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ABSTRACT
The global energy transition requires the availability of en-
ergy-consumption data with high resolution. Smart me-
ters record such data in real time. This however endan-
gers privacy: Time series of energy-consumption data con-
tain different kinds of private information, such as the em-
ployment status of the residents. We address this problem
by proposing a consumption-perturbation approach that re-
lies on energy-storage devices (aka. batteries). The energy
(dis-)charged to them perturbs the actual data describing
the consumption. So-called charging strategies specify the
(dis-)charging behavior. A main objective of this article is
to come up with privacy guarantees for such strategies. To
this end, the strategies we propose rely on a generalization
of the Irwin-Hall distribution, which facilitates closed-form
analyses. For these strategies, we derive (ε, δ)-differential
privacy guarantees. Next, we propose a new measure, which
is statistical in nature, to quantify the risk of confusing
the assignment of features to the time series they are com-
puted on. We then develop a specific charging strategy that
combines the properties required to provide the guarantees
proven earlier with trend preservation to shield against filter-
ing approaches. All in all, our strategies increase the failure
probability of approaches inferring private information from
the data.

1. INTRODUCTION
The power-supply system is changing significantly. This

includes the ongoing installation of so called smart meters.
In contrast to traditional analogous meters, they measure
the power consumption in much shorter time intervals, e.g.,
every 15 minutes. They transmit these records to a central
system, e.g., a grid operator or an energy provider. In this
article, a record is the amount of energy consumed in a time
interval. Such data facilitates applications such as moni-
toring and billing: Demand-response scenarios with flexible
pricing strategies incentivize the consumers to shift their de-
mand to off-peak hours. To provide an accurate billing, they
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rely on time-related consumption data [25].
On the other hand, metering energy-consumption data

with high frequency endangers privacy [23]. Previous work
has shown that smart meter data allows inferring private
information: It is not only possible to observe daily rou-
tines [24], but also the relationship status, the employment
and the social class of the residents [6, 7]. In addition, dis-
aggregation approaches are able to break down the energy
consumption to individual devices [5, 33]. It is even possible
to identify the TV program currently followed [13].
To overcome this antagonism between necessity and haz-

ard of data, several proposals to ensure privacy exist. Since
smart meter data allows to generate finger prints which
re-identify households [8], pseudonymization, i.e., remov-
ing the identifier, is not sufficient. Instead, current ap-
proaches perturb the transmitted data itself. We refer to
them as data-oriented. However, data perturbation is sub-
ject to legal constraints. For instance, Article 13 of the di-
rective 2006/32/EC of the European Parliament states that
smart meters “accurately reflect the final customer’s actual
energy consumption” to enable correct billing.
We now sketch an alternative to data-oriented perturba-

tion, namely consumption perturbation. To this end, observe
that rechargeable energy-storage devices (aka. batteries) are
proliferating at a rapid pace. They are common in house-
holds with photovoltaics installed [21] and will become even
more popular with the rise of plug-in electric vehicles with
batteries [22]. Their control is subject to charging strategies.
A charging strategy specifies the amount of energy that is
(dis-)charged to the energy-storage device in a certain situ-
ation. An example strategy that prevents peak loads during
the day discharges the device if the consumption is larger
than a given threshold, e.g., 1 kW, and charges during the
night. The recorded data transmitted by the smart meter
now consists of the actual consumption of the household and
the (dis-)charged energy for each time interval, see Figure 1.
On the one hand, the transmitted data reflects the amount
of energy bought and is in line with current legislation. On
the other hand, the actual consumption is perturbed by the
energy (dis-)charged. Thus, rechargeable energy-storage de-
vices are promising when it comes to protect privacy.
In our work, we analyze which privacy guarantees an en-

ergy-storage device can give, as a function of the charging
strategy and the energy-storage device. A difficulty is that
possible guarantees also depend on the underlying infras-
tructure, e.g., which data is transmitted to the central sys-
tem.
To derive privacy guarantees that rely on closed-form anal-
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Figure 1: The system model
yses, we propose a generalization of the Irwin-Hall distribu-
tion (generalized Irwin-Hall distribution, GIH ). The strate-
gies we focus on are ones where the (dis-)charging rates fol-
low this distribution. To provide more detail, we now turn
to the infrastructures studied in related work.

Scenario (Part 1). Each household has a rechargeable en-
ergy-storage device. Within each time interval, a certain
amount of energy is (dis-)charged to this device. From a
privacy perspective, the amount of energy (dis-)charged per-
turbs the actual consumption for this interval. We assume
that all households use the same charging strategy. This will
help to establish privacy guarantees, as we will see later.

Literature [2, 5, 7, 8, 10] distinguishes between the follow-
ing scenarios regarding the nature of the data transmitted:

Scenario (Part 2, Case 1). Households are grouped into
clusters, e.g., urban quarters. After perturbing an actual
record, smart meters in a cluster communicate with each
other, aggregate their consumption and send this informa-
tion to the central system [2]. Here, the leaked data is the
energy a group of households has consumed.

Scenario (Part 2, Case 2). After the (dis-)charging has
perturbed an actual record, the smart meter sends the data to
the central system, without communicating with other house-
holds. Here, the leaked data is the energy each household has
consumed individually.

In Case 1, the central system can analyze the aggregated
data, without knowing the consumption of an individual
household. However, that data can still leak privacy, e.g., if
one knows some of the consumptions aggregated, if they are
similar to each other, or if the aggregate enables negative dis-
closure. A well-established measure to quantify the uncer-
tainty whether a record is part of the aggregation achieved
by perturbing the data is differential privacy [10]. We show
that there does not exist a charging strategy that achieves
the hard requirements of ε-differential privacy. On the other
hand, we prove that (ε, δ)-differential privacy [11] is feasible
for strategies following our GIH distribution.
In Case 2, since the connection of the data to its house-

hold is explicit, it is obvious that private information such
as daily routines or the employment status can be inferred
from the data. The amount of inferable information depends
on the consumption perturbation achieved by the charging
strategy. Many approaches inferring private information do
not rely on single records only, but compute features from
sequences of records [6, 7, 8]. To our knowledge, a measure
allowing to quantify the privacy a charging strategy pro-
vides in Case 2 does not exist. We propose a new measure
that is statistical in nature, namely (σ,m)-confusability. It
computes the risk of assigning privacy-relevant features to
individuals correctly. To quantify (σ,m)-confusability, we

propose a numerical solution scheme. It takes the particu-
lar distribution the (dis-)charging rates follow as well as the
behavior of the energy-storage device into account.
Our next contribution is to propose a specific charging

strategy, as follows. Certain charging strategies from the
literature preserve characteristics of the data such as trends
over several intervals. While they do this in a best-effort
manner, i.e., they provide no provable guarantees and there-
fore are not related to the privacy measures discussed in this
publication, this is still useful in practice. Our new charg-
ing strategy combines both the formal guarantees we have
derived earlier, to deal with (ε, δ)-differential privacy and
(σ,m)-confusability, as well as such best-effort character-
istics. We evaluate our charging strategy on a large real
energy-consumption dataset. Our evaluation shows that
the strategy protects against well-known privacy-relevant
problems such as prediction of private information and re-
identification.

2. RELATED WORK

2.1 Differential Privacy for Smart Meters
Differential privacy [10] is an important and established

notion for provable privacy guarantees. There exist various
proposals on how to implement it for the smart grid, using
secure aggregation approaches [12, 28, 29]. For our work, we
assume that such an aggregation approach exists which al-
lows smart meters to aggregate their records without the
need for a trusted third party. Note that our approach
only uses a rechargeable energy-storage device to perturb
the consumption, and we leave aside altering the data itself
during the aggregation process. [2] is a purely data-oriented
approach that proposes to add noise following a Gamma
distribution to each record. The resulting aggregation fol-
lows a Laplace distribution and therefore fulfills differential
privacy. However, the deployment of energy-storage devices
cannot result in exactly this perturbation. This is because
they have a bounded capacity which restricts the range of
the noise that one can add, while the Gamma distribution
is unbounded.

