark dots inform us on the number of cells
of the ground truth. The best results are those with small blobs,
and they are at the top of the charts. Each point represents the
result obtained after processing all images of the sequence, using
the specific configuration. We observe that CM-Predictor obtains

Exp1.1 Exp1.2
™ 7
8 ”m 0.2 : r____,nm_
_g 0.5 ’o.‘b .‘
) LA % .
.g ; . 0.1 ..
) ", :
£ 0.0(= | I R i
E 0 50 100 0 50 100
= Distance threshold Distance threshold
Exp2.1 Exp2.2
refegress R .
. Senssseacee, 0.50) eate, ha
% 0.5 ! . [}
= \' 0.25 . 0.
.
00ls | " | 0.00/= et
0 50 100 0 50 100

Distance threshold
e Clever-Tracker]

Distance threshold
[® Direct-Tracker

. Number of cells created by the algorithms:
Size Number of cells Is® ° . M p
of the |@ of the Fer‘:"eréi_ s H thore (;;Ts
dots | Ground Truth (GT) | han . o @ than

Ideal

Figure 4: Testing different distance threshold values.

low TDR when creating many more cells than expected. On the
other hand, the method obtains the best TDR results when the
number of cells created is smaller than the one of the ground truth.
As we aim to obtain high TDR values and a number of cells close
to the ground truth, we only use a subset of the configurations
to evaluate the other parameters. We first select all combinations
with TDR > 0.7 for Exp1.1, TDR > 0.4 for Exp1.2, TDR > 0.85 for
Exp2.1, and TDR > 0.65 for Exp2.2.

We evaluate the impact of each parameter of CM-Predictor by
plotting the outcomes of the configurations selected in the previous
step. Figures 6, 7, 8 are the representative charts for Exp1.1, Exp2.1
and Exp2.2 respectively. To save space, we omit the charts regarding
Exp1.2, which are comparable to the ones for Exp1.1, Exp2.1 and
Exp2.2. In Expl.1, w < 4, pw < 0.4, maxError between 0.4 and 0.8
with the distance threshold of 0.5 - th has led to the best results. In
Exp1.2, the highest number of cells has been created with w = 2,
the distance threshold 0.9 - th, pw < 0.6 and independently of
the value of maxError. In fact, with this configuration the whole
window is discarded once CM-Predictor removes [w X pw] points
from the window when the error becomes too large. With a high
th value, points that are not very close from each other do not
match, yielding more errors and forcing the window to be updated.
Next, with only two points in the window, CM-Predictor generates
poor estimates of the position of the next cells. This results in a
large distance between points and more cells being created. The
best results are obtained with w = 3, with high TDR values using
w between 4 and 7. In both Exp2.1 and Exp2.2, small values of w
(< 4) yield TDR results with the number of cells close to the ground
truth. The highest concentration of points occurs with distance
threshold of ¢ > 0.8. This means that, when CM-Predictor allows
for a relatively high distance between points to still be a match, the



0.5 g
o 04f s
a 03]
0.2
i 0.1
0 5000 10000 15000 0 5000 10000 15000
Experiment number Experiment number
Exp2.1
a4
a
H
0.5 LI .
0 5000 10000 15000 0 5000 10000 15000
Experiment number Experiment number
Size Number of cells Number of cells created by CM-Predictor:
ofthe| ® of the Fewer cells More cells
dots | Ground Truth (GT)| than GT | dgal than GT

Figure 5: Parameter combinations of CM-Predictor.

Expl.1
L3
0.78 0s1e s *2*2sest o
e o & 8 o & o
0.76 076/ e * ¢ * o o @
Q{_‘g‘ ssssee
0.74 0.74
= :
0.72 0.72 !
0.70 0.70 ]
02 04 06 08 10
Window size (w) Discarded window (pw)
e & e & o o e e
078/ & 8 8 8 2 8 3 32 S o788 s e s o e HEH
«* 3 R HEH
0.76 [ e o o o 9 0760 -oo:oooo
o~ I EEREREERER] . 'R
QO 074 23833 ! 0.74] o
3 e it :
0.72 e ® 0.721 o .
oo ® H
0.70 ¢ o 0.70 ’* :
02 04 06 08 10 02 04 06 08 10
Max. Error (maxError) Dist. threshold (¢ x th)
Size Number of cells Number of cells created by CM-Predictor:
ofthe | ® of the Fewer cells o PY . More cells
dots | Ground Truth (GT)| than GT \deal than GT

Figure 6: Parameter evaluation of CM-Predictor for Exp1.1.

results are the best. Overall, for all datasets CM-Predictor is best
with parameter values w = 3, pw = 0.3 and maxError = 0.9.

