
Soc. Netw. Anal. Min. manuscript No.
(will be inserted by the editor)

Protecting the Dawid-Skene Algorithm against Low-Competence Raters
and Collusion Attacks with Gold-Selection Strategies

Conny Kühne · Klemens Böhm

Received: date / Accepted: date

Abstract More and more online communities classify contri-
butions based on collaborative ratings of these contributions.
A popular method for such a rating-based classification is the
Dawid-Skene algorithm (DSA). However, despite its popu-
larity, DSA has two major shortcomings: (1) It is vulnerable
to raters with a low competence, i.e., a low probability of
rating correctly. (2) It is defenseless against collusion attacks.
In a collusion attack, raters coordinate to rate the same data
objects with the same value to artificially increase their re-
muneration.

In this paper, to cope with these issues, we propose gold
strategies based on the level of agreement between raters.
Gold strategies adopt the notion of gold objects, i.e., contribu-
tions whose true value is known. We show that selecting gold
objects at random, as is common in the literature, does not
increase the accuracy of DSA in a low-competence setting to
a satisfying degree. Instead, our gold strategies select contri-
butions based on the level of agreement between community
members, i.e., to which extent their ratings agree on the class
of a given contribution. To maximize the net benefit of gold
objects, i.e., their benefit minus their costs, we propose an
adaptive algorithm. It determines the number of gold objects
based on runtime information. We extensively evaluate the ef-
fectiveness of gold strategies in low-competence settings and
against collusion attacks by means of simulation. We find that

Conny Kühne
Institute for Program Structures and Data Organisation, Karlsruhe Insti-
tute of Technology
Am Fasanengarten 5, Building 50.34, 76131 Kalrsruhe, Germany
E-mail: conny.kuehne@kit.edu

Klemens Böhm
Institute for Program Structures and Data Organisation, Karlsruhe Insti-
tute of Technology
Am Fasanengarten 5, Building 50.34, 76131 Kalrsruhe, Germany
E-mail: klemens.boehm@kit.edu

gold strategies based on a high level of agreement between
raters improve the accuracy of DSA in low-competence set-
tings considerably. Further, the gold strategies are highly
effective against collusion attacks. Finally, the adaptive algo-
rithm determines the optimal gold ratio for each strategy and
each setting with high accuracy.

Keywords Classfication · Dawid-Skene Algorithm · Gold
Strategies · Collusion Attacks

1 Introduction

For an increasing number of online communities, the con-
tributions created by the community are processed automat-
ically. Such communities must classify the contributions,
i.e., decide which class out of a set of predefined classes
a contribution belongs to. For example, consider an online
community that creates an ontology. Here, the community
needs to decide, e.g., if a contribution is a class or an instance
or if a name of an item in the ontology is correct or not. We
investigate rating-based classification methods for such com-
munities. The general scenario is the following: Members
of the community create contributions collaboratively and
subsequently rate each others’ contributions according to the
quality they perceive. After the ratings have been submitted,
the community classifies the contributions by aggregating
the ratings of the contributions. For the work at hand, we
mainly focus on a binary classification setting, i.e., a given
contribution can belong to two possible classes.

Our open-community setting differs from the typical paid
crowdsourcing settings such as Amazon Mechanical Turk
(AMT). AMT offers mechanisms to qualify workers by ask-
ing them to rate specific contributions. Based on this qualifi-
cation, workers can be excluded from participating in certain
tasks. In contrast to this, we assume a high degree of auton-
omy of the individual community members. We can neither

2 Conny Kühne, Klemens Böhm

manipulate individual raters to rate selected contributions nor
exclude them from rating.

A simple scheme for aggregating ratings is the well-
known majority vote (MV). Despite its simplicity, MV can
achieve a surprisingly high accuracy provided that the quality
of ratings is sufficiently high (Condorcet 1785). One aim of
ours is to give an intuition for the high performance of MV
and to show under which conditions it is achieved. Aggregat-
ing ratings by means of the weighted majority vote (WMV)
can increase the classification accuracy compared to MV, pro-
vided WMV knows the individual competence of each rater,
i.e., his probability of rating correctly. Intuitively, weighted
majority vote assigns a higher weight to high-competence
raters than to low-competence raters. Yet, in general, rater
competencies are unknown.

For this case, Dawid and Skene (1979) proposed an al-
gorithm to estimate the competencies of the raters and to
classify the contributions accordingly. We refer to this al-
gorithm as the Dawid-Skene algorithm (DSA). DSA was
originally developed to combine opinions of multiple physi-
cians for medical diagnosis. With over 450 citations, DSA is
one of the most widely-cited algorithms for classifying items
based on ratings by raters with unknown competencies. In
recent years, there have been a lot of proposals to use DSA
– and algorithms based on or closely related to DSA – in
particular for crowdsourcing settings (Whitehill et al. 2009;
Wang et al. 2011; Raykar and Yu 2012; Wang et al. 2013).
However, despite its popularity, DSA has two major short-
comings: (1) It is vulnerable to low-competence settings, and
(2) it is defenseless against collusion attacks.

Firstly, if the mean competence of the community of
raters is close to or less than random, e.g., close to or less
than 0.5 in binary classification tasks, DSA performs rather
poorly. Such a low mean competence can occur if the topic of
the community is inherently difficult. It can also occur if the
community has a large fraction of spammers, biased raters,
malicious raters, or simply raters with consistent misunder-
standing. A spammer assigns ratings randomly, independent
of the true value of the object rated. Biased raters give consis-
tently too high or too low ratings. Ipeirotis et al. (2010) give
the following example of a biased rater: Think of a task of
classifying web content into the categories appropriate and
non-appropriate for children. For this task, parents of young
children tend to rate more conservatively than the general
population. That is, they tend to consistently rate sites that
are objectively appropriate for children as inappropriate. An-
other example might be a community that builds a knowledge
base on the advantages and disadvantages of various kinds
of power plants. Here, environmental activists would likely
be biased in their assessments. For example, they might as-
sess nuclear power plants as more dangerous than they are
objectively. Further, raters might give anti-correlated ratings.
That is, on average, they invert ratings, either maliciously

or because of a consistent misunderstanding. Settings with
mean competence close to or less than random seem rare
but do occur. For example, Kazai et al. (2013) report an av-
erage mean competence close to random (0.56) over their
eight binary open crowdsourcing tasks. In one of their tasks,
the workers reached only a mean competence of 0.35. Such
low-competence settings can have a devastating effect on the
classification accuracy of DSA and related approaches which
assume that the majority is correct on average.

Secondly, DSA is defenseless against collusion attacks.
In a collusion attack, raters coordinate to rate the same data
objects with the same value to artificially increase their esti-
mated competence. This is beneficial for the colluders if they
receive a remuneration for their ratings that is based on their
estimated competence. For example, many online commu-
nities remunerate users with reputation or Karma points for
high-quality contributions. We propose to compute remuner-
ations in such communities contingent on the competence
estimates by DSA. Similarly, Wang et al. (2013) propose
an algorithm that pays crowdsourcing workers based on the
competence estimates calculated by DSA, among other met-
rics. However, they do not address collusion attacks. When
the remuneration is based on the estimated competence, a
collusion attack allows colluders to artificially increase their
remuneration while saving cognitive effort for determining
the truthful value of the data objects. Since DSA assigns an
inflated weight to their low-competence ratings, colluders
can also severely damage the accuracy of DSA.

We propose gold strategies based on the level of agree-
ment to increase the accuracy of DSA in low-competence
settings and to counter collusion attacks. Gold strategies
adopt the notion of gold objects, i.e., contributions that DSA
knows the true value of. Gold objects are a common approach
in the literature to differentiate between high- and low-quality
raters. The approaches known in the literature use predeter-
mined, randomly selected gold objects. However, as we will
show, simply selecting contributions as gold objects at ran-
dom does not increase the accuracy to a satisfying degree in
our setting. Instead, our gold strategies select contributions
based on the ratings they have received. Specifically, gold
strategies select contributions based on the level of agreement
between community members, i.e., to what extent their rat-
ings agree on the class of a given contribution. Subsequently,
trusted experts rate the selected contributions, thereby turn-
ing them into gold objects. Of course, the accuracy benefit of
gold objects is offset by their costs. Consequently, we are in-
terested in maximizing the net benefit of gold objects, i.e., the
benefit of a given number of gold objects minus their costs.
Determining the number of gold objects that maximizes the
net benefit a priori is infeasible. We propose an algorithm
that adaptively determines the number of gold objects based
on runtime information.

To summarize, we make the following contributions:

Protecting the Dawid-Skene Algorithm Against Low-Competence Raters and Collusion Attacks 3

– Properties of MV and WMV. We discuss the relationship
between the number of raters, the competence distribu-
tion, and the accuracy for MV and WMV under different
assumptions w.r.t. the competence of raters.

– Estimation quality of DSA. We study the effect of the
competence distribution and the number of ratings on the
estimation quality of DSA in different settings.

– Gold strategies based on the level of agreement. A com-
mon approach in the literature to differentiate between
high- and low-quality raters is to evaluate their ratings
by means of a set of predetermined or randomly selected
gold objects. In contrast, we propose gold strategies, i.e.,
selecting contributions for evaluation by expert raters,
which use the level of agreement between the ratings of
the community as a selection criterion. We test the ef-
fectiveness of these gold strategies in various settings by
means of simulation.