2.2 Information Hiding on Time Series
Previous work on smart meter data has shown that in-

ferring sensitive information is possible [5, 6, 7, 8, 13, 23,
24, 33]. To prohibit such inferences, many approaches to
perturb time-series data have been proposed: Earlier ones
add noise resistant to reconstruction attacks. This distorts
the original records, but does not give any guarantees com-
parable to differential privacy [26]. More sophisticated ap-
proaches consider the mutual information between the orig-
inal and the perturbed time series to quantify privacy [27].
However, all these approaches do not give any guarantee
that sensitive information is hidden. Other work enables in-
dividuals to define privacy relevant patterns that must not
appear in the perturbed data [19]. Other work allows to
define secrets that can be hidden, following the definition
of differential privacy [18]. This is achieved by computing
Laplacian noise that prevents to decide whether a secret
property occurs or not. Again, since Laplacian noise is un-
bounded, no energy-storage device with limited capacity can
implement this. In the following, we identify a distribution
that energy-storage devices can mimic, and that provides
provable guarantees.



2.3 Privacy via Energy-Storage Devices
The use of energy-storage devices to protect privacy has

become popular in recent years. The first approaches fea-
ture relatively simple charging strategies, with the goal to
preserve a constant consumption level [16, 17]. Extensions
of this idea reduce the standard deviation between the per-
turbed data and the overall average consumption [31]. How-
ever, these approaches do not give any privacy guarantee.
Whenever the capacity of the energy-storage device is ex-
hausted, or the difference between the consumption of two
consecutive records is larger than the maximum (dis-)char-
ging rate, sensitive information is leaked. In addition, if the
consumption is about to be constant over several time inter-
vals, e.g., when no residents are at home, the strategies do
not alter the time series. To arrive at a better understanding
on how energy-storage devices can hide sensitive informa-
tion, current research also has studied how to prevent iden-
tifying the consumption of single devices. First approaches
feature so called “power mixing algorithms” [15]. Such algo-
rithms try to smoothen the consumption of each individual
device by allocating a certain amount of the energy-storage
capacity to each of them. Further approaches extend these
ideas by considering measures such as mutual information
to compute the perturbation achieved [9, 30]. In addition,
there exist approaches that implement differential privacy to
give provable guarantees regarding the uncertainty whether
a single device is switched on or off [4, 32]. Instead of con-
sidering a closed system where the charging strategy can
determine the optimal power level for an observable cumula-
tive consumption of several devices, our approach considers
scenarios where households perturb their actual consump-
tion independently of each other, and a perturbation on the
aggregation level is not possible.

3. FUNDAMENTALS
In this work, we aim for charging strategies that provide

provable privacy guarantees. We now describe how the sys-
tem is modeled. We also propose a probability distribution
the (dis-)charging rates of the charging strategies adhere to.
This is the distribution that we will analyze subsequently.

3.1 System Model
We now describe the components of the system model in

Figure 1. An energy-storage device has a bounded capacity
C, i.e., the load level must be in [0, C]. c(t) denotes the
load level at the end of time interval t. Note that t stands
for a time interval and not for a point of time. This is be-
cause the data transmitted by smart meters is recorded for
a period of time. In an interval t, the energy-storage de-
vice is (dis-)charged by b(t) = c(t)− c(t− 1). If b(t) < 0 the
energy-storage device is discharged, if b(t) > 0 it is charged.
The maximum (dis-)charging rate τ restricts the amount of
energy (dis-)chargeable in a time interval, i.e., |b(t)| ≤ τ .
A Power Control component, one per household, regulates

the amount of energy (dis-)charged. It controls the energy-
storage device by determining b(t) following a given charging
strategy. Our explanations focus on the case where it uses
information on the current consumption of the devices d(t)
and the load level c(t − 1) as well as properties C and τ .
In practice, the Power Control component obtains the con-
sumption information during a time interval continuously
and immediately controls the energy storage based on this

information. This is because the energy-storage device can-
not be (dis-)charged with b(t) within the last margin of the
time interval, right before the consumption is transmitted.
The resulting consumption of a household x(t) is com-

posed of the consumption of the devices d(t) and the (dis-)
charged energy b(t). In the following, we call d(t) the actual
consumption and x(t) the perturbed consumption. In Case 1,
all households within a cluster I aggregate their perturbed
consumptions and transmit xI(t) =

∑
i∈I xi(t) to the cen-

tral system. In Case 2, each household sends x(t) directly
to the central system.

3.2 Requirement
We now present the requirement that the consumption

perturbation achieved by a randomized charging strategy
follows a certain distribution. This is because such charg-
ing strategies provide provable privacy guarantees, as we
will show. We propose the (dis-)charged energy to follow
a specific distribution. However, note that the general idea
behind our analyses is also applicable to different distribu-
tions. We generalize the Irwin-Hall distribution [14] that
adds k i.i.d. random variables that are uniformly distributed
on [0, 1]. Thus, the distribution can have the properties of
a Uniform distribution for k = 1, a Triangular distribution
for k = 2 or an approximately Gaussian distribution for
large k. Our generalized Irwin-Hall (GIH) distribution in
turn is obtained by adding random variables that are uni-
formly distributed on the interval [− a

k
, a
k

]. In consequence,
it is defined on the interval [−a, a] where a can be chosen
arbitrarily out of R+.
Definition 1 (GIH distribution).
The GIH probability density function (pdf) for b(t) ∈ [−a, a]
with a ∈ R+ and k ∈ N is

fk,a(b(t)) =
1

(k − 1)!

b b(t)+a
2a ·kc∑
i=0

(−1)i
(k
i

)( b(t) + a

2a
· k − i

)k−1

and its cumulative distribution function (cdf) is

Fk,a(b(t)) =
1
k!

b b(t)+a
2a ·kc∑
i=0

(−1)i
(k
i

)( b(t) + a

2a
· k − i

)k
The maximum (dis-)charging rate τ restricts the range

[−a, a] of this distribution, i.e., a ≤ τ . Recall that energy-
storage devices have limited capacity. In consequence, they
cannot implement random values that are drawn indepen-
dently of each other. In particular, the energy-storage device
cannot be discharged under a load level of zero. The same
holds for the reverse case if the load level is close to C. In
what follows, we extend Definition 1 to a conditional pdf
w.r.t. the load level of the previous time interval.
Lemma 1. The function
fk,a(b(t)|c(t− 1)) =

0 if c(t− 1) + b(t) < 0
or c(t− 1) + b(t) > C,

2 · fk,a(b(t)) if c(t− 1)− a < 0
and c(t− 1) + b(t) ≥ 2 · c(t− 1),

2 · fk,a(b(t)) if c(t− 1) + a > C
and c(t− 1) + b(t) ≤ 2 · c(t− 1)− C,

fk,a(b(t)) otherwise.

is a conditional pdf given the load level c(t− 1) that fits the
GIH distribution to the capacity bounds [0, C] of the energy-
storage device.



c(t− 1)

c(t− 1) + a

0 0.5 1
0
1
2
3
4
5

c(t)

pd
f

(a) c(t− 1) = 0

c(t− 1)

c(t− 1)− a c(t− 1) + a

0 0.5 1
0
1
2
3
4
5

c(t)

pd
f

(b) c(t− 1) = 0.5

c(t− 1)

c(t− 1)− a C

2 · c(t− 1)− C

0 0.5 1
0
1
2
3
4
5

c(t)

pd
f

(c) c(t− 1) = 0.8

Figure 2: Visualization of the load level change applying Lemma 1 (C = 1 kWh,a = 0.4 kWh,k = 3)

The appendix of this work contains proofs of all lemmas.
To give an external observer the impression that the (dis-)

charging rates follow a GIH distribution, the inequality 2a ≤
C must be fulfilled. Figure 2 visualizes the load-level change
between two time intervals applying Lemma 1. Note that
the adaption of the GIH distribution is symmetric for the
two cases “c(t − 1) is too low” and “c(t − 1) is too large”,
i.e., an observer who does not have any information on the
current load level will not recognize the adaption.
Note that the standard deviation of the GIH distribution

is √(a2/3k). Thus, the GIH distribution allows to determine
the average amount of energy (dis-)charged to the energy-
storage device. This gives way to the computation of other
criteria [17] such as life time or energy loss of the storage
device without performing additional experiments.
Having a charging strategy that provides a consumption

perturbation relying on a GIH distribution, Section 4 shows
that it guarantees (ε, δ)-differential privacy in Case 1. For
Case 2, we present a way to quantify the confusion risk of
different individual households in Section 5. In Section 6,
we present a charging strategy that fulfills the requirements
discussed here. In addition, it features best-effort charac-
teristics such as trend preservation that prohibits removing
the perturbation by filtering approaches in Case 2.

4. ACHIEVING DIFFERENTIAL PRIVACY
In this section, we analyze Case 1, i.e., all smart meters

apply an aggregation approach and send the sum of all con-
sumptions within the time interval to the central system. We
first show that ε-differential privacy [10] cannot be fulfilled
by any charging strategy. We then focus on (ε, δ)-differential
privacy [11]. This allows to quantify achievable privacy
guarantees for charging strategies whose (dis-)charging rate
follows a GIH distribution.