To provide further evidence on the effectiveness of prediction,
we compare the results of CM-Predictor with the ones of Direct-
Tracker, Clever-Tracker, and TLM-Tracker. The parameter values of
CM-Predictor in these experiments are maxError = 0.3, distance
threshold th - 0.4 and w = 4. Table 2 lists the total TDR values with
the different algorithms and the total numbers of cells created. First
and foremost, our newly proposed methods yield the best results for
all experiments, compared to TLM-Tracker. In Exp1.1 and Exp1.2,

Exp2.1

0.975 0.975 * & & & o 8 * a2 0 0
0.950 0950{ o o & o o — s o " o
. L L]
o 0925 0925/ @ @ @ ® ® » » »
a I EEEEEEER]
£ 0.900 0900 ® ® ® ® ® & & o
. ®e
0.875 0.875 ! i ! H
0.850 0.850 h
02 04 06 08 10
Window size (w) Discarded window (pw)
0'9750n.ouo.on-0'975.-.- s 8 s 8
o308 $ 5SS omostitlss
e & = o & 0 . * o 0 L] L
o, 0.925 IREEE] ® 0925/ e 8 ® ® & ® e
Bogoo] @8 ssss@e 000 ssssssssss
= EEEREEK] ) Ssessses
0.875 .o e ! 0875{ 2 & o ! : i
0.850 ® hd 0850/ ® ® @ ®
02 04 06 08 10 02 04 06 08 10
Max. Error (maxError) Dist. threshold (c X th)
Size Number of cells Number of cells created by CM-Predictor:
ofthe | ® of the Fewer cells PY ‘ More cells
dots | Ground Truth (GT)| than GT |deal than GT

Figure 7: Parameter evaluation of CM-Predictor for Exp2.1.

Exp2.2
o N SRR RRERE
0.950 0% §8888°33°3
o 0925 0.925
E 0.900 0.900
0.875 0875
0.850 0.850
02 04 06 08 10
Discarded window (pw)
R EE R R R R D :
0950/ g o o o 8 0 s 8 @ 0.950 °
¢ & & & 5 8 8 0
o 0925 0.925
E 0.900 ”" i 'i 0.900
0.875 0875
*®
0.850 . o 0.850
02 04 06 08 10 04
Max. Error (maxError) Dist. threshold (¢ X th)
Size Number of cells | Number of cells created by CM-Predictor:
ofthe | @ of the Fewer cells o PY . More cells
dots | Ground Truth (GT)| than GT 1deal than GT

Figure 8: Parameter evaluation of CM-Predictor for Exp2.2.

Direct-Tracker is the method which has created the highest number
of cells. This indicates that its matching has not been correct and has
led to the low TDR values. Next, the high number of false positives
and false negatives in the cells detected by TWANG has bogged
down the matching precision of Direct-Tracker. Clever-Tracker has
yielded similar results. When CM-Predictor performs predictions, it
does not create any cell or delete existing ones. This is one reason
why the algorithm has created fewer cells than the other ones. Its
overall TDR values are high. When the number of cells from one
image to the next one does not change much, TDR tends to perform
better, since it does not create false positives. On the other hand, the
matching between predicted and detected points can be damaged



(@) Trajectories with cell points ~ .-™
actual from the sequence of images - T

(b) Trajectories with estimated .~
estimated cell points (by CM-Predictor) - R

Figure 9: Cell trajectories with (a) actual and (b) estimated
points.

when CM-Predictor stops predicting (because the error was high)
and reads points detected from new images. This is because CM-
Predictor creates false positive cells.

Table 2: Comparison of the approaches.