– Adaptive Gold Algorithm. We propose an algorithm that
determines the number of gold objects in order to max-
imize the net benefit. Instead of fixing a predetermined
number of gold objects, the adaptive algorithm automat-
ically decides when to stop adding further gold objects
based on runtime information.

– Collusion attacks. We study the effects of collusion at-
tacks against DSA. Further, we test the effectiveness of
gold strategies to reduce the benefit gained by colluding.
To the best of our knowledge, we are the first to study
collusion attacks against DSA.

A main finding of ours is that gold strategies based on
a high level of agreement between raters improve the ac-
curacy of DSA in low-competence settings considerably.
Moreover, the adaptive gold algorithm reaches over 90 per-
cent of the net benefit that the respective gold strategy can
maximally achieve. Finally, we find that gold strategies are
highly effective in countering collusion attacks against DSA.
Even though our analysis concentrates on DSA, the related
methods that are based on DSA potentially suffer in low-
competence settings and under collusion attacks as well.
This is because these methods either use the output of DSA
as input for their algorithm Ipeirotis et al. (2010), or they
make assumptions similar to those of DSA (even though
with some modifications), and, like DSA, use an expectation-
maximization framework to estimate competencies and to
classify the rated items (Whitehill et al. 2009; Raykar and Yu
2012). Thus, our findings are somewhat orthogonal to DSA
and applicable in principle to these related methods as well.

This paper is structured as follows. Section 2 introduces
the formal model and the notation. Section 3 discusses the
accuracy of majority voting and related decision rules. Sec-
tion 4 presents the DSA algorithm. Section 5 introduces two
basic simulation settings we use as templates for the evalu-
ation of DSA. Section 6 analyzes the effects of the number
of data objects and the mean competence of the raters on

the accuracy of DSA. Section 7 discusses the gold strategies
and evaluates them. Section 8 introduces and evaluates our
adaptive gold algorithm. Section 9 discusses the effects of col-
lusion attacks against DSA and evaluates the gold strategies
to counter them. Section 10 reviews related work. Section 11
discusses the main findings, and Section 12 concludes.

2 Model and Notation

We consider an online community where participants can rate
the contributions of their peers. Let K = {1, . . . ,m} denote
the set of contributions and let k ∈K denote a single contribu-
tion. We also call a contribution a data object in the following.
We assume that each data object has a fixed type t from the
set of types T . We focus on a binary setting, i.e., there are two
different types (for example ‘correct/incorrect’, ‘high/low’
etc.). We encode the types with -1 and 1, i.e., T = {−1,1}.

We write ok to denote the true type of data object k and
ok = t to denote the event that the true type of k is t. Let
p(t) denote the prior probability of a randomly chosen data
object to be of type t. Raters are those participants of the
online community who issue ratings. We use I = {1, . . . ,n}
to denote the set of all n raters of the community.

Let ri,k ∈ T denote the rating given by rater i to data
object k. We use R = {ri,k} to denote the set of all ratings and
s = |R| to denote the number of all ratings. Each rater rates
each data object at most once. We use Rk = {ri,k′ | k′ = k}
to denote the set of ratings for data object k and sk = |Rk| to
denote the number of ratings for k.

A classification method estimates the type ôk ∈ T of each
data object k. We use ôk = ok and ôk 6= ok to denote the
events that the classification method estimates the type of ok
correctly and incorrectly, respectively. We use θ̂ to indicate
an estimator of a parameter θ . Finally, let 1(·) be the indicator
function, i.e., 1(·) is equal to one if its argument holds true,
and equal to zero otherwise. See Table 2 in Section 15 for a
summary of the notation.

2.1 Competence Models

A rater perceives the type of a data object with some error
and rates it according to his perception. Note that we assume
that raters do not act strategically. I.e., we do not consider
the case where raters might change their behavior depending
on the behavior of other raters. (We do consider this case
below in Section 9 when discussing collusion attacks.) Let
P(ri,k = q | ok = t) denote the response probability that rater
i gives a rating of value q ∈ T given that the true type of the
rated data object is t ∈ T . We assume that P(ri,k = q | ok = t)
is the same for all data objects k of type t. In other words, for a
given rater all data objects of a given type are equally difficult.

4 Conny Kühne, Klemens Böhm

Further, we assume that, conditional on the type of a data
object, ratings are independent and identically distributed.

We use the following three models to capture assumptions
of increasing strictness on the response probability.

Type-Dependent Competence. We call the probability
that rater i rates correctly given that the true type of the data
object is t, i.e., c(t)i = P(ri,k = t | ok = t), i’s competence for
type t. Since we consider binary types, i.e., t ∈ {−1,1}, it
follows that P(ri,k = t | ok = t) = 1−P(ri,k = q | ok = t) for
t 6= q. Thus, the set of competencies {c(−1)

i ,c(1)i } specifies
all response probabilities of rater i.

Heterogeneous Type-Independent Competence. We as-
sume that rater i rates correctly with competence ci = c(t)i
that is the same for both types t ∈ {−1,1}.

Homogeneous Competence. We assume that every rater
i has the same type-independent competence c = ci.

Having defined the competence, we can clarify the notion
of spammers, biased, and anti-correlated raters introduced
above. A biased rater’s competence is low for one type only.
An anti-correlated rater inverts ratings, either because he is
malicious or he consistently mixes up both categories. This
means that his competence for both types is less than 0.5. A
spammer has competence 0.5.

3 The Accuracy of Majority Decision Rules

To gain insights into the relationship between rater compe-
tence and classification accuracy we start by investigating the
accuracy of the following majority decision rules: majority
vote, and maximum a posteriori probability (MAP) rule, as
well as the weighted majority vote as a special case of the
MAP rule.

3.1 Majority Vote

MV decides for type t if more than one half of the ratings are
in favor for t 1

ôk = t if ∑
ri,k∈Rk

1(ri,k = t)≥
⌊ sk

2

⌋
+1 (1)

where bsk/2c denotes the ‘floor’ under sk/2, i.e., the largest
integer smaller than sk/2.

1 The rule that decides in favor for the type t that receives most of the
ratings, i.e., ôk = t, if argmaxt∈T = ∑ri,k

1(ri,k = t), is called plurality
vote. In the literature simple majority vote and plurality vote are often
both called majority vote according to Kuncheva (2004). Plurality vote
and majority vote are equivalent for settings where the number of types
is two and the number of ratings is odd.

0.0 0.5 1.0

Competence c

0.0

0.5

1.0

A
cc

ur
ac

y
M

V
P M

V
(ô

k
=

o k
)

sk = 1
sk = 3
sk = 7
sk = 15
sk = 31

Fig. 1: Accuracy of majority vote for homogeneous compe-
tence and odd numbers of ratings sk.

3.2 Accuracy of Majority Vote for Homogeneous
Competencies

First, we discuss the case where all raters have the same
competence c, i.e., c = ci for all i. (Later, we will drop this
assumption.)

MV classifies a contribution correctly if more than half of
the ratings are correct (cf. Equation 1). For example, suppose
that we want to classify a contribution based on three ratings.
In this case, MV decides correctly if exactly two ratings are
correct, for which there are three possible ways, or if exactly
three ratings are correct. Thus, the probability of correct
classification is the sum of two terms: 3c2(1− c)+ c3. The
general formula for the accuracy of MV under homogeneous
competence can be derived by summing up the probabilities
that lk out of sk ratings are correct for all lk ≥ bsk/2c+1, i.e.,

PMV (ôk = ok) =
sk

∑
lk=bsk/2c+1

(
sk

lk

)
(c)lk(1− c)sk−lk . (2)

Figure 1 illustrates the relationship between the accuracy of
MV and the competence for different odd numbers of raters.

The relationship between the competence, the number of
raters, and the accuracy of MV has first been formulated by
Condorcet (1785) and is known as Condorcet’s jury theorem
(CJT): For odd sk and homogeneous rater competence c

– if c > 0.5, then PMV (ôk = ok) increases monotonically in
sk,
and limsk→∞ PMV (ôk = ok) = 1,

– if c < 0.5, then PMV (ôk = ok) decreases monotonically
in sk,
and limsk→∞ PMV (ôk = ok) = 0,

– if c = 0.5, then PMV (ôk = ok) = 0.5 for all sk.

Grofman et al. (1983) show that the CJT is also valid
for heterogeneous type-independent competencies ci if the
distribution of ci is symmetric around the mean c̄. In that
case, c̄ substitutes c in the CJT.

Protecting the Dawid-Skene Algorithm Against Low-Competence Raters and Collusion Attacks 5

3.2.1 Optimality of Majority Vote for Homogeneous
Competencies greater than 0.5

Even though it is a simple method, MV achieves a high
accuracy, provided that the competence is greater than 0.5. In
fact, if we add the assumption that the prior is not too heavily
skewed in favor of one type, we can show that MV is the
optimal classification scheme for two-type settings.

Proposition 1 (Optimality of Majority Vote under Ho-
mogeneous Competence) Under the assumption of the ho-
mogeneous competence model in Section 2.1 and given that
sk is odd, c > 0.5, and 1− c < p(t) < c for both types
t ∈ {−1,1}, majority vote is an optimal decision rule, i.e.,
there does not exist any decision rule that has a higher accu-
racy.