4.1 Insights on Differential Privacy
Differential privacy gives provable privacy guarantees on

the result of a statistical query, i.e., a query whose result is
perturbed by a random variable. The perturbation ensures
that the influence of each individual record on the query re-
sult is limited with stochastic guarantees. Thus, it is unable
to distinguish whether an individual has published his pri-
vate information or not. Differential privacy achieves this
by adding noise to the query result. This guarantees that
the probability of each result S differentiates by a maximum
factor of eε between the cases where an individual object is
part of the database and where it is not.

Definition 2 (ε-differential privacy [10]).
A query q is ε-differentially private if for all data sets DB1
and DB2 where DB1 and DB2 differ by at most one ele-
ment, and for all subsets of possible answers S ⊆ Range(q):

P (q(DB1) ∈ S) ≤ eε · P (q(DB2) ∈ S)
In our scenario, each individual uses an energy-storage

device that hides his actual consumption. The consumption
perturbation addable is restricted by characteristics of the
device. We now show that ε-differential privacy cannot be
achieved in this scenario.
Theorem 1. Let n be the number of individual households.
They use a charging strategy that adds noise in the range
[−a, a] to the individual consumption. Then there does not
exist any charging strategy that facilitates ε-differential pri-
vacy for the sum of the consumptions over all households.
To give meaningful guarantees on the privacy achieved by

charging strategies nevertheless, we apply a relaxed version
of ε-differential privacy that features a further parameter δ.
Here, δ > 0 is an upper bound for the probability that the
requirement of ε-differential privacy is not fulfilled. Thus,
this parameter allows to give guarantees by excluding rare
cases that occur on the tails of the distribution.
Definition 3 ((ε, δ)-differential privacy [11]).
A query q is (ε, δ)-differentially private if for all data sets
DB1 and DB2 where DB1 and DB2 differ by at most one el-
ement, and for all subsets of possible answers S ⊆ Range(q):

P (q(DB1) ∈ S) ≤ eε · P (q(DB2) ∈ S) + δ

The parameter δ facilitates that the fraction P (q(DB1) ∈
Sstrict)/P (q(DB2) ∈ Sstrict) does not have to be smaller than
eε for results Sstrict that are unlikely (or even impossible) for
q(DB2). Meaningful values of ε and δ should be chosen in
combination: If δ is large, i.e., there exist many cases where
the requirement of ε-differential privacy may be violated, ε
can have small values, i.e., there exist strong privacy guaran-
tees for the remaining cases. In addition, ε and δ depend on
the global sensitivity ∆q. The global sensitivity of a query
is the maximum possible difference of two results based on
DB1 and DB2 which differ in at most one individual record.
Definition 4 (Global sensitivity ∆q [10]).
The global sensitivity ∆q of a query q for all data sets DB1
and DB2 which differ in at most one element is

∆q = max
DB1,DB2

|q(DB1)− q(DB2)|



In our scenario where the central system receives the con-
sumption aggregate of several households within one time
interval, ∆q is the maximum possible consumption of a sin-
gle household within one time interval.

4.2 Differential Privacy by GIH Distributions
We now show that charging strategies whose (dis-)charging

rate follows a GIH distribution give provable (ε, δ)-differential
privacy guarantees.
In a first step, we derive the distribution that occurs if

n households add their i.i.d. perturbed consumption. In
general, such a distribution is achieved by convoluting the
underlying pdf n times. The convolution f(x) of two pdfs
f1(x) and f2(x) is given by

f(x) =
∫ ∞
−∞

f1(y) · f2(x− y) dy

Since the analytic computation of the convolutions of n ar-
bitrary distributions is difficult to impossible, we propose to
apply a GIH distribution. This is because the GIH distri-
bution is defined by the sum of n i.i.d. random variables.
I.e., Definition 1 provides all the information necessary to
describe the distribution that results from adding the per-
turbed consumption of n households.
Lemma 2. The pdf of the distribution resulting from n
households summing up their consumptions individually per-
turbed by a GIH distribution for b(t) ∈ [−a · n, a · n] with
parameters a ∈ R+ and k ∈ N is

fk,a,n(b(t)) =
1

(kn− 1)!

b b(t)+an
2a kc∑
i=0

(−1)i
(
kn

i

)(
b(t) + an

2a
k − i

)kn−1

To explain this formula, we adapt the pdf of Definition 1
by increasing the number of uniformly distributed random
variables from k to k·n and by expanding the interval bounds
from [−a, a] to [−a · n, a · n].
To quantify the extent of (ε, δ)-differential privacy, we

compare the case where n households sum up their con-
sumptions, and the n-th household has an impact of ∆q on
the query result to the case where the n-th household is left
aside.
Theorem 2. Let q be the query for the sum of consumptions
in time interval t over several households that perturb their
data individually by a GIH distribution with parameters k
and a. Suppose that the requester does not know whether n
or n− 1 households are part of the data set. The result of q
is (ε, δ)-differentially private with

ε = max
(

ln
(

fk,a,n−1(left)
fk,a,n(left−∆q)

)
, ln
(
fk,a,n(right−∆q)
fk,a,n−1(right)

))
δ = max (Fk,a,n−1(left), 1− Fk,a,n(right−∆q))

where
left = ∆q − a · n+ x · n

2n− 1 · (a · (2n− 1)−∆q)

right = a · (n− 1)− x · n− 1
2n− 1 · (a · (2n− 1)−∆q)

and x is any value in (0, 1].
For a given instantiation of k, a, n and ∆q, there exist dif-

ferent combinations of ε and δ. We can adapt their values
with the parameter x ∈ (0, 1] which defines the positions
’left’ and ’right’. The smaller x becomes, the larger becomes
ε, and the smaller becomes δ. We give some trade-off exam-
ples in Section 7.

5. ACHIEVING CONFUSABILITY
For Case 2 where all households send their individual con-

sumption data directly to the central system, we see the fol-
lowing privacy risks: Approaches inferring private informa-
tion use background information such as the employment
status of some households to make predictions for other
households for which such information is not available [6, 7].
One might think that it would be sufficient to remove the
identifier of the households. However, re-identification ap-
proaches can restore the assignment in many cases [8]. Thus,
one must rely on the consumption perturbation achieved by
the energy-storage device to increase the failure probability
of that kind of attacks. Since the respective state-of-the-art
approaches work on features computed out of the time-series
data (such as the consumption between 6 and 10 p.m., to
give an example), we propose a new privacy measure that
quantifies the probability that two households are confused
with each other based on the features applied. We now
present the privacy measure and then say how it is com-
puted.

5.1 Fundamental Privacy Guarantee
In a first step, we quantify the confusability based on fea-

tures of the consumption data. We consider a query q that
computes a feature of a time series, such as the minimum
consumption or the consumption over several given time in-
tervals. We now assume that it is possible to deduce certain
information from the query result. We illustrate this as-
sumption with the following examples:
Example 1. The query q(Xi) returns the consumption of
Household i at 10 p.m. Now think of a setting with two
households. On weekdays, no residents of Household 1 are
at home at 10 p.m. Thus,

q(X1) = c1(10 p.m.) = 0.5kWh
consist of stand-by consumptions only. At this time, resi-
dents of Household 2 are at home in turn and watch televi-
sion. This results in

q(X2) = c2(10 p.m.) = 1.0kWh.
By considering the consumption at 10 p.m., it is possible to
deduce whether a time series belongs to Household 1 or 2.
In addition, by considering the background information that
employees have a low consumption of 0.5kWh on weekdays at
10 p.m. while unemployed persons have a high consumption
of 1.0kWh, it is possible to deduce the employment status of
the residents.
Next, we consider time series whose actual consumption

d(t) is perturbed with b(t) for each time interval t, where b(t)
follows a GIH distribution, as explained in Section 3.2. This
perturbation is random in nature. In consequence, there is
a chance to assign a time series to the wrong household or
to predict the wrong employment status.
Example 2. Consider the scenario described in Example 1.
Suppose that both households apply a uniformly distributed
consumption perturbation over the interval [−1kWh, 1kWh]
for each time interval t, i.e., b(t) follows a GIH distribu-
tion with k = 1 and a = 1kWh. The result of query q
for X1 is uniformly drawn from [−0.5kWh, 1.5kWh] and the
one for X2 from [0.0kWh, 2.0kWh]. Thus, if a consumption
in [0.0kWh, 1.5kWh] is generated, it is impossible to decide
whether this consumption belongs to Household 1 or 2, or
whether the residents are employed or unemployed.
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Figure 3: Exemplary visualization of the confusabil-
ity of a single record with k = 2 and a = 1 kWh