Algorithm ‘ Expl.1 Expl.2 Exp2.1 Exp2.2
Direct- TDR 0.45 0.05 0.82 0.46
Tracker | Tot. cells 440 584 31 81
Clever- TDR 0.73 0.24 0.62 0.68
Tracker | Tot. cells 144 259 31 81

CM- TDR 0.58 0.19 0.82 0.46
Predictor| Tot. cells 154 538 185 100
TLM- TDR - - 0.0 0.29
Tracker | Tot. cells - - 956 142

We also plot the trajectories of the cells for each algorithm, ac-
cording to their distance to the image centroid. Figure 9 presents
examples of how we visually compare cells trajectories from the
actual points (detected in the images) and the estimated ones. Fig-
ures 10, 11 and 12 show the trajectories of cells for Exp1.1, Exp2.1
and Exp2.2, respectively. Direct-Tracker and Clever-Tracker yield
very similar results, since they use the same cell points, provided
by the segmentation algorithm. We observe that CM-Predictor is
able to predict cell points that are similar to the actual ones, as
expected. Although CM-Predictor has predicted most of the cells,
the estimated motion vectors are similar to the ones detected by the
segmentation algorithm and tracked by Direct-Tracker and Clever-
Tracker. This shows that predicting cells positions based on recently
observed cell points is a good approach. TLM-Tracker did not detect
many cells, and thus its trajectories differ from the ones given by
the other algorithms: It has created many more cells in Exp2.1 and
did not detect all cells in Exp2.2.

Overall, the configurations of CM-Predictor show results compa-
rable with the ones with tracking algorithms that work with actual
cell positions. This shows the superiority of our proposal:

o The tracking detection rate of CM-Predictor is close to the
ones reported by the tracking algorithms, that have actual
spatial information of the cells;

o The predicted trajectories provided by CM-Predictor are sim-
ilar to the ones composed of actual cell points.

This means that we do improve the tracking pipeline by including
predictions of cell motions. Next, we show that CM-Predictor also
is faster than those tracking approaches.

6.5 Performance Analysis

Table 3 lists the mean execution times (in seconds) of all approaches
for the various experiments. TLM-Tracker has the higher execu-
tion times, but it has been implemented in MATLAB. The other
algorithms are available in C++. Direct-Tracker is the fastest track-
ing approach, since it works in a greedy manner, matching the
cells by simply checking if they are within a distance threshold.
Clever-Tracker performs more comparisons between new seeds and
existing cells. In iterations where CM-Predictor performs predic-
tions, no comparisons between existing cells and new seeds take
place. This makes the predictor much faster than the two tracker
approaches. Finally, TLM-Tracker works according to the same prin-
ciple as Clever-Tracker. But it has the additional cost of predicting
the overlap of cell areas if this option is selected to improve results
of the tracking step.

Table 3: Mean execution time (in seconds).

Algorithm ‘Expl.l Expl.2 Exp2.1 Exp2.2

Direct-Tracker 0.12 0.16 0.42 0.06
Clever-Tracker 0.18 0.27 0.06 0.09
TLM-Tracker - - 0.348 0.416
CM-Predictor 0.06 0.20 0.06 0.04

6.6 Discussion

The estimation choice of values for the parameters w, pw, maxError
and th, used by CM-Predictor and discussed in the last subsections,
heavily depend on the images being analyzed. However, we only
need to estimate the values once for a specific type of embryo. This
is because the shape and spatial movement of cells are similar be-
tween sequences of images. Consequently, once the optimal values
are known, one can also use them in subsequent analyses.

7 CONCLUSIONS

This work has studied the tracking and prediction of trajectories of
cells of developing embryos in sequences of microscopic images.
After having proposed two tracking algorithms (Direct-Tracker and
Clever-Tracker), our core contribution is a new predictor algorithm
(CM-Predictor). We have focused on the prediction of cell positions
based on previous ones. The new algorithm CM-Predictor speeds up
the tracking, while maintaining high accuracy. CM-Predictor was up
to three times faster than Clever-Tracker and six times faster than
Direct-Tracker when tracking/predicting cells. Our experiments
show that CM-Predictor performs well with both 2D+t and 3D+t. It
has been able to accurately estimate the motion of cells of a devel-
oping embryo over time. Regarding TDR results, CM-Predictor was
up to 49% better than Direct-Tracker (in Exp1.2), up 31% better than
Clever-Tracker (in Exp2.1) and up to 66% better than TLM-Tracker
(in Exp2.2), using parameters w = 3, pw = 0.3 and maxError = 0.9.
We conclude that CM-Predictor is an enhancement for cell tracking,
serving its purpose of improving and speeding up the detection of
the motions of cells.