The proof is in Section 13.

3.3 MAP Rule and Weighted Majority Vote for Known
Competencies and Type Priors

The MAP rule and WMV are restatements of Bayes’ theorem.
Thus, both methods yield optimal estimates of the data object
types ôk, assuming that they know the true competencies and
the true type prior. This is rarely satisfied in the real world.
However, discussing these methods reveals insights into the
behavior of DSA.

3.3.1 Maximum a Posteriori Probability Rule

The MAP rule considers the type dependent competence
model with known competencies. It decides in favor of the
type t with the maximum posterior probability, given the
ratings, i.e.,

ôk = argmax
t∈T

P(ok = t | Rk). (3)

Ties are handled arbitrarily. Since T = {−1,1}, this is equiv-
alent to deciding in favor of the type with the higher posterior
log-odds

ôk = sign
(

log
P(ok = 1 | Rk)

P(ok =−1 | Rk)

)
.

By Bayes’ theorem, the posterior probability that data
object k is of type t given the ratings Rk is

P(ok = t | Rk) =
P(Rk | ok = t) · p(t)

P(Rk)
.

Since we assume conditional independence of the ratings
given the type of the data object, the likelihood of the ratings
can be expressed as the product of the individual likelihoods

P(Rk | ok = t) = ∏ri,k∈Rk
P(ri,k | ok = t). Thus, the posterior

log-odds for data object k are

log
P(ok = 1 | Rk)

P(ok =−1 | Rk)
= log

p(1)
p(−1)

+ ∑
ri,k∈Rk

log
P(ri,k | ok = 1)

P(ri,k | ok =−1)
.

(4)

In other words, in our two-type model, the MAP rule is
equivalent to a majority vote that weighs each rating by the
log ratio of the rating likelihoods of its rater:

ôk = sign

(
log

p(1)
p(−1)

+ ∑
ri,k∈Rk

log
P(ri,k | ok = 1)

P(ri,k | ok =−1)

)
. (5)

That is, a rating ri,k = q has weight log(P(ri,k = q | ok =

1)/P(ri,k = q | ok =−1)). Later, we will use this insight to
derive a weighted measure of the level of agreement between
raters.

3.3.2 Weighted Majority Vote with Optimal Weights

WMV with optimal weights is a special case of the MAP rule.
It assumes known type-independent heterogeneous compe-
tence ci = c(t)i = P(ri,k = t | ok = t) for all types t and all data
objects k. Thus, we can reformulate the individual likelihoods

P(ri,k | ok = 1)
P(ri,k | ok =−1)

=

{
ci/(1− ci) if ri,k = 1
(1− ci)/ci if ri,k =−1.

Since logci/(1− ci) =− log(1− ci)/ci we can restate Eq. 5
as the WMV rule

ôk = sign

(
log

p(1)
p(−1)

+ ∑
ri,k∈Rk

ri,kvi(ci)

)

with

vi(ci) = log
ci

(1− ci)
. (6)

being the optimal weight of rater i.
Equation 6 reveals a relationship between the (type-inde-

pendent) competence of a given rater i and i’s usefulness for
the estimation of the data object type. Raters with compe-
tence ci > 0.5 have positive weight. Raters with competence
ci < 0.5 give on average the opposite of the true rating, either
maliciously or because of consistent misunderstanding. The
function vi reverses the “direction” of their ratings by assign-
ing them a negative weight. Moreover, vi(ci) =−vi(1− ci).
In other words, a low competence rater i′ with ci′ < 0.5 is
equally beneficial for the accuracy of WMV as a high com-
petence rater i′′ with ci′′ = 1−ci′ . Spammers, i.e., raters with
competence near 0.5, on the other hand, are worst for the ac-
curacy of WMV. This is because they generate ratings that are
completely random. They have zero weight, i.e., vi(0.5) = 0.

6 Conny Kühne, Klemens Böhm

0.0

0.2

0.4

0.6

0.8

1.0
w = 0.20, n = 3 w = 0.40, n = 3 w = 0.60, n = 3

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

w = 0.20, n = 7 w = 0.40, n = 7 w = 0.60, n = 7

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
w = 0.20, n = 15

0.0 0.2 0.4 0.6 0.8 1.0

Mean Competence c

w = 0.40, n = 15

0.0 0.2 0.4 0.6 0.8 1.0

w = 0.60, n = 15

MV
WMV

Fig. 2: Accuracy of MV and WMV for known competencies ci for different competence interval widths w and numbers of
raters n.

3.4 Accuracy of Majority Vote vs. Accuracy of Weighted
Majority Vote with Known Rater Competencies

We explore the influence of the number of raters and of
the competence distribution on the accuracy of WMV. To
this end, we run a simulation under the type-independent
heterogeneous competence model. We draw the competence
ci of each rater i uniformly at random from the interval [c̄−
w/2, c̄+w/2], with mean competence c̄ and interval width w.
For example, for w = 0.4, and c̄ = 0.5 we draw competencies
uniformly from the interval [0.3,0.7]. We vary the mean
competence c̄ from 0+w/2 to 1−w/2 in 0.05 steps. We use
a uniform prior, i.e., p(−1) = p(1) = 0.5 and average the
results over 100 simulation runs. The simulation breaks ties
by fair coin toss. In the simulation we use the competence

ci to compute i’s optimal weight. Since the prior p(t) is
uniform, it has no influence on the type estimates. Figure 2
shows the accuracy of MV and WMV as a function of the
mean competence c̄ for different numbers of raters n and
different interval widths w. For c̄> 0.5 the accuracy of WMV
is higher than or as high as the accuracy of MV. Like MV,
WMV benefits from higher n.

The accuracy curves are minimal at c̄ = 0.5 and sym-
metric w.r.t. the line c̄ = 0.5. In other words, the further c̄ is
away from 0.5, the higher the accuracy. This is because high-
competence and low-competence raters are equally beneficial
for the accuracy of WMV, as described above. Competen-
cies near 0.5, on the other hand, are worst for the accuracy
of WMV because they generate random ratings. This also
explains why WMV benefits from larger competency ranges

Protecting the Dawid-Skene Algorithm Against Low-Competence Raters and Collusion Attacks 7

w. Namely, the probability of having raters with very high or
with very low competence increases with w.

As already mentioned, WMV with known competencies
is optimal (under the model in Section 2) because WMV is
a restatement of Bayes’ theorem. Therefore, it represents an
upper bound for the mean accuracy of rating aggregation
methods discussed, in particular for DSA. However, WMV
assumes that the competencies ci of raters and the p(t) are
known quantities. In open settings, this assumption does not
hold. The remainder of this paper deals with the problem of
what to do if competencies are unknown.

4 Estimation of Rater Competencies and Data Object
Types with DSA

DSA relies on the type dependent competence model.
Using only the ratings as inputs, DSA estimates (1) the

competencies ĉ(t)i , (2) the type priors p̂(t), and (3) the type
probabilities P̂(ok = t). DSA iterates between computing the
competencies (1) and the type priors (2) using the type prob-
abilities (3) as input, and computing the type probabilities (3)
using the competencies (1) and the type priors (2) as input.

Algorithm 1: Our implementation of DSA.
Input: set of ratings {ri,k} given by rater i to data object k,

additive smoothing parameters a and d
Output: set of estimated types {ôk}k∈K , set of estimated

response probabilities {P̂(ri,k = q | ok = t)}i∈I,q∈T,t∈T
(equivalent to set of estimated competencies
{ĉ(t)i }i∈I,t∈T)

1 foreach contribution k ∈ K do
2 initialize P̂(ok = t) with majority vote.

3 repeat
4 foreach type t ∈ T do

5 p̂(t)← a+∑
m
k=1 P̂(ok = t)
ad +m

6 foreach i ∈ I, q ∈ T , t ∈ T do

7 P̂(ri,k = q | ok = t)←
a+∑k∈K r(q)i,k · P̂(ok = t)

ad +∑q∈T ∑k∈K r(q)i,k · P̂(ok = t)

8 foreach contribution k ∈ K and each type t ∈ T do
9 P̂(ok = t)←

p̂(t)∏i∈I ∏q∈T P̂(ri,k = q | ok = t)1(ri,k=q)

∑t∈T p̂(t)∏i∈I ∏q∈T P̂(ri,k = q | ok = t)1(ri,k=q)

10 until {P̂(ri,k = q | ok = t)}i∈I,q∈T,t∈T converges;
11 foreach k ∈ K do
12 ôk← argmaxt∈T P̂(ok = t)

For brevity and clarity we use the estimates of the re-
sponse probabilities P̂(ri,k = q | ok = t) instead of the com-
petence estimates in the following description. Since we use
binary types this is equivalent to using the type dependent

competencies (cf. Section 2.1). Having said this, DSA pro-
ceeds as follows (cf. Algorithm 1). It initializes the type
estimates for each data object. Then it repeats the following
three steps until convergence.

1. It estimates the prior of type t by summing up the esti-
mated probabilities of each data object being of type t
and dividing the sum by the number of data objects m
(line 5 in Algorithm 1).