Our goal here is to quantify the probability that a query
result is confusable with the query result of another house-
hold. We define the confusability of a query w.r.t. two time
series as follows:

Definition 5 (Confusability risk σ).
The risk that two time series X1 and X2 are confusable w.r.t.
a query q over all possible query results s ∈ S is

σ =
∫
s∈S

min{P (q(X1) = s) , P (q(X2) = s)} ds

Confusability quantifies the probability to be unable to
distinguish whether a query result belongs to one of the time
series X1 or X2. I.e., by considering the result to make the
assignment, the accuracy is as good as with a probability of
σ if there is no query result, i.e., the assignment is random.
Transferring this concept to statistical hypothesis testing,
a confusability risk of 100% means that the type 1 error,
i.e., the probability to assign a query result to the wrong
household (“false positive”) is equal to the probability to
assign the result correctly. Let us illustrate this insight with
the following example:

Example 3. We continue Example 2. For any result s in
the interval [0.0kWh, 1.5kWh], the pdf is 0.5 for both time
series X1 and X2. Outside of this interval, each result has
a pdf of zero for (at most) one time series. Thus, the proba-
bility that both time series are confusable is 1.5 · 0.5 = 75%.
If the households instead do a consumption perturbation fol-
lowing a GIH distribution with k = 2, they achieve a con-
fusability of 56.25%, see Figure 3. In this example, if the
query result s is in [0 kWh, 0.75 kWh] the probability to as-
sign the data correctly is higher for Household 1 than for
Household 2. However, with a probability of 28.125%, this
decision is as good as if one had tossed a coin. This is illus-
trated by the left darker part of the colored area in Figure 3.
The same holds for s ∈ [0.75 kWh, 1.5 kWh] for choosing
Household 2, as illustrated with the brighter area.

Since we want to give guarantees for data sets with more
than two elements, we compute the confusability between
pairs of data objects that are labeled with different private
information. This is because our goal is to give guaran-
tees that approaches which predict such information fail.
In the following, we call a value Θ(Xi) ∈ Θ that labels a
data object Xi prediction target. For instance, the employ-
ment status splits the data set into objects that are labeled
with ’employed’ and ones labeled with ’unemployed’, i.e.,
Θ := {’employed’, ’unemployed’}. In the re-identification
scenario, the number of different prediction targets is the
number n of data objects, i.e., Θ := {1, . . . , n}. Thus, we
can compute probabilities that an object is confusable with
at least a certain number of objects m having another pre-
diction target.

Definition 6 ((σ,m)-Confusability).
A query q is (σ,m)-confusable if each data object Xi has a
probability of σ to be confused with at least m data objects
belonging to a prediction target Θ(Xj) different from Θ(Xi):
∀Xi ∈ DB : m ≤∣∣∣∣∣∣
Xj ∈ DB

∣∣∣∣∣∣
Θ(Xi) 6= Θ(Xj) ∧∫
s∈S

min{P (q(Xi) = s) , P (q(Xj) = s)} ds ≥ σ


∣∣∣∣∣∣

In contrast to Example 1, most queries used for state-of-
the-art approaches inferring private information do not refer
to individual records only. In combination with constraints
given by the energy-storage device, such as conditional load
levels as presented in Lemma 1, it is difficult to impossi-
ble to derive an analytic solution of the confusability risk.
Thus, we propose a numerical solution to compute (σ,m)-
confusability in the following.

5.2 Computing (σ,m)(σ,m)(σ,m)-Confusability
To compute (σ,m)-confusability in our scenario, we have

to consider the limitations of the energy-storage device.
Example 4. Think of a query which computes the overall
consumption over a sequence of time intervals, e.g., between
6 and 10 p.m. If one assumed that for each time interval the
(dis-)charging rate was determined independently of the pre-
vious (dis-)charging rates, he would add independent random
values to specify the resulting propabilities P (q(X) = s). Ac-
cording to the Bienaymé formula [20], the variances of these
random variables sum up. In consequence, there would exist
a number of random variables where the resulting standard
deviation of P (q(X) = s) would be larger than the capacity
of the energy-storage device. However, the capacity bounds
possible deviations: The deviation is maximal if the energy-
storage device is empty (or full) at 6 p.m. and full (or empty)
at 10 p.m. Thus, we cannot assume that the random vari-
ables are independent of each other.
Summing up Example 4, the sum of the perturbations of

subsequent records cannot be larger than the capacity of
the energy-storage device. More precisely, the perturbation
achievable depends on the load level of the first time interval
t: If the energy storage is empty at t, the maximal pertur-
bation is the capacity C, if it is half-filled, the maximal
perturbation is 0.5 ·C. Thus, in a first step, we identify the
density function of the probability that the energy-storage
device has a certain load level. The result is independent of
the current time interval t. I.e., we assume that if one has no
background information on the load levels of previous time
intervals, he will always observe the same load-level distri-
bution. This effect occurs if the charging strategy is in use
long enough. If the probabilities between two time intervals
do not alter, we call the load-level distribution stable.
Definition 7 (Stable load level pdf).
Let an energy-storage device with a load level c(t) ∈ [0, C]
at any time interval t and its (dis-)charging rates b(t) that
follow a conditional pdf f(b(t)|c(t − 1)) be given. g(c(t))
is the load-level pdf that describes the density to observe a
load level c(t) in time interval t. A load level is stable if the
following holds for any c(t) ∈ [0, C]:

g(c(t)) =
∫ C

0
f(c(t)− c(t− 1)|c(t− 1)) · g(c(t− 1)) dc(t− 1)

=
∫ C

0
f(c(t+ 1)− c(t)|c(t)) · g(c(t)) dc(t) = g(c(t+ 1))



Roughly speaking, the pdf is stable if the probability that
a load level c(t) is observed at t is identical to the probability
at t + 1 for all load levels. Note that c(t)− c(t− 1) = b(t).
In consequence, the conditional pdf f(b(t)|c(t− 1)) that de-
scribes the likelihood to (dis-)charge the energy-storage de-
vice by b(t) when observing a load level c(t− 1) is f(c(t)−
c(t− 1)|c(t− 1)). In our work, we consider (dis-)charging
rates that follow a GIH distribution and apply the condi-
tional pdf described in Lemma 1.
However, we are not aware of any approach for a closed-

form computation of g. Thus, we propose to apply a nu-
meric approach that divides the load-level range into small
intervals. The density of those intervals is updated by a
repeated calculation, as described in Definition 7, until the
changes are marginal. We describe a respective algorithm
in Appendix E.
We visualize results for an energy-storage device with ca-

pacity 1 kWh and a GIH distribution with a = 0.25kWh
and k ∈ [1, 25] in Figure 4. We observe that for instantia-
tions of k with a low value, i.e., (dis-)charging rates with a
high standard deviation, load levels around 0.5 ·C are most
probable. For increasing values of k, the pdf flattens around
0.5 ·C and drops down at the capacity bounds 0 and C. Our
results cover the insights presented in [3].
Having the pdf of the stable load level at hand, we can now

compute the confusability for queries that take subsequent
records into account: For each time interval t the query
refers to, we can compute the probability to observe a (dis-)
charging rate w.r.t. the load-level pdf of the previous time
interval t − 1. The first time interval t0 referred to by the
query applies the stable load-level pdf g to determine the
initial load-level probabilities. The (dis-)charging rate of
later time intervals t then depends on the (dis-)charging
rates of previous time intervals t′ with t > t′ ≥ t0. With
this procedure, the capacity bounds [0, C] of the energy-
storage device cannot be violated. This is because the load
level at time interval t is composed of the initial load level
and the (dis-)charging rates of previous time intervals. In
consequence, the probability to observe a (dis-)charging rate
resulting in a load level smaller than 0 or larger than C is
zero. Thus, the scenario in Example 4 where the standard
deviation would be larger than C cannot occur.
To show how to compute the pdf of a query which refers

to several time intervals, we take the consumption over a
sequence of intervals as example.
Lemma 3. The pdf P (q(X) = s) of the result s of the query
q “What is the consumption during the period [1, T ]?” is∫ C

−C
. . .