Actual Points: Estimated Points:
Direct-Tracker Clever-Tracker CM-Predictor
= . -
o 300
=]
™~ =]
2|8 200
= o
K|S 100
o
4 y
A 0 . 3
0 50 100 150 0 50 100 150 0 50 100 150
Time (image number) Time (image number) Time (image number)

—> Cell trajectory tracked/estimated as shown separately in Figure 9.

Figure 10: Cell trajectories for experiments Exp1.1.

REFERENCES

Actual Points:

Direct-Tracker Clever-Tracker
e
B
5]
-
=
=]
[}
(5]
o
2
—
A
Q 0 25 50 75 0 25 50 75
Estimated Points: Actual Points:

CM-Predictor TLM-Tracker

g

Dist. to centroid

0 25 50 75 0 25 50 75
Time (image number) Time (image number)

Figure 11: Cell trajectories for experiment Exp2.1.

Actual Points:
Direct-Tracker Clever-Tracker
=
o
—
=
=]
(5]
Q
o
2
-
Q 0 25 50 75 0 25 50 75
Estimated Points: Actual Points:
CM-Predictor TLM-Tracker
g 675
2 400
g 650
o 200
s 625
—
A o : 600
0 25 50 75 0 20 40 60 80
Time (image number) Time (image number)

Figure 12: Cell trajectories for experiment Exp2.2.

ACKNOWLEDGMENT

This work was supported by grants #2016/17078-0 from the Sao
Paulo Research Foundation (FAPESP), #88881.13068/2016-01 from
Capes-PDSE, Capes and CNPq.

(1]

[2]

(1]

[12]

(13]

[14

[15

[16]

(17]

M. Abdel-Akher, A. Selim, and M. M. Aly. 2015. Initialnum-flow analysis based
on Lagrange polynomial approximation for efficient quasi-static time-series
simulation. IET Generation, Transmission Distribution 9, 16 (2015), 2768-2774.
https://doi.org/10.1049/iet-gtd.2015.0866

F. AlMuhisen, N. Durand, and M. Quafafou. 2018. Detecting behavior types of
moving object trajectories. International Journal of Data Science and Analytics 5,
2 (Mar 2018), 169-187. https://doi.org/10.1007/s41060-017-0076-8

A. D. Balomenos et al. 2017. Image analysis driven single-cell analytics for
systems microbiology. BMC Systems Biology 11, 1 (2017), 43:1-43:21. https:
//doi.org/10.1186/s12918-017-0399-z

A.D. Balomenos, P. Tsakanikas, and E. S. Manolakos. 2015. Tracking single-cells
in overcrowded bacterial colonies. In 2015 37th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC). 6473-6476. https:
//doi.org/10.1109/EMBC.2015.7319875

A. Chakraborty and A. K. Roy-Chowdhury. 2015. Context aware spatio-temporal
cell tracking in densely packed multilayer tissues. Medical Image Analysis 19, 1
(2015), 149 - 163. https://doi.org/10.1016/j.media.2014.09.008

A. Elfwing, Y. LeMarc, ]J. Baranyi, and A. Ballagi. 2004. Observing Growth and
Division of Large Numbers of Individual Bacteria by Image Analysis. Applied
and Environmental Microbiology 70, 2 (2004), 675-678. https://doi.org/10.1128/
AEM.70.2.675-678.2004

T. He, H. Mao, J. Guo, and Z. Yi. 2017. Cell tracking using deep neural networks
with multi-task learning. Image and Vision Computing 60 (2017), 142-153. https:
//doi.org/10.1016/j.imavis.2016.11.010

O. Hilsenbeck et al. 2016. Software tools for single-cell tracking and quantification
of cellular and molecular properties. Nature Biotechnology 34 (07 2016), 703-706.
W. Jiuqing, C. Xu, and Z. Xianhang. 2017. Cell tracking via Structured Prediction
and Learning. Machine Vision and Applications 28, 8 (Nov 2017), 859-874. https:
//doi.org/10.1007/s00138-017-0872-0