2. To infer the response probability P̂(ri,k = q | ok = t), DSA
sums up the ratings i has given in favor for type q and
weighs each rating by the estimated probability that the
rated data object is of type t. It normalizes the obtained
sum by the weighted sum of all ratings of i (line 7).

3. DSA computes the posterior probability that data object
k has type t given the ratings it has received (line 9).
Since it does not know the true response probabilities and
the true type prior neccessary for the computation, DSA
uses the estimates of these quantities obtained in the two
previous steps.

Finally, DSA classifies each data object by assigning the type
t that has the maximum estimated posterior probability.

We have added two implementation details that the au-
thors of DSA did not specify. First, the authors leave the
initialization of P̂(ok = q) unspecified. We use MV to this
end. Further, we use additive smoothing (line 5 and line 7
of Algorithm 1) to avoid 0 probabilities that would cancel
out all other factors of the product in line 9 of Algorithm 1.
For our two-type setting, we set the smoothing parameters
a = 0.1 and d = 2.

Obtaining the competence estimates ĉi of the type-inde-
pendent competence model is straightforward. We simply
sum up DSA’s estimates of the type dependent competencies
and weigh them with the estimates of the type priors

ĉi = ĉ(−1)
i p̂(−1)+ ĉ(1)i p̂(1). (7)

In the following we investigate the behavior of DSA.

5 Settings of a Simulation to Analyze DSA

To gain insights into the behavior of DSA we analyze its per-
formance by means of simulation. This simulation is rather
unrelated to the previous one in Section 3.4. We use the type-
independent heterogeneous competence model. For each rater
i we generate random ratings according to his competence
ci. We draw the competence ci of each rater i uniformly at
random from the interval [c̄−w/2, c̄+w/2], with mean com-
petence c̄ and interval width w. To describe the number of
ratings per rater we introduce a simulation parameter rating
rate. The rating rate of rater i, rri ∈ [0,1], is the probability
that i assigns a rating to a given data object.

We use two basic simulation settings – UNIFORM and
SKEWED – to cover two common scenarios. They differ

8 Conny Kühne, Klemens Böhm

0 500 1000 1500 2000

xi

0.00

0.02

0.04

0.06

0.08

0.10

p(
x i
)

Fig. 3: The probability density function of the truncated
Pareto distribution of setting SKEWED.

with respect to the distribution of user ratings, the number
of raters, the number of data objects, and the type prior. We
have determined the default number of data objects m for
each setting by simulating each setting with successively
increasing m while keeping the other parameters fixed (see
Section 6.1). The resulting default m for UNIFORM and
SKEWED are the points where the accuracy of DSA starts
to converge to a steady state.

5.1 Simulation Setting UNIFORM

This setting represents a small, homogeneous community for
example in a company or a lecture community. The default
number of raters for this setting is n= 50. We also use smaller
n in experiments where we want to analyze the effect of n
on the accuracy of DSA. The rating rate in this setting is the
same for all raters, i.e., rr = rri for all raters i ∈ I. We set
rr = 0.4, that is, on average 2 out of every 5 raters issue a
rating for a given data object. The prior for a data object to
be of a given type is uniform, i.e., p(0) = p(1) = 0.5. We set
the default number of data objects to m = 400. We average
results of this settings over 100 simulation runs with different
random seeds.

5.2 Simulation Setting SKEWED

This setting represents an open online community with a
highly skewed rating rate and a skewed prior. To this end
we draw the number of ratings per rater from a Power-law
distribution. The main characteristic of such a distribution
is that most ratings come from a small fraction of the raters
while most raters issue only very few ratings each. Power-law
distributions are frequently observed in open online commu-
nities (Mamykina et al. 2011; Meka et al. 2009). Since the
number of ratings is bounded by the number of data objects,
we draw the number of ratings xi for each rater i from a trun-
cated Pareto distribution (Aban et al. 2006) defined by the

density function

p(xi) =
αxα

minx−α−1
i

1− (xmin/xmax)α

for 0 < xmin ≤ xi ≤ xmax < ∞, where xmin < xmax. The upper
bound is xmax = m since each rater can issue at most one
rating per data object. We set m to 2000 for this setting.
Further, we set the lower bound for the number of ratings
per rater to xmin = 10. Estimating the competencies of raters
who have issued less than 10 ratings becomes unnecessarily
inaccurate (we argue). We set the shape parameter of the
distribution to a typical value of α = 1. To obtain discrete
values for the number of ratings we round to the nearest
integer (Clauset et al. 2009). This results in a highly right-
skewed distribution of xi with a skewness of approx. 5.29
and a mean rating rate of approx. 0.026 (see Fig. 3). We set
the prior for this setting to p(1) = 0.7 because we assume
that a typical online community has an uneven ratio of good
vs. bad data objects. Finally, we set the number of raters to
n = 100.2 As in UNIFORM we average the results of 100
simulation runs with different random seeds.

6 Analyzing the Estimation Quality of DSA

We conduct a series of simulation experiments to find out
how accurately DSA estimates

– the true type of the data objects, and
– the competence of the raters.

In the following, we call the ratio of data objects that
DSA classifies correctly classification accuracy or simply
accuracy. Alternatively, we measure the error rate, which
equals one minus the accuracy. Further, we measure the error
rate of the competence estimates. To this end, we define the
mean absolute difference between the competencies of the
raters and their estimated competencies

madc =
n

∑
i=1
|ci− ĉi|/n.

where ĉi denotes the estimate of the type-independent com-
petence of rater i obtained by means of Eq. 7.

6.1 Effect of the Number of Data Objects on the Estimation
Quality of DSA

How does the number of data objects m influence the estima-
tion quality of DSA? Or, put differently: If the community
size stays constant but the number of contributions created

2 We chose n = 100, since we deem smaller, more unstable commu-
nities the more interesting case. Further, our results (not shown) indicate,
that larger n do not change the simulation results to a significant degree.

Protecting the Dawid-Skene Algorithm Against Low-Competence Raters and Collusion Attacks 9

(a) Setting UNIFORM (b) Setting SKEWED

Fig. 4: Error rate and mean absolute difference between estimated and real competence madc. Bands show 95% percent
confidence intervals.

and rated by the community grows over time, then how many
contributions does it take for DSA’s accuracy and madc to
stabilize? To answer this question, we conduct one simula-
tion experiment for each basic setting. For both settings we
draw the ci uniformly at random from the interval [0.3,0.95].

Figure 4 shows the effect of the number of ratings on
the error rate and madc. For setting UNIFORM (see Fig. 4a)
the error rate as well as madc of DSA converge for m > 400.
For SKEWED we set the lower bound for the number of
ratings per rater proportional to m, xmin = m/200, to keep the
rating rate approximately equal for different values of m. The
DSA error rate in SKEWED shows less convergent behavior
(see Fig. 4b). Nevertheless, there is a strong reduction of the
error rate and the madc of DSA for increasing numbers of
data objects up to about 2000. Consequently, in the following
simulations we set m = 400 for UNIFORM and m = 2000
for SKEWED.

In simple terms, this means that in more homogeneous
settings, where raters have roughly the same rating rate and
the rating rate is high, DSA stabilizes relatively early. In a
more open setting with a low rating rate and a skewed rating
distribution that is typical for open internet communities, this
is different. Here, DSA requires a much higher number of
data objects to stabilize.

6.2 Effects of the Number of Raters and of the Competence
Distribution on the Estimation Quality of DSA

As we have seen, the accuracies of MV and WMV depend on
the number of raters and on their competencies (Section 3.4).
To find out how these two parameters affect the estimation
accuracy of DSA, we conduct a simulation experiment using

the same procedure as in Section 3.4. That is, we draw the
competencies of the n raters uniformly at random from the
interval [c̄−w/2, c̄+w/2], with mean c̄ and interval width
w. We vary the mean competence c̄ from 0+w/2 to 1−w/2
in 0.05 steps. The accuracy of MV serves as a baseline.

Unsurprisingly, DSA’s accuracy increases with increasing
mean competencies (Fig. 5). For the narrow competence
range w = 0.2, the accuracies of MV and DSA are similar.

For higher w, DSA’s accuracy differs markedly from
MV’s accuracy. Here, depending on the mean competence
c̄, DSA’s accuracy is either (1) worse than MV’s accuracy,
for c̄ < 0.5, or (2) better than MV’s accuracy, for c̄ > 0.5.
The reason for this effect is that DSA uses the type estimates
P̂(ok = t) to compute the competence estimates c(t)i , and vice
versa. For c̄ < 0.5, DSA performs worse than MV because
in this case the type estimates are highly inaccurate. This in
turn causes DSA to invert the competency estimates to some
degree: It assigns a low competence to high-competence
raters and vice versa. This leads to even more inaccurate
type estimates, and so on. The opposite is the case for c̄ >
0.5. Here, DSA estimates the types more accurately. This
in turn yields more accurate competence estimates. This is
reflected in the error rate of the competence estimates madc.
For UNIFORM, madc drops almost to 0 for c̄ > 0.6. In that
case, DSA’s accuracy approaches that of WMV for known
rater competencies (Fig. 2). The higher w and n, the more
pronounced this effect becomes.