∫ C

−C

∫ C

0
fk,a

(
s−

T∑
t=1

d(t)−
T−1∑
t=1

bt

∣∣∣∣∣c+
T−1∑
i=1

bi

)
·

T−1∏
t=1

fk,a

(
bT−t −

T−t−1∑
i=1

bi

∣∣∣∣∣c+
t−1∑
i=1

bi

)
·

g(c) dcdb1 . . . dbT−1

Since we do not have a closed-form computed solution of
g, an analytic computation of this query-result pdf is im-
possible. Thus, we rely on a numerical solution similar: We
divide the conditional load-level pdf f into many small in-
tervals. For each interval, we iteratively compute the pdfs
over all time intervals t ∈ [1, T ].
Section 7 presents experimental results for (σ,m)-confus-

ability for different features over several time intervals. The
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Figure 4: Visualization of the stable load level pdf
(a = 0.25 kWh and C = 1 kWh)
computations of the pdfs of those features follow the ex-
planations in this section. I.e., they all consider the stable
load-level pdf to describe the initial load-level probabilities
and then iteratively compute the conditional (dis-)charging-
rate pdfs over the intervals referred to by the queries.

6. CHARGING STRATEGY
We now present a charging strategy that fulfills the re-

quirement that the (dis-)charging rates follow a GIH distri-
bution described in Section 3.2. In addition, we identify the
following privacy-relevant requirements a charging strategy
should fulfill:

1. [26] has shown that, in Case 2, adding consecutive ran-
dom values independently of each other to a time series
results in a perturbation that can easily be filtered. To
avoid this problem, a charging strategy should choose
the (dis-)charging rates in a way that the information
on the actual consumption is hidden reliably.

2. State-of-the-art charging strategies aim at hiding changes
in the time series [9, 15, 16, 17, 30, 31]. Their experi-
ments show that smoothening the time series can help
to increase the failure probability of approaches infer-
ring private information. Thus, a charging strategy
should smoothen the perturbed consumptions.

To fulfill these requirements, we add a trend preserva-
tion in a best-effort manner to our charging strategy. Here,
trend preservation means that our charging strategy aims at
preserving the current linear trend that results from the per-
turbed records of the last two time intervals. Such a trend
preservation helps to perturb the actual consumption reli-
ably: As long as the differences between consecutive records
remain the same, a filtering approach is unable to identify
wavelet coefficients that result from perturbing the time se-
ries [26]. In consequence, the filtering approach cannot re-
construct the actual consumption values. In addition, such
trends smoothen the time series, in line with the second re-
quirement. Note that the trend preservation is carried out
in a best-effort manner, i.e., it might fail in the same way
as it does for other charging strategies: The trend must be
adapted if the capacity bounds are reached, or if the result-
ing (dis-)charging distribution does not correspond to the
GIH distribution. This idea of testing whether the distribu-
tion is preserved can also be combined with objectives fea-
tured by related charging strategies, both privacy-centered
ones such as minimizing the distance to the average con-
sumption and economic ones such as minimizing operating
costs [31]. In case the Power Control component works con-
tinuously, we propose to apply a priority mechanism such as
the one proposed in [25].



Algorithm 1 GIH Charging
Private: Array[#bins] devCount

Trend α · t+ β
Input: c(t− 1), d(t), C, k, a, γ
Output: b(t)
1: if t = 0 then
2: b(t) = r, where r is generated from fk,a(b(t)|c(t− 1))
3: β = b(t) + d(t)
4: else if t = 1 then
5: b(t) = r, where r is generated from fk,a(b(t)|c(t− 1))
6: α = b(t) + d(t)− β
7: else
8: b(t) = α · t+ β − d(t)
9: if not(0 ≤ c(t− 1) + b(t) ≤ C and −a ≤ b(t) ≤ a and

devCount[bFk,a(b(t)) ·#binsc] ≤ t
#bins · (1 + γ))

then
10: Determine for each bin that is inside the capacity

bounds [max(−c(t − 1),−a),min(C − c(t − 1), a)] and
whose count devCount[bin] ≤ t

#bins · (1 + γ) a weight
t

#bins · (1 + γ)− devCount[bin]
11: Draw random bin B according to the weights
12: Draw uniform distributed value u ∈ [ B

#bins ,
B+1

#bins ]
13: b(t) = r, with Fk,a(r) = u
14: α = b(t) + d(t)− (α · (t− 1) + β)
15: β = b(t) + d(t)− α · t
16: devCount[bFk,a(b(t)) ·#binsc]++
17: return b(t)

Algorithm. Algorithm 1 is the charging strategy. As an
input, it receives the load level c(t − 1) of the end of the
last interval, the individual consumption d(t) of the current
interval, the capacity C of the energy-storage device, the
parameters k and a of the GIH distribution and an accu-
racy factor γ. γ is used to test whether a perturbation that
follows the current trend would violate the requirement that
the perturbation follows a GIH distribution. If γ is small,
the GIH distribution is observable for each time interval,
but the trend preservation must be adapted frequently. The
output is the amount of energy b(t) that is (dis-)charged in
the current time interval.
The (dis-)charging rates of the first two time intervals are

drawn independently from each other and create the initial
linear trend (Lines 1-6). For each subsequent time interval,
the algorithm tries to preserve the trend (Line 8). This fails
in one of the following cases (Line 9):
• The (dis-)charging rate in combination with the previ-
ous load level would violate the capacity bounds [0, C].
• The (dis-)charging rate would violate the range of the
GIH distribution [−a, a].
• The (dis-)charging rate would result in an overall dis-
tribution deviating from the desired GIH distribution
by at most γ.

To identify whether the GIH distribution is violated, we
propose to divide the interval [−a, a] into bins and count
the number of values that appear for each bin in the array
devCount (Line 16). We apply an equal-frequency parti-
tioning. Thus, we expect the same number of data-object
occurrences (t/#bins) for each bin after each time inter-
val t. If a (dis-)charging rate violates this expectation by
a factor of at most γ, we reject this rate and search for
another one. We do so by weighing the remaining possi-
ble bins by a weight that prefers those that have occurred
rarely in the past (Line 10). This is necessary to ensure
that the (dis-)charging rates always follow the GIH distri-
bution. We draw a bin B where bins with a higher weight

have a higher chance to get chosen (Line 11). We now deter-
mine a b(t) by an inverse transform sampling: We determine
a uniformly distributed random value u from the interval
[B/bins,(B + 1)/bins] (Line 12). The (dis-)charging rate
b(t) where the GIH cdf Fk,a(b(t)) = u is the result of the
inverse transform sampling. Finally, we update the trend
w.r.t. b(t) (Lines 14-15).
Note that the focus of this charging strategy is on pre-

serving the GIH distribution. This is because we do not
follow the current trend if the observable distribution would
not follow the GIH distribution any longer. In Section 7,
we show that this charging strategy outperforms existing
approaches by orders of magnitude w.r.t. its ability to in-
crease the failure probability of approaches inferring private
information from energy-consumption data.

7. EXPERIMENTS
We now quantify the provable privacy guarantees pre-

sented in this work on real-world data and use it to evaluate
our GIH charging strategy. More specifically, we use all 2526
time series of the CER dataset [1] that are recorded from
14th September 2009 to 31st December 2010 and that are
labeled with private information, as explained in [6]. Each
time series has been metered with a sampling rate of 30
minutes. This amounts to about 65 million records.
We now quantify guarantees of (dis-)charging rates that

follow a GIH distribution for (ε, δ)-differential privacy and
(σ,m)-confusability. The results are valid for GIH charging
and show that energy-storage devices can provide privacy
guarantees. In what follows, we evaluate our charging strat-
egy on the CER dataset by quantifying the failure proba-
bility of privacy-relevant approaches in Case 2. We expect
that assigning query results to wrong households, as quan-
tified by (σ,m)-confusability, lets GIH charging yield an in-
creased failure probability, compared to related best-effort
approaches. The use cases examined here where privacy is at
risk are as follows: We consider the two orthogonal scenarios
where the data is used to identify its owner and where the
data is used to predict private information about its owner.
We use the approaches presented in [8] and [7] as represen-
tatives of these use cases. In Appendix F, we show that
the trend preservation protects against filtering approaches
which try to reconstruct the actual records. In addition to
such attacks, other reconstruction methods such as identify-
ing the (dis-)charging patterns by applying a disaggregation
approach [5, 33] are possible. Thus, the standard deviation
of the GIH distribution must fulfill the guarantees presented
in [32] to prevent inferences on the different states of the
original energy consumption.
In addition to such attacks, other reconstruction methods

such as identifying the (dis-)charging patterns by applying
a disaggregation approach [5, 33] are possible. Thus, the
standard deviation of the GIH distribution must fulfill the
guarantees presented in [32] to prevent inferences on the
different states of the original energy consumption.