J. Klein, S. Leupold, I Biegler, R. Biedendieck, R. Miinch, and D. Jahn. 2012.
TLM-Tracker: software for cell segmentation, tracking and lineage analysis in
time-lapse microscopy movies. Bioinformatics 28, 17 (2012), 2276-2277. https:
//doi.org/10.1093/bioinformatics/bts424

Can Fahrettin Koyuncu, Ece Akhan, Tulin Ersahin, Rengul Cetin-Atalay, and
Cigdem Gunduz-Demir. [n. d.]. Iterative h-minima-based marker-controlled
watershed for cell nucleus segmentation. Cytometry Part A 89, 4 ([n. d.]), 338-349.
https://doi.org/10.1002/cyto.a.22824

Y.Li, F. Rose, F. di Pietro, X. Morin, and A. Genovesio. 2016. Detection and tracking
of overlapping cell nuclei for large scale mitosis analyses. BMC Bioinformatics 17
(2016), 183. https://doi.org/10.1186/s12859-016-1030-9

S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. 2000. Indexing
the Positions of Continuously Moving Objects. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas,
Texas, USA. 331-342. https://doi.org/10.1145/342009.335427

J. Stegmaier, J. C. Otte, A. Kobitski, A. Bartschat, A. Garcia, G. U. Nienhaus, U.
Strihle, and R. Mikut. 2014. Fast Segmentation of Stained Nuclei in Terabyte-
Scale, Time Resolved 3D Microscopy Image Stacks. PLOS ONE 9, 2 (02 2014),
1-11. https://doi.org/10.1371/journal.pone.0090036

Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. 2004. Prediction and Indexing of
Moving Objects with Unknown Motion Patterns. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data. ACM, New York, NY,
USA, 611-622. https://doi.org/10.1145/1007568.1007637

V. Ulman et al. 2017. An objective comparison of cell-tracking algorithms. Nature
Methods 14 (2017), 1141-1152. https://doi.org/10.1038/nmeth.4473

H. Xu, C. Lu, and M. Mandal. 2014. An Efficient Technique for Nuclei Seg-
mentation Based on Ellipse Descriptor Analysis and Improved Seed Detection
Algorithm. IEEE Journal of Biomedical and Health Informatics 18, 5 (Sept 2014),
1729-1741. https://doi.org/10.1109/JBHI.2013.2297030


https://doi.org/10.1049/iet-gtd.2015.0866
https://doi.org/10.1007/s41060-017-0076-8
https://doi.org/10.1186/s12918-017-0399-z
https://doi.org/10.1186/s12918-017-0399-z
https://doi.org/10.1109/EMBC.2015.7319875
https://doi.org/10.1109/EMBC.2015.7319875
https://doi.org/10.1016/j.media.2014.09.008
https://doi.org/10.1128/AEM.70.2.675-678.2004
https://doi.org/10.1128/AEM.70.2.675-678.2004
https://doi.org/10.1016/j.imavis.2016.11.010
https://doi.org/10.1016/j.imavis.2016.11.010
https://doi.org/10.1007/s00138-017-0872-0
https://doi.org/10.1007/s00138-017-0872-0
https://doi.org/10.1093/bioinformatics/bts424
https://doi.org/10.1093/bioinformatics/bts424
https://doi.org/10.1002/cyto.a.22824
https://doi.org/10.1186/s12859-016-1030-9
https://doi.org/10.1145/342009.335427
https://doi.org/10.1371/journal.pone.0090036
https://doi.org/10.1145/1007568.1007637
https://doi.org/10.1038/nmeth.4473
https://doi.org/10.1109/JBHI.2013.2297030

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 The Traditional Pipeline: Tracking Cells
	4.1 Data Structures
	4.2 Adding a Cell Match
	4.3 Tracking Approaches

	5 The Proposed Pipeline: Establishing Cell Motion Along Time
	5.1 Motion Estimation
	5.2 Parameters
	5.3 The Cell Motion Predictor

	6 Experimental Analysis
	6.1 Evaluation Measures
	6.2 Dataset and Parameters Setup
	6.3 Pre-processing: Detecting Cells from Images
	6.4 Tracking and PredictingTrajectories of Cells
	6.5 Performance Analysis
	6.6 Discussion

	7 Conclusions
	References