The curves for the accuracy of both DSA and MV are flat-
ter in the SKEWED setting (Fig. 5b) than in the UNIFORM
setting (Fig. 5a). This means that, for the same c̄, the accuracy
in SKEWED is higher than in UNIFORM for c̄ < 0.5 and

10 Conny Kühne, Klemens Böhm

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y,
m

ad
c

w = 0.20, n = 20 w = 0.40, n = 20 w = 0.60, n = 20

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
w = 0.20, n = 50

0.0 0.2 0.4 0.6 0.8 1.0

Mean competence c

w = 0.40, n = 50

0.0 0.2 0.4 0.6 0.8 1.0

w = 0.60, n = 50

Accuracy MV
Accuracy DSA
madc DSA

(a) Setting UNIFORM

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y,
m

ad
c

w = 0.20, n = 100

0.0 0.2 0.4 0.6 0.8 1.0

Mean Competence c

w = 0.40, n = 100

0.0 0.2 0.4 0.6 0.8 1.0

w = 0.60, n = 100

Accuracy MV
Accuracy DSA
madc DSA

(b) Setting SKEWED

Fig. 5: Accuracy and madc as a function of the mean competence c̄ for different numbers of raters n and different competence
interval widths w.

Protecting the Dawid-Skene Algorithm Against Low-Competence Raters and Collusion Attacks 11

lower for c̄ > 0.5. Consequently, the madc curves are flatter
in SKEWED than in UNIFORM as well.

7 Using Gold Strategies to Increase the Accuracy of
DSA in Low-Competence Settings

As we have seen, for mean competencies c̄ < 0.5 DSA’s
accuracy is low. Gold objects, i.e., data objects which we
know the true type of, can increase the accuracy of DSA in
such low-competence settings. The idea behind using gold
objects for DSA is the following. An accuracy of DSA of
less than 1.0 means that DSA misclassifies some data objects.
Knowing the true type of these data objects with certainty
allows DSA to estimate more accurately the competence of
the raters who have given ratings to these data objects. This
in turn leads to a higher accuracy for the type estimates of
non-gold objects these raters have rated. This increases the
accuracy of competence estimates even further and so on.

We obtain gold objects by selecting some data objects
and letting trusted experts rate these data objects.

Algorithm 2: Modified DSA with gold objects.
/* dots (. . .) indicate unchanged parts from

Algorithm 1. */

Input: . . . ; set of known types for gold objects {ok′}k′∈Kgold

1 . . .
2 repeat
3 . . .
4 foreach contribution k′ ∈ Kgold and each type t ∈ T do
5 if ok′ = t then
6 P̂(ok′ = t)← 1
7 else
8 P̂(ok′ = t)← 0

9 until {P̂(ri,k = q | ok = t)}i∈I,q∈T,t∈T converges;
10 . . .

We use Kgold ⊆ K to denote the set of gold objects. To
integrate gold objects into DSA we use the same straight-
forward procedure as Wang et al. (2011) and simply set the
type estimates of the gold objects to their known values at the
end of the repeat until loop in Algorithm 1. Algorithm 2
shows the resulting modified DSA. For simplicity it shows
mostly the modified parts. Dots (. . .) indicate unchanged
parts from Algorithm 1.

Since gold objects are costly we want to use them ef-
fectively. For crowdsourcing services such as Amazon Me-
chanical Turk, Wang et al. (2011) propose to achieve this by
actively forcing crowdsourcing workers to rate predefined
gold objects. However, forcing raters to rate particular contri-
butions is not possible in an open community scenario like
ours.

Instead, we propose gold strategies to determine which
existing contributions of the community to choose as gold
objects. We use the following procedure to incorporate gold
strategies into an open community scenario. (1) Select con-
tributions as gold objects based on the selection criterion
of the respective gold strategy. (2) Determine the true type
of these gold objects by means of trusted experts.3 (3) Run
the modified DSA (Algorithm 2) with the gold objects to
estimate the types of all contributions.

The most straightforward of the gold strategies, the UNI

strategy, selects gold objects uniformly at random.

7.1 Gold Strategies Based on the Level of Agreement

Additionally to UNI, we propose gold strategies that take the
level of agreement between raters into account, i.e., to what
extent the raters agree on the type of a given data object. The
strategies select data objects as gold objects that either have
a high (HI) or a low (LO) level of agreement. The rationale
for using a high level of agreement is the following. In low-
competence communities, i.e., communities with c̄ < 0.5, a
high level of agreement on a type t of data object k indicates
that t is likely not the correct type of k. This is because raters
with competence less than 0.5 have a higher chance of be-
ing incorrect than of being correct. Thus, DSA will likely
compute the estimate P̂(ok = t) inaccurately and, as a conse-
quence, inaccurately estimate the competencies of the raters
who have rated k. So the benefit of selecting k as a gold object
is potentially high. Conversely, if c̄ > 0.5, the probability of
estimating P̂(ok = t) inaccurately is highest for data objects
with a low level of agreement. Later, we quantify the exact
error probability given a certain level of agreement for a
simplified setting using MV and homogeneous competence.

In this section, we introduce two methods to measure
the level of agreement: the absolute rating sum (ARS) and
the estimated absolute posterior log-odds (ALO). Based on
the two measures, we define four gold strategies: HI-ARS,
LO-ARS, HI-ALO, LO-ALO (prefix HI-/LO- for the level of
agreement).

In the following, we use g to denote the gold ratio. The
gold ratio is the ratio of gold objects among all data objects,
i.e., g = mgold/m, where mgold = |Kgold| is the number of
gold objects.

7.1.1 Gold Strategies Based on the Absolute Rating Sum

We define the absolute rating sum of data object k as arsk =∣∣∣∑ri,k∈Rk
ri,k

∣∣∣, where ri,k ∈ {−1,1}. Low and high values of
arsk indicate low and high levels of agreement, respectively.

3 For domains where we do not trust experts to be completely accu-
rate we could combine the ratings of several experts, for example by
means of DSA, to achieve a higher accuracy.

12 Conny Kühne, Klemens Böhm

1 3 5

arsk

0.0

0.2

0.4

0.6

0.8

1.0

P
M

V
(ô

k
6=

o k
|a

rs
k
)

c = 0.2

c = 0.4

c = 0.5

c = 0.6

c = 0.8

Fig. 6: Probability of incorrect classification by MV given the
absolute rating sum (arsk) for five raters with homogeneous
competence c.

Consequently LO-ARS selects the first mgold data objects
ordered by arsk ascending, while HI-ARS selects the first
mgold data objects ordered by arsk descending.

As an example, consider a setting with two data ob-
jects 1 and 2 and their ratings R1 = {1,−1,1} and R2 =

{1,1,−1,−1}. Assume a gold ratio of g = 0.5, i.e., half of
the data objects are selected as gold objects. The absolute
rating sums are ars1 = 1 and ars2 = 0. Thus, HI-ARS selects
data object 1 as gold object while LO-ARS selects object 2.

Error probability given arsk using MV and homogeneous
competence. Earlier, we have given an intuition why the
level of agreement is a useful criterion for selecting data
objects as gold objects: it can identify data objects whose type
DSA will likely estimate inaccurately. To further strengthen
this intuition, we now quantify – even though only for a
simplified setting – the probability that MV will classify a
data object incorrectly given the absolute rating sum. We use
MV because (1) it allows for an analytical quantification, and
(2) it has roughly a similar accuracy as DSA for a given mean
competence (see Section 6).

Proposition 2 Let an odd number of ratings sk for data ob-
ject k, and homogeneous competence c be given. Then, the
probability that MV estimates the type of k incorrectly given
the absolute rating sum arsk is

PMV (ôk 6= ok | arsk) =
clk · (1− c)sk−lk

clk · (1− c)sk−lk +(1− c)lk · csk−lk

where lk = (sk−arsk)/2 is the number of correct ratings for
k.

See Section 14 for the proof of Proposition 2.
Figure 6 illustrates this relationship for sk = 5. Depending

on the competence c, the probability of incorrect classifica-
tion either increases or decreases with an increasing absolute
rating sum: It increases for c < 0.5, and it decreases for
c > 0.5. This is what the intuition suggests. If the (mean)

competence is below 0.5, a high level of agreement indicates
a high error probability. Conversely, if the competence is
above 0.5, a low level of agreement indicates a high error
probability.

7.1.2 Gold Strategies Based on the Estimated Absolute
Posterior Log-Odds

The absolute posterior log-odds for data object k are the
absolute value of the posterior log-odds (Eq. 4)

alok =

∣∣∣∣log
P(ok = 1 | Rk)

P(ok =−1 | Rk)

∣∣∣∣
=

∣∣∣∣∣log
p(1)

p(−1)
+ ∑

ri,k∈Rk

log
P(ri,k | ok = 1)

P(ri,k | ok =−1)

∣∣∣∣∣.
Like the posterior log-odds, the absolute posterior log-odds
are a weighted measure of the agreement level. In addition
to summing up the ratings like arsk, alok weighs each rating
by the log ratio of the response likelihoods of its rater. See
Section 3.3.1 for a discussion of the weights.