7.1 (ε, δ)(ε, δ)(ε, δ)-differential privacy
Guarantees obtainable with (ε, δ)-differential privacy de-

pend on the number of households n that aggregate their
data and the sensitivity ∆q, i.e., the maximum possible con-
sumption of a household in one time interval. The tradeoff
between ε and δ is adjustable by the parameter x, as ex-
plained in Theorem 2. Table 1 contains results for house-



∆q = 1 kWh ∆q = 2 kWh ∆q = 4 kWh ∆q = 8 kWh
n x ε δ ε δ ε δ ε δ

100 0.7 1.01 1.38×E−5 1.90 2.01×E−5 3.63 4.60×E−5 6.99 2.04×E−4

100 0.9 0.31 8.86×E−2 0.60 1.02×E−1 1.18 1.33×E−1 2.31 2.14×E−1

500 0.9 0.31 5.28×E−13 0.61 9.37×E−13 1.20 2.90×E−12 2.39 2.57×E−11

500 0.95 0.15 2.11×E−4 0.30 2.80×E−4 0.60 4.87×E−4 1.19 1.37×E−3

1000 0.95 0.15 4.88×E−13 0.30 8.44×E−13 0.60 2.48×E−12 1.20 2.01×E−11

1000 0.97 0.09 1.06×E−5 0.18 1.47×E−5 0.35 2.80×E−5 0.72 9.54×E−5

Table 1: Exemplary parameters for (ε, δ)-differential privacy (k = 1 and a = 1 kWh)

Θ = Household ID Θ = Employment
Query m C = 1 C = 2 C = 4 C = 8 C = 1 C = 2 C = 4 C = 8

τ = 0.25 τ = 0.5 τ = 1 τ = 2 τ = 0.25 τ = 0.5 τ = 1 τ = 2

Consumption in (6 p.m. - 10 p.m.) 1 57.6% 70.0% 80.9% 88.6% 31.9% 46.5% 62.9% 76.4%
3 23.8% 39.5% 57.6% 75.0% 12.0% 21.3% 37.4% 57.3%

Weekend Consumption 1 20.7% 28.5% 36.1% 42.7% 4.3% 8.7% 15.9% 24.4%
3 2.0% 7.7% 18.1% 28.3% 0.0% 0.1% 2.0% 6.5%

Maximum Consuption 1 54.3% 58.8% 65.9% 71.8% 46.8% 50.6% 57.9% 66.2%
3 39.8% 44.2% 53.1% 62.9% 15.6% 29.4% 37.6% 49.5%

First time consumption > 1 kWh 1 71.1% 71.0% 77.1% 91.8% 60.6% 61.3% 64.9% 85.1%
3 62.9% 63.8% 73.6% 88.1% 42.6% 43.1% 49.5% 79.4%

Table 2: Results for (σ,m)-confusability (k = 1,a = τ)

holds that apply a charging strategy where the (dis-)charging
rates follow a GIH distribution with a = 1kWh and k = 1.
Obviously, a larger number of households facilitates stronger
privacy guarantees, i.e., smaller values for ε and δ. An in-
creasing sensitivity in turn lowers the guarantees. An in-
creasing value of x results in lower ε and increased δ. As il-
lustrated in Table 1, there is a high degree of privacy in many
cases where the probabilities may differ from each other by
a factor of 2 (ε = 0.69), and this requirement is violated
(significantly) less frequently than δ = 1%.

7.2 (σ,m)(σ,m)(σ,m)-confusability
We evaluate (σ,m)-confusability for four queries, see first

column in Table 2. The query results represent typical fea-
tures that are applied for privacy-relevant approaches such
as [6, 8]. We present σ values form = 1 andm = 3, i.e., each
query result must be σ-confusable with the ones of at least 1
and 3 households with different prediction targets Θ. A first
prediction target is the label of its household, given by its ID.
The second target is Θ := {’employed’, ’unemployed’}. In
addition, we quantify the effect of the energy-storage device
on the guarantees. We consider four energy-storage devices
with increasing capacity C and increasing maximum (dis-)
charging rates τ . The (dis-)charging rates follow a GIH dis-
tribution with k = 1 and a = τ .
Obviously, for an increasing m, i.e., number of households

each household must be confusable with, the values for σ
decrease. If the prediction target partitions the households
by their IDs, we obtain higher confusability compared to
the case with the employment status. This is because in the
first case, each household is compared to all other house-
holds of the dataset. In the second case, each household
is compared to fewer households of a different employment
status, i.e., if a time series is labeled with ’employed’, con-
fusability is calculated only for time series that are labeled
with ’unemployed’. In consequence, the confusabilities for
Θ = Employment can be at most as good as the one for
Θ = Household ID.
For the first query that returns the consumption between

6 and 10 p.m., we obtain high values for σ that increase
with the size of the energy-storage device. In contrast, the
confusabilities for the second query that calculates the con-
sumption during the weekend are lower. This is because the

number of time intervals that are important to the query is
much larger for the second query. Therefore, the differences
in the consumption between the households are larger. Since
the consumption perturbation achievable with an energy-
storage device is capped by its capacity, the confusability
achievable for queries over a long time obviously decreases.
However, if one aggregates over many time intervals, he
loses information on individual behavior patterns. There-
fore, such queries endanger privacy less than queries over
few time intervals, as illustrated in [23].
The third query regarding the maximum consumption has

high confusabilities again. Although the query is computed
on a large number of time intervals, only those records that
have high values affect the pdf of the result. Thus, the result
can be perturbed reliably, and we obtain high values for σ.
The fourth query that returns the first time interval where

the consumption is larger than 1 kWh has high confusabili-
ties. Somewhat surprisingly, we observe that for an increas-
ing energy-storage-device size from C = 1kWh to 2kWh for
m = 1 and Θ = Household ID the confusabilities do not
increase, i.e., drop from 71.1% to 71.0%. Let us illustrate
the reason for this effect with an example:
Example 5. Think of two time series X1 and X2 with
two records each. X1 consists of the values [0.5, 1.5], X2 of
[0.75, 1.5]. For a GIH distribution with a = 0.25 and k = 1,
a value larger than 1.0 occurs the first time with a likelihood
of 100% for the second record for both time series. A bigger
energy-storage device that allows the implementation of a
GIH distribution with a = 0.5 now lets the first record of X2
have values in [0.25, 1.25]. In consequence, there is a chance
of 25% to observe a value larger than 1.0 for the first record
and 75% for the second record for X2, while the probabilities
for X1 remain the same. Thus, the confusability drops from
100% to 75% after enlarging the energy-storage device.
We conclude that even for small energy-storage devices,

(dis-)charging rates following a GIH distribution facilitate
high (σ,m)-confusability with σ > 50% for queries that en-
danger privacy.

7.3 Re-Identification
A privacy-relevant problem is that smart-meter data al-

lows the assignment to its owner. This is critical in cases
where the actual consumption is recorded, but without an
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Figure 6: Experimental results on inferring private information
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Figure 5: Experimental results on Re-Identification
identifier. Approaches trying to assign perturbed consump-
tion data to its owner are called re-identification approaches.
We now study the likelihood of success of the re-identification
approach described in [8] for our GIH charging strategy and
the competitor Waterfilling [16]. It aims at preserving a
constant consumption level but does not give any provable
privacy guarantee. We expect that perturbing the features
the re-identification approach relies on increases the failure
probability of the assignment. Figure 5 compares the accu-
racy of the assignment for energy-charging devices of differ-
ent sizes, as visualized by the colored boxes. We randomly
divide the data set into groups of about 100 households and
average the results over all groups. The first bar of Figure 5
shows the re-identification rate if no energy-storage device
is present. The hatched bars show the results of Waterfill-
ing [16], and the remaining bars show the results of the GIH
charging strategy with different values of k. As expected,
the re-identification rate decreases with an increasing size
of the energy-storage device. For bigger energy-storage de-
vices in particular, the re-identification rate increases with
the value of k for GIH charging. This is because the stan-
dard deviation of the consumption perturbation decreases
with an increasing k. However, our GIH charging strategy
outperforms Waterfilling for each size.