We cannot calculate alok directly because the true com-
petencies and the true type priors are unknown parameters.
Instead we run DSA to obtain estimates of the posterior prob-
ability P̂(ok = t | Rk) = P̂(ok = t) for data object k being of
type t (see line 9 of Algorithm 1) and use these estimates to
calculate the estimate of alok

âlok =

∣∣∣∣log
P̂(ok = 1 | Rk)

P̂(ok =−1 | Rk)

∣∣∣∣.
High values of âlok indicate a high level of agreement

for data object k, while low values indicate a low level of
agreement. Thus, LO-ALO selects the first mgold data objects
ordered by âlok ascending, and HI-ALO selects the first mgold

data objects ordered by âlok descending.

7.2 Evaluation of Gold Strategies

How much does the accuracy of DSA benefit from the differ-
ent gold strategies? Ideally, the use of gold objects increases
the number of non-gold objects that DSA classifies correctly.
To study to which extent this indeed occurs, we define the
net accuracy as the ratio of correctly classified non-gold data
objects

netacc =
∑k∈K\Kgold

1(ôk = ok)∣∣K \Kgold
∣∣ . (8)

To quantify the accuracy gains of DSA with gold objects
compared to the vanilla DSA without gold objects, we do the
following. For each c̄ and each gold strategy, we calculate the
net accuracy that DSA achieves using gold objects netaccgold.

Protecting the Dawid-Skene Algorithm Against Low-Competence Raters and Collusion Attacks 13

For the same input data, we then run DSA without gold
objects (g = 0) and measure its net accuracy netaccnogold

(which is equal to its accuracy). The net accuracy gain is the
difference between the net accuracy of DSA with gold and
the net accuracy of DSA without gold

netaccgain = netaccgold−netaccnogold. (9)

To find out which mean competencies benefit most from
the use of gold strategies, we simulate the net accuracy gains
as a function of the mean competence. As in the previous
sections, we vary the mean competence c̄ from 0+w/2 to
1−w/2 in 0.05 steps and set w= 0.5. For setting UNIFORM,
we simulate the gold ratios g ∈ {0.05,0.1,0.15}. Our results
indicate that SKEWED requires fewer gold objects than UNI-
FORM for similar gains. Consequently, for this setting, we
simulate gold ratios g ∈ {0.02,0.04,0.06}.

Figure 7 presents the results of the simulation experi-
ments. In particular, Fig. 7a, and Fig. 7b show the net accu-
racy gains of gold strategies for setting UNIFORM with 20
raters and 50 raters, respectively. Figure 7c shows the net
accuracy gains of gold strategies for setting SKEWED.

As we have expected, the net accuracy gains, both for
UNIFORM and SKEWED, are higher for higher gold ratios.
For all strategies, the gains for c̄ greater than approximately
0.55 are close to zero. The reason is that the accuracy of DSA
without gold objects is already high for c̄ > 0.55 (cf. Fig. 5)
so there is not much room for improvement. For c̄ < 0.55,
HI-ALO has gains greater than or equal to all other gold
strategies. For some c̄ < 0.55, HI-ALO outperforms the other
strategies by a wide margin. In the setting with a high number
of ratings per data object (UNIFORM with 50 raters), the
highest gains concentrate near c̄ = 0.5 for low gold ratios. In
settings where ratings are sparse – either because the number
of raters is low (UNIFORM with 20 raters) or because the
rating rate is low (SKEWED) – and which have a high gold
ratio, HI-ALO achieves high gains also for very low c̄. In these
settings, HI-ARS has a performance as good as or slightly
worse than HI-ALO. We discuss the implications of these
findings in Section 11.

8 Optimizing the Net Benefit of Gold Objects with an
Adaptive Gold Algorithm

What is the optimal number of gold objects for DSA? This
number not only depends on the benefits but also on the costs.
As we have seen above, DSA benefits from gold objects by
an increase in correctly classified non-gold data objects. This
benefit is offset by the costs to obtain the gold objects. The
exact costs and benefits depend on the specific scenario. For
simplicity, we assume a benefit of 1 per correctly classified
data object and costs of 1 per gold object. We define the net

benefit as the difference of correctly classified non-gold data
objects and the number of gold objects used by DSA

netbenefit = ∑
k∈K\Kgold

1(ôk = ok)−
∣∣Kgold

∣∣.
In the following, we discuss how to maximize the net benefit.

8.1 Adaptive Gold Algorithm

As before, we select gold objects by means of a gold strategy.
But instead of fixing a gold ratio a priori, we let an algorithm
decide how many gold objects to use in order to achieve the
highest net benefit. The algorithm is adaptive, i.e., it decides
when to stop based on runtime information. It works itera-
tively: Starting with zero gold objects, it adds one gold object
per iteration. The goal of the algorithm is to stop adding fur-
ther gold objects when the net benefit is highest. Of course,
in the real world, the net benefit is unknown. Therefore, we
cannot use it as a stop condition for the algorithm. Instead,
we can only observe how the output of DSA changes in or-
der to decide when to stop adding further gold objects. The

Algorithm 3: Adaptive Gold Algorithm for DSA.
Input: set of ratings {ri,k}, gold strategy gs
Output: set of estimated types {ôk}k∈K , set of estimated

response probabilities {P̂(ri,k = q | ok = t)}i∈I,q∈T,t∈T
1 {d1,d2, . . . ,d|K|}← set of data objects ordered according to gs
2 Kgold ← /0
3 itr← 0
4 {ôitr

k }k∈K ← run Algorithm 2 with {ri,k} and Kgold as input
5 repeat
6 itr← itr+1
7 select data object ditr as gold object
8 obtain expert ratings for ditr
9 Kgold ← Kgold ∪ditr (add ditr to set of gold objects)

10 {ôitr
k }k∈K ← run Algorithm 2 with {ri,k} and Kgold as input

11 until Eq. stop condition is satisfied ∨ itr ≥ |K|;

adaptive gold algorithm is outlined in Algorithm 3. In the
following, we derive the stop condition.

8.1.1 Stop Condition Based on the Output of DSA

A stop condition that yields good results based on the DSA
outputs is not obvious. This is because the changes of the
output do not decrease monotonically over the iterations, as
one might expect. Instead, they can vary strongly in either
direction from one iteration to the next (cf. rightmost plot in
Fig. 8). Further, they behave very differently in different sim-
ulations. Consider the docchange (data object classification
change), i.e., the number of data objects whose classification

14 Conny Kühne, Klemens Böhm

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ne
ta

cc
ga

in

g = 0.05

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean Competence c

0.0

0.2

0.4

0.6

0.8

1.0
g = 0.10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0
g = 0.15

LO-ARS HI-ARS LO-ALO HI-ALO UNI

(a) Setting UNIFORM with 20 raters.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ne
ta

cc
ga

in

g = 0.05

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean Competence c

0.0

0.2

0.4

0.6

0.8

1.0
g = 0.10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0
g = 0.15

LO-ARS HI-ARS LO-ALO HI-ALO UNI

(b) Setting UNIFORM with 50 raters.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ne
ta

cc
ga

in

g = 0.02

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean Competence c

0.0

0.2

0.4

0.6

0.8

1.0
g = 0.04

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0
g = 0.06

LO-ARS HI-ARS LO-ALO HI-ALO UNI

(c) Setting SKEWED.

Fig. 7: Net accuracy gains of DSA with different gold strategies using gold ratio g compared to DSA without gold objects
(g = 0).

has changed in iteration itr compared to iteration itr−1 of
the adaptive algorithm

docchange(itr) = ∑
k

1(ôitr−1
k 6= ôitr

k),

where ôitr
k denotes the estimated type of data object k in

iteration itr, itr ≥ 1. In the simulation run displayed in the
leftmost plot in Fig. 8, the docchange does not change much

until iteration 63. Adding the 63rd gold object, however,
gives DSA enough “knowledge” about the competence of
the raters to reverse the classification of the data objects
almost completely. This results in a large increase of the
netbenefit and a large jump of the docchange. In the middle
plot, the docchange is flat in the beginning as well, but there
is no reversal of the classification later. In the rightmost plot,
docchange changes with almost every iteration. The other

Protecting the Dawid-Skene Algorithm Against Low-Competence Raters and Collusion Attacks 15

0 50 100

0.0

0.5

1.0

UNIFORM, c = 0.4

0 50 100

itr

0.0

0.5

1.0

UNIFORM, c = 0.7

0 200 400

0.0

0.5

1.0

SKEWED, c = 0.5

docchange accuracy netbenefit

Fig. 8: Behavior of docchange (normalized), accuracy, and netbenefit over single runs of the adaptive algorithm. The vertical
lines show the itr of the maximum netbenefit (black, dashed), and the itr where the stop condition with parameters stwidth = 4,
stmaxsum = 2 stops (magenta).

mean ntmnr

Setting Gold Strategy stwidth stmaxsum training test

UNIFORM HI-ARS 3 0 0.96 0.95
UNIFORM HI-ALO 1 0 0.98 0.98
SKEWED HI-ARS 2 1 0.94 0.96
SKEWED HI-ALO 2 1 0.89 0.94

Table 1: Combinations of stwidth and stmaxsum that maximize
the mean ntmnr for different settings and gold strategies of
the training dataset.

outputs of DSA, e.g., the change of the competence estimates,
behave similarly.

To gain robust results, our stop condition computes the
sum of changes of the last stwidth (“stop width”) iterations.
Let itr′ be the current iteration. The stop condition tests if the
sum of the docchange values of the previous stwidth iterations
is below the threshold stmaxsum

itr′

∑
itr=itr′−stwidth

docchange(itr)≤ stmaxsum. (stop condition)

8.1.2 Finding Parameters for the Stop Condition

We have created a training dataset that contains the results of
more than 1000 simulation runs of the adaptive algorithm to
obtain values for stwidth and stmaxsum that maximize the net
benefit. For this training dataset, we have varied the rating
distribution (uniform, Pareto with different parameters), the
mean competence, the number of data objects, the number of
raters, and the random seeds. Table 1 shows for each setting
the combinations of stwidth and stmaxsum that maximize the
mean netbenefit over all simulation runs. We consider the HI-
strategies only. This is because the LO-strategies and the UNI

strategy perform strictly worse with the adaptive algorithm
than the HI-strategies. Besides the training dataset, we have
applied the adaptive algorithm to the test data we used in the
previous evaluations of the gold strategies (cf. Section 7.2).

We have computed the “net benefit to maximal net benefit
ratio” ntmnr, i.e., the ratio of the netbenefit achieved by the
stwidth, stmaxsum combination and the maximum achievable
netbenefit for each run of the adaptive algorithm. Table 1
shows the mean ntmnr that the stwidth, stmaxsum combination
reached in the training dataset and when applied to the test
dataset.

Further, the combination stwidth = 2, stmaxsum = 0 yields
ntmnr values almost as high as the values identified in Table 1.
It is among the top-five combinations in each setting and
each strategy tested. Using it might avoid overfitting to some
degree, thus giving way to more robust results compared to
the maximizing combinations when applied to other datasets.

8.2 Net Benefit Gains of the Adaptive Algorithm

We evaluate the adaptive gold algorithm by comparing its
net benefit to the net benefit of the DSA without gold ob-
jects. As above, we consider the HI-strategies only. Similarly
to Eq. 9, we define the net benefit gain as the normalized
difference between the net benefit of the adaptive algorithm
netbenefitadaptive and the net benefit of the vanilla DSA with-
out gold netbenefitnogold:

netbenefitgain =
netbenefitadaptive−netbenefitnogold

|K| .

We evaluate the adaptive algorithm with the same sim-
ulation experiments detailed in Section 7.2. We use the ro-
bust parameters values stwidth = 2 and stmaxsum = 0 for the
stop condition of the adaptive algorithm. Figure 9 shows
the net benefit gains and the gold ratio used. In general, the
adaptive algorithm achieves very high gains for c̄≤ 5. The
HI-ALO strategy outperforms HI-ARS in the UNIFORM set-
tings, while HI-ARS performs slightly better than HI-ALO

in SKEWED. For each strategy in the UNIFORM settings,
the adaptive algorithm uses a relatively high gold ratio for
the lower competence range c̄ < 0.5. In this range, it also

16 Conny Kühne, Klemens Böhm

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ne
tb

en
efi

tg
ai

n

UNIFORM, n = 20

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

UNIFORM, n = 50

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

SKEWED

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00
0.05
0.10
0.15
0.20
0.25
0.30

g

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean Competence c

0.00
0.05
0.10
0.15
0.20
0.25
0.30

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00
0.05
0.10
0.15
0.20
0.25
0.30

HI-ARS HI-ALO

Fig. 9: Net benefit gains and gold ratio g used by adaptive gold algorithm compared to DSA without gold objects. Stop
condition with parameters stwidth = 2 and stmaxsum = 0.

achieves the highest gains. In SKEWED, the adaptive al-
gorithm uses a much lower gold ratio than in UNIFORM.
Finally, for c̄ > 0.6 the gold ratio used by the adaptive al-
gorithm is close to zero in all settings and for both gold
strategies. The net gain in this range is zero or slightly nega-
tive.

9 Using Gold Strategies to Counter Collusion Attacks
against DSA

The previous discussion has focused on improving the ac-
curacy and the net benefit of DSA in the presence of low-
competence raters in particular. A potential problem that has
a negative impact on the accuracy of DSA as well are collu-
sion attacks. In a collusion attack, raters coordinate to rate the
same data objects with the same value to artificially increase
their estimated competence. This is beneficial for the col-
luders if they receive a remuneration for their ratings that is
based on their estimated competence. For example, many on-
line communities remunerate users with reputation or Karma
points for high-quality contributions. We propose to com-
pute remunerations in such communities contingent on the
competence estimates by DSA. Similarly, Wang et al. (2013)
propose an algorithm that pays crowdsourcing workers based
on the competence estimates calculated by DSA, next to
other metrics. (However, as mentioned, they do not address
collusion attacks.) In such settings a collusion attack allows
colluders to artificially increase their remuneration while sav-
ing cognitive effort for determining the truthful value of the
data objects. Since DSA assigns an inflated weight to their
low-competence ratings colluders can also severely damage
the accuracy of DSA.

Gold objects can counter a collusion attack. They allow
for more precise competence estimates. Thus, they correct the
overly high competence estimates of colluders. This reduces
the benefit gained by colluders, thereby making collusions

less desirable. It also reduces the damage of collusions on
the accuracy of DSA.

9.1 Model of a Collusion Attack

We extend the model of a peer-rating online community
introduced in Section 2.

Our model of a collusion attack partitions the set of raters
into a set of colluders Icol ⊆ I and a set of honest raters, i.e.,
raters that do not collude, Ihon = I\Icol. Colluders coordinate –
for example by using the internet as a communication channel
– to give the same ratings for each data object in a subset of the
data objects. We call the subset of data objects that colluders
use for the collusion attack collusion data objects and refer to
it as Kcol. For simplicity, we assume that every colluder rates
all data objects from the set Kcol but no other data objects.
The set of non-collusion data objects Khon =K\Kcol is the set
of data objects that colluders do not rate. (Honest raters rate
objects from both Khon and Kcol.) Without loss of generality,
we assume that colluders always assign ratings with value 1
independent of the true type of the data object in question.
I.e., ri,k = 1 for all i∈ Icol and for all k ∈Kcol. Other collusion
strategies – like coordinating on a rating value per data object
or, if the prior is highly skewed, choosing the a priori most
likely value – add little to the discussion at hand (we argue).

We use ncol = |Icol| and mcol = |Kcol| to denote the num-
ber of colluders and the number of collusion data objecs,
respectively. We define the ratio of collusion objects as the
ratio of the number of collusion data objects to that of all data
objects, i.e., mcol/m. Further, we define the ratio of colluders
as the proportion of colluders among all raters, i.e., ncol/n.

To simplify the discussion, we assume type-independent
competencies ci of raters and colluders. We use the collusion
rent as a metric for the benefit raters gain from colluding.
The collusion rent of a colluder i is the difference between
his estimated competence and his real competence ĉi− ci.

Protecting the Dawid-Skene Algorithm Against Low-Competence Raters and Collusion Attacks 17

Since we assume that all ratings of colluders are 1, their
competence equals the prior probability of type 1, that is,
ci = p(1) for all colluders i ∈ Icol. In other words, collusion
ratings are correct with probability p(1). The definition of
the colluders rent implies that the maximum collusion rent is
1− p(1).

9.2 Influence of Colluders and Honest Raters on the
Outcome of a Collusion Attack

Honest ratings, i.e., the ratings of honest raters, are a counter-
measure against collusions. A high number of honest ratings
for a given data object makes it less likely for colluders to
influence the classification of the data object.

We conduct a simulation experiment to gain intuition
on how the number of honest ratings and the number of
collusion ratings influence the outcome of a collusion attack.
In particular, we focus on the number of both honest and
collusion ratings per collusion data object. In the simulation,
we vary three parameters: (1) the number of colluders ncol,
(2) the number of honest raters nhon, and (3) the rating rate
of honest raters rrhon. All three parameters determine the
ratio of honest ratings to collusion ratings per collusion data
object. The parameter rrhon is not an exogenous parameter
of SKEWED, i.e., we can only indirectly manipulate it by
changing the parameters of the Pareto rating distribution.
This is why we use the setting UNIFORM for this simulation
only. Our intention behind the simulation at hand is solely to
build intuition. Therefore, we do not deem the omission of
SKEWED limiting. We simulate both settings below where
we evaluate how gold strategies can reduce collusion attacks.
In the simulation, we vary rrhon from 0 to 1 in 0.05 steps
and assign each honest rater i ∈ Ihon the same rating rate
rri = rrhon (see Section 5 for the definition of rri). We fix the
number of raters to n = 50 and vary the ratio of colluders
ncol/n from 0 to 1 in 0.04 steps. Note that this varies both
the number of colluders ncol and the number of honest raters
nhon. We set the ratio of collusion objects to mcol/m = 0.3,
i.e., colluders coordinate on 30 percent of the data objects.
The simulation draws the competence of the honest raters
from a uniform distribution on the interval [0.35,0.95].

Figure 10 shows the average collusion rent (left-hand
side) and the error rate of DSA (right-hand side) resulting
from a collusion attack. Both collusion rent and error rate
are shown as a function of the rating rate of the honest raters
rrhon and also of the ratio of colluders among all raters ncol/n.
As expected, a collusion attack requires more colluders to
maximize the collusion rent the higher the rating rate of
honest raters.