7.4 Classification
Approaches such as [7] use features of consumption data

that is labeled with private information to train a classifier.
The classifier then makes predictions for consumption data
where the private information is not available. We expect
that increasing the confusability of households belonging to
different prediction targets decreases the accuracy of such
predictions. We use the following measure that quantifies
the fraction of accuracy lost:

accuracyloss = accactual − acccharging

accactual − accbaseline

where accactual is the prediction accuracy of the actual con-
sumption, acccharging is the one of the consumption per-
turbed by a charging strategy, and accbaseline is the fraction

of the most frequent label. Namely, a classifier that is unable
to learn any prediction rule will use the most frequent label
for each household as prediction. From a privacy perspec-
tive, a charging strategy that results in the same accuracy
as the actual consumption has the worst accuracy loss of
0%. A strategy in turn which does not let the classifier
learn any rule has the best accuracy loss of 100%. Figure 6
shows our experimental results for the approach described
in [7] for private information on the employment status, the
number of devices, the social class and the retirement sta-
tus. We compare Waterfilling [16] with GIH charging with
k = 1, . . . , 5 for four energy-storage devices with increasing
size. We observe that the accuracy loss increases with larger
sizes for all charging strategies. However, the accuracy loss
differs between the prediction targets. We conclude that
the loss depends on the features that are important for the
prediction. For instance, the employment status might be
predictable by considering whether the consumption in the
morning is high, i.e., whether the residents are at home. For
this feature, the confusability is quite high, cf. Section 7.2.
On the other hand, the consumption over a long period of
time might be useful to predict the number of devices. It
is difficult to make such long-term features confusable, as
shown for the weekend feature in Section 7.2. Comparing
the charging strategies, GIH charging outperforms Waterfill-
ing [16] for all predictions and all sizes for small values of k.
We conclude that the ability of GIH charging to guarantee
privacy reduces prediction accuracy, as expected.

8. CONCLUSIONS
In this work we have addressed the important problem of

giving privacy guarantees for smart meter data with energy-
storage devices. Related work studies two main cases, one
where the data is aggregated over several households, the
other one where the data of each household can be analyzed
individually. We cover both cases, the first one with (ε, δ)-
differential privacy, the other one by introducing (σ,m)-
confusability. To quantify the guarantees achievable, we
have focused on (dis-)charging rates that follow a generaliza-
tion of the Irwin-Hall distribution. An energy-storage device
with limited capacity can implement such charging strate-
gies. Furthermore, we have proposed a specific charging
strategy that combines this distribution with trend preser-
vation in a best effort manner. Our experiments show that
our strategy can give good privacy guarantees and outper-
forms conventional charging strategies in protecting against
approaches that infer private information from the data.
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APPENDIX
A. PROOF OF LEMMA 1
Lemma 1. The function
fk,a(b(t)|c(t− 1)) =

0 if c(t− 1) + b(t) < 0
or c(t− 1) + b(t) > C,

2 · fk,a(b(t)) if c(t− 1)− a < 0
and c(t− 1) + b(t) ≥ 2 · c(t− 1),

2 · fk,a(b(t)) if c(t− 1) + a > C
and c(t− 1) + b(t) ≤ 2 · c(t− 1)− C,

fk,a(b(t)) otherwise.

is a conditional pdf given the load level c(t − 1) that fits
the GIH distribution to the capacity bounds [0, C] of the
energy-storage device.
Proof. The conditional pdf removes the part of the GIH pdf
that exceeds the capacity bounds [0, C], mirrors it on the
mean and adds it to fk,a(b(t)). This means that the resulting
function is a feasible pdf. This is because its integral over
[0, C] keeps having value 1, and it is greater than or equal
to zero at each point.

B. PROOF OF THEOREM 1
Theorem 1. Let n be the number of individual households.
They use a charging strategy that adds noise in the range
[−a, a] to the individual consumption. Then there does not
exist any charging strategy that facilitates ε-differential pri-
vacy for the sum of the consumptions over all households.
Proof. Differential privacy compares the two cases where
n and n− 1 households publish their aggregated perturbed
consumption data Dn and Dn−1. Thus, the result of a query
in these cases has the following ranges:

q(DBn) ∈ [Dn − n · a,Dn + n · a]
q(DBn−1) ∈ [Dn−1 − (n− 1) · a,Dn−1 + (n− 1) · a]

Independently of the values of Dn and Dn−1, the comple-
ment Range(q(DBn)) \ Range(q(DBn−1)) is never empty.
This is because the interval length |Range(q(DBn))| = 2 ·
n · a > 2 · (n− 1) · a = |Range(q(DBn−1))|. In consequence,
there exist query results Sdistinct that have a probability
greater than zero for q(DBn) and that are equal to zero
for q(DBn−1). In these cases, the fraction

P (q(DBn) ∈ Sdistinct)
P (q(DBn−1) ∈ Sdistinct)

is undefined, and no ε can be found that guarantees differ-
ential privacy.

C. PROOF OF THEOREM 2
Theorem 2. Let q be the query for the sum of consump-
tions in time interval t over several households that perturb
their data individually by a GIH distribution with param-
eters k and a. Suppose that the requester does not know
whether n or n− 1 households are part of the data set. The
result of q is (ε, δ)-differentially private with

ε = max
(

ln
(

fk,a,n−1(left)
fk,a,n(left−∆q)

)
, ln
(
fk,a,n(right−∆q)
fk,a,n−1(right)

))
δ = max (Fk,a,n−1(left), 1− Fk,a,n(right−∆q))

where

left = ∆q − a · n+ x · n

2n− 1 · (a · (2n− 1)−∆q)

right = a · (n− 1)− x · n− 1
2n− 1 · (a · (2n− 1)−∆q)

and x is any value in (0, 1].
Proof. For our proof, we assume a < ∆q, i.e., the energy-
storage device cannot (dis-)charge more energy than the
household with the most energy-intensive devices consumes
within one time interval. This results in two pdfs fk,a,n−1(b(t))
for n and fk,a,n(b(t)−∆q) for (n−1) households that inter-
sect each other (at most) one time, as illustrated in Figue 7.
The proof for a > ∆q where they intersect two times then
is straightforward and is omitted here.
In a first step, we divide the set of possible answers Range(q)

into three subsets LEFT,MIDDLE and RIGHT:

LEFT = [−a · (n− 1), left]
MIDDLE = [left, right]
RIGHT = [right,∆q + a · n]

The lower bound −a · (n − 1) of LEFT is the lowest value
where fk,a,n−1(b(t)) can achieve a pdf greater zero, the up-
per bound ∆q + a · n of RIGHT is the largest value where
fk,a,n(b(t)−∆q) can achieve a pdf greater zero. We initial-
ize the inner bounds ’left’ between LEFT and MIDDLE and
’right’ between MIDDLE and RIGHT as follows, applying a
variable x ∈ (0, 1]:

left = ∆q − a · n+ x · n

2n− 1 · (a · (2n− 1)−∆q)

right = a · (n− 1)− x · n− 1
2n− 1 · (a · (2n− 1)−∆q)

’left’ and ’right’ are mirror-inverted w.r.t. fk,a,n−1(b(t)) and
fk,a,n(b(t)−∆q), i.e., ’left’ divides fk,a,n−1(b(t)) into two
parts that have the same relative range sizes as the two
parts that arise from dividing fk,a,n(b(t)−∆q) by ’right’.
We now assume that
• fk,a,n−1(b(t))

fk,a,n(b(t)−∆q) receives the smallest value within LEFT
for b(t) = left, i.e., the term is increasing for b(t) < left
and decreasing for b(t) > left and that

• fk,a,n(b(t)−∆q)
fk,a,n−1(b(t)) receives the smallest value within RIGHT
for b(t) = right, i.e., the term is increasing for b(t) >
right and decreasing for b(t) < right.

We now analyze the two cases where the left side of the
inequation of Definition 3 describes the dataset containing
(n− 1) households and where it contains n households.
First case: We start with the information need for q(DB1)

stated in Definition 3. We do so by calculating the sum of
(n− 1) households, i.e.,

P (q(DBn−1) ∈ S) ≤ eε · P (q(DBn) ∈ S) + δ

We now divide S into the two sets LEFT and ¬LEFT :=
MIDDLE ∪ RIGHT:

P (q(DBn−1) ∈ LEFT) + P (q(DBn−1) ∈ ¬LEFT) ≤
eε · (P (q(DBn) ∈ LEFT) + P (q(DBn) ∈ ¬LEFT)) + δ

We now decrease the right side by eε · P (q(DBn) ∈ LEFT):

P (q(DBn−1) ∈ LEFT) + P (q(DBn−1) ∈ ¬LEFT) ≤
eε · P (q(DBn) ∈ ¬LEFT) + δ
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Figure 7: Visualization of cumulative pdf plots with k = 1, a = 1 kWh and ∆q = 4 kWh

By requiring that

δ ≥ P (q(DBn−1) ∈ LEFT) = Fk,a,n−1(left)

we can reduce the inequation to

P (q(DBn−1) ∈ ¬LEFT) ≤ eε · P (q(DBn) ∈ ¬LEFT)
P (q(DBn−1) ∈ ¬LEFT)
P (q(DBn) ∈ ¬LEFT) ≤ e

ε

fk,a,n−1(b(t))
fk,a,n(b(t)−∆q) ≤ e

ε, ∀b(t) ∈ ¬LEFT

According to our previous assumption that fk,a,n−1(b(t))
fk,a,n(b(t)−∆q)

is decreasing with b(t), we must take b(t) = left. This is
because ’left’ is the lower bound of ¬LEFT. Summarizing,
in our first case, we obtain

ε = ln
(

fk,a,n−1(left)
fk,a,n(left−∆q)

)
, δ = Fk,a,n−1(left).

Second case: The procedure is symmetric to the first
case, i.e., we start with

P (q(DBn) ∈ S) ≤ eε · P (q(DBn−1) ∈ S) + δ

We divide S into RIGHT and ¬RIGHT := LEFT ∪ MIDDLE:

P (q(DBn) ∈ RIGHT) + P (q(DBn) ∈ ¬RIGHT) ≤
eε · (P (q(DBn−1) ∈ RIGHT) + P (q(DBn−1) ∈ ¬RIGHT)) + δ

We decrease the right side by eε · P (q(DBn−1) ∈ RIGHT)
and require that

δ ≥ P (q(DBn) ∈ RIGHT) = 1− Fk,a,n(right)

Thus, we can reduce our inequation to
P (q(DBn) ∈ ¬RIGHT)
P (q(DBn−1) ∈ ¬RIGHT) ≤ e

ε

fk,a,n(b(t)−∆q)
fk,a,n−1(b(t)) ≤ eε, ∀b(t) ∈ ¬RIGHT

We now take b(t) = right where the fraction receives the
largest value in ¬RIGHT and obtain

ε = ln
(
fk,a,n(right−∆q)
fk,a,n−1(right)

)
, δ = 1− Fk,a,n(right).

Result Merging: We now achieve two (possible) slightly
different values for ε and δ in the first and the second case.
To give provable privacy guarantees, we have to take their

maximum values to fulfill the inequation presented in Defi-
nition 3. In consequence, we can guarantee (ε, δ)-differential
privacy with

ε = max
(

ln
(

fk,a,n−1(left)
fk,a,n(left−∆q)

)
, ln
(
fk,a,n(right−∆q)
fk,a,n−1(right)

))
δ = max (Fk,a,n−1(left), 1− Fk,a,n(right−∆q))

D. PROOF OF LEMMA 3
Lemma 3. The pdf P (q(X) = s) of the result s of the query
q “What is the consumption during the period [1, T ]?” is∫ C

−C
. . .

∫ C

−C

∫ C

0
fk,a

(
s−

T∑
t=1

d(t)−
T−1∑
t=1

bt

∣∣∣∣∣c+
T−1∑
i=1

bi

)
·

T−1∏
t=1

fk,a

(
bT−t −

T−t−1∑
i=1

bi

∣∣∣∣∣c+
t−1∑
i=1

bi

)
·

g(c) dcdb1 . . . dbT−1

Proof. It is well known that the probability density of the
sum of two independent random variables described by the
pdf f is given by

sum(x) =
∫

f(y) · f(x− y) dy.

In our scenario, we have to generalize this expression for an
arbitrary number of random variables and conditional pdfs:
1. Adding several random variables:

For each time interval, we observe a random deviation
bt that can take values from [−C,C]: If the energy-
storage device is empty, the maximum observable de-
viation is C. If it is full, that deviation is −C. Thus,
that interval defines the integral boundaries. Now re-
member that the query result s is the sum of all devia-
tions bt and the sum of all consumption values d(t) for
all t ∈ [1, T ]. For the last time interval T , the (dis-)
charging rate equals s−

∑T

t=1 d(t)−
∑T−1

t=1 bi. For all
previous t ∈ [1, T − 1], it is bT−t−

∑T−t−1
i=1 bi. By con-

voluting the respective probabilities, we obtain the pdf
of the sum of the random variables.

2. Applying conditional pdfs:
We take the probabilities of observing a certain load
level into account by integrating over g(c), where c is



Algorithm 2 Compute g
Input: conditional (dis-)charging rate pdf f(b(t)|c(t− 1)

capacity C
Output: stable load level pdf g
1: Start at time interval t = 0
2: gt is an array where each object has value 1

|g|
3: do
4: t = t+ 1
5: gt is an array where each value is 0.
6: for loadLevel c(t) ∈ [0, C] do
7: for loadLevel c(t− 1) ∈ [0, C] do
8: gt(c(t)) = gt(c(t)) + f(c(t) − c(t − 1)|c(t − 1))·

gt−1(c(t− 1))
9: error = dist(gt − gt−1)
10: while error is too large
11: return gt

defined on [0, C]. The pdfs fk,a now consider this load
level in the conditional term, as explained in Lemma 1.
The load level relevant for each time interval t is the
load level of the beginning plus all (dis-)charging rates
bi of all previous time intervals, i.e., i ∈ [1, t− 1].

E. ALGORITHM TO COMPUTE THE STA-
BLE LOAD LEVEL PDF

We now present an iterative, numeric approach to com-
pute the stable load-level pdf g(c(t)), as sketched in Sec-
tion 5.2. Algorithm 2 is the pseudo-code of this approach.
The algorithm requires f(b(t)|c(t− 1)) and C as input. We
start at time interval 0 (Line 1) with an arbitrary load-
level distribution g, e.g., a uniform distribution on [0, C]
(Line 2). Then, we apply a numerical integration by di-
viding the range [0, C] into many intervals (Lines 6-7) and
repeatedly calculate the pdf of g as described in Definition 7
(Line 8). We iteratively adapt the pdf of g until the changes
are marginal (Lines 11-12).

F. EXPERIMENTAL RESULTS ON FILTER-
ING ATTACKS

We now evaluate how GIH charging performs against ap-
proaches that perform a filtering technique to reconstruct
the actual consumption. Such approaches assume that the
perturbation results from white noise, i.e., the random vari-
ables added to each record are uncorrelated. We expect the
trend-preservation property of GIH charging to prevent re-
constructing the actual consumption. We use the following
measure that quantifies the fraction of removed perturba-
tion:

removedPerturbation = stdperturbed − stdreconstructed

stdperturbed

stdperturbed is the standard deviation of the differences be-
tween the perturbed and the actual records and stdreconstructed
is the standard deviation of the differences between the re-
constructed and the actual records. From a privacy per-
spective, a charging strategy where a filtering approach re-
constructs each actual record has the worst perturbation re-
moval of 100%. A charging strategy in turn which does not
let the filtering approach reconstruct any actual record has
a perturbation removal of 0%. When the standard deviation
of the differences between the reconstructed and the actual
records is larger than the one between the perturbed and
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Figure 8: Experimental results on Filtering
the actual records, the perturbation removal has negative
values.
For our evaluation, we apply the filtering approach based

onWavelet decomposition proposed in [26]. Figure 8 presents
our results on the same data of the CER dataset [1] used
for experiments in Section 7. It visualizes the percentage of
perturbation removed by boxplots with whiskers from mini-
mum to maximum. All minimum whiskers of those boxplots
that lie outside the range of the y-axis have values of about
−50%. The first boxplot visualizes a charging strategy with-
out a trend-preservation feature, i.e., a random consumption
perturbation according to Lemma 1 is used for each time in-
terval. For this charging strategy, the filtering approach can
reconstruct some information for each time series. The re-
maining boxplots show the results for GIH charging with
different values of γ. As expected, the perturbation re-
moved decreases slightly with increasing values of γ. If γ
is small, the trend preservation must be adapted frequently,
and therefore the chance of the filtering approach to succeed
increases. However, for all instantiations of γ, the median
is about zero. This means that the number of time series
where the filtering approach succeeds is about the same as
the number of time series where it fails. Thus, an attacker
who does not know the actual records cannot decide whether
the filtering was successful in removing the perturbation. In
consequence, our experimental results show that the trend-
preservation feature of the charging-strategy presented in
Section 6 protects against filtering approaches.