Once the ratio of collusion ratings to honest ratings (de-
termined by the combination of rrhon and ncol/n) reaches a
certain threshold, the collusion rent rises sharply. For exam-
ple, in the left-hand plot, this threshold runs approximately

0.0 0.2 0.4 0.6 0.8 1.0

Ratio Colluders, Ratio Proxy Colluders

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

or
R

at
e Kcoll

K
Khon
K Proxy
Collusion

Fig. 11: Error rate of different subsets of data objects for
colluders and proxy colluders.

from (0, 0.2) to (1, 0.4) through the rrhon-ncol/n plane. Intu-
itively, if there are enough collusion ratings for a data object
k ∈ Kcol, DSA shifts the type estimate of k in favor of the
collusion ratings. Because of this, DSA assigns higher com-
petence estimates and thus higher weights to the colluders.
The higher weights increase the influence of the collusion
ratings on the other collusion data objects, and so on.

9.2.1 Effect of Collusions on the Error Rate of
Non-Collusion Data Objects

The effect of collusions on the error rate is two-fold: they
directly affect the error rate of collusion data objects and
indirectly affect the error rate of non-collusion data objects.
The indirect effect is as follows. Colluders decrease DSA’s
accuracy of the type estimates of collusion data objects. This
in turn lowers DSA’s accuracy of the competence estimates
of those honest raters who have also rated the collusion data
objects. The lowered accuracy of the competence estimates
of honest raters decreases the accuracy of non-collusion data
objects.

Figure 11 represents the two-dimensional slice of Fig. 10
where the rating rate of honest raters is 1.0. It differentiates
between the error rates of three different subsets of data
objects – of all data objects (K), of collusion data objects
(Kcol), and of non-collusion data objects (Khon). The error
rates are shown as a function of the ratio of colluders.

To visualize the indirect influence of colluders on the
error rate of Khon we simulate a proxy collusion. For this
purpose, we run the simulation experiment of a collusion
attack described above again and replace the colluders with
proxy colluders. Proxy colluders are regular raters, i.e., they
do not coordinate. To make them comparable to colluders,
they rate the same number of data objects as colluders –
but not necessarily from the set Khon. Further, they have the
same observed error rate as colluders, i.e., they rate as many

18 Conny Kühne, Klemens Böhm

Fig. 10: Average collusion rent and error rate of DSA as functions of the rating rate of the honest raters and the ratio of
colluders.

data objects incorrectly as colluders. The other simulation
parameters are the same as before.

Figure 11 shows the error rate for all data objects K in a
proxy collusion as a function of the ratio of proxy colluders.
Note that there are no equivalents to Khon and Kcol in a proxy
collusion. This is because proxy colluders do not coordinate
on a subset of K. For the collusion attack, the error rates of
K, Kcol, and Khon are all higher than the error rate of K in a
proxy collusion. Just by coordinating, colluders cause higher
error rates – even for the data objects Khon they did not rate –
than the otherwise identical proxy colluders.

9.3 Reducing the Collusion Rent with Gold Objects

We show that gold objects can reduce the collusion rent and
the error rate which result from a collusion attack. As an
example, we simulate the setting discussed in the previous
section but using five percent randomly chosen data objects
as gold objects. This (see results in Fig. 12) reduces the
collusion rent to almost zero. It also reduces the error rate
significantly compared to the collusion attack without gold
objects (cf. Fig. 10).

In the following, we analyze the influence of gold strate-
gies as a means to reduce the collusion rent. The analysis
focuses on reducing the collusion rent for the following rea-
son. We assume that raters consider the collusion rent an
incentive for colluding. Therefore, a reduced collusion rent
makes colluding less desirable and thus should lower the
occurrence of collusions.

To investigate the effects of gold strategies on the col-
lusion rent, we conduct several simulation experiments for
UNIFORM and SKEWED. In these experiments we vary the
gold ratio g and the ratio of colluders ncol/n. We fix the other
simulation parameters of UNIFORM and SKEWED to their

default values defined in Section 5. As in the previous section,
we set the ratio of collusion objects mcol/m for the setting
UNIFORM to 0.3. In setting SKEWED, honest raters rate
approximately 2.6 percent of the data objects. This is a much
lower rating rate than in setting UNIFORM where honest
raters rate 40 percent of the data objects. Accordingly, we
adjust the ratio of collusion data objects for SKEWED to a
lower value as well and set it to mcol/m = 0.1, i.e., colluders
coordinate on 10 percent of the data objects.

As we have seen in the previous section, the maximum
achievable collusion rent depends on the type prior p(t). The
type priors of UNIFORM and SKEWED differ. To make the
results comparable between the two settings, we calculate the
normalized collusion rent. The normalized collusion rent for
a simulation is the collusion rent divided by the maximum
collusion rent observed in that simulation.

Figure 13 shows the normalized collusion rent (0/black:
best, 1/white: worst outcome) as a function of the colluders
ratio and the gold ratio, for the different gold strategies. For
SKEWED (Fig. 13b), HI-ARS pushes the collusion rent to
0 for gold ratios larger than 0.1 independent of the ratio
of colluders. HI-ALO reduces the collusion rent to almost
0 for most of the area of the contourplot as well. The LO

strategies, on the other hand, can only reduce the collusion
rent to close to 0 for very high gold ratios (> 0.95) or very
low colluder ratios (< 0.02 and < 0.08 for LO-ARS and LO-
ALO, respectively). The strategy UNI performs better than the
LO strategies but worse than the HI strategies in this setting.

For UNIFORM the differences between HI and LO strate-
gies are lower but still pronounced (Fig. 13a). Here, HI strate-
gies perform better than LO strategies as well. Colluders in
this setting gain rent > 0.05 only if their ratio is larger than 30
percent, independent of the gold strategy. The UNI strategy
performs best in this setting. It reduces the collusion rent to 0

Protecting the Dawid-Skene Algorithm Against Low-Competence Raters and Collusion Attacks 19

Fig. 12: Colluders rent and the error rate of DSA with five percent gold objects. Otherwise same setting as in Fig. 10.

for gold ratios > 0.05. HI-ARS performs only slightly worse
than UNI.

The reason why the HI strategies are so effective in re-
ducing the effects of a collusion attack is that they select data
objects as gold objects that have a high level of agreement.
A high level of agreement is a property of collusion data
objects since all colluders agree on those data objects. I.e.,
HI strategies are a collusion detection mechanism.

10 Related Work

There exists a large body of literature on the accuracy of MV.
The earliest work on the accuracy of MV, the Condorcet jury
theorem, dates back to 1785 (Condorcet 1785). Grofman et al.
(1983) review results on the accuracy of voting processes as
a function of the competences of the individual voters, the
decision procedure, and the number of voters. The optimal
weights for raters with type-independent competence in bi-
nary choice situations (Eq. 6) have been identified several
times independently (Minsky and Papert 1969; Duda and
Hart 1973; Nitzan and Paroush 1982). Lam and Suen (1997)
generalize the Condorcet jury theorem to cases where even
numbers of voters are allowed, where the number of choices
is greater than two, and thus ties are possible. Kuncheva et al.
(2003) derive upper and lower limits on the accuracy of MV
for both dependent and independent classifiers.

Li et al. (2013) derive theoretical error bounds (approx-
imate and expected) on linear threshold rules, such as MV
and WMV, for binary labeling tasks. This includes bounds
on the expected error rate of the MAP rule with known com-
petencies.

Dawid and Skene (1979) have developed DSA for the
estimation of error rates made by clinicians in the assessment
of patients. The algorithm is based on the general algorithm
for expectation maximization (EM) developed by Dempster
et al. (1977). Whitehill et al. (2009) introduce an EM algo-
rithm similar to DSA that takes varying difficulties between
the data objects of the same type into account. They simulate
a setting with a high variance of data-object difficulty and
find that their algorithm performs better (4.5% error rate)
than MV and DSA (11.2%, and 8.4% error rate respectively).

Snow et al. (2008) discuss an experiment for the estima-
tion accuracies of AMT workers for word annotation tasks.
Similarly to DSA, their method estimates the worker compe-
tencies based on comparisons with gold standard examples,
and uses a MAP estimate to infer the annotation quality.

Ipeirotis et al. (2010) develop an algorithm based on so-
called soft labels and expected costs of each soft label to
differentiate between biased raters (c < 0.5) and spammers
(c = 0.5). The algorithm uses DSA to estimate rater compe-
tencies. In an experiment, the algorithm performs better at
detecting those spammers that always rate the class with the
highest type prior. This leads to a higher accuracy (0.998)
compared to DSA (0.95). The algorithm assumes that DSA
returns “some reasonably accurate estimates” of the com-
petencies. However, this assumption does not hold true for
c̄ < 0.5, as our results show.

Raykar and Yu (2012) propose an algorithm to eliminate
spammers and malicious raters. They compare their algo-
rithm to MV and DSA and find that it has a better area under
the ROC curve than MV and DSA, in particular if the fraction
of spammers is high. Further, they find that their algorithm is
better at detecting spammers than MV and DSA. However,

20 Conny Kühne, Klemens Böhm

0.0

0.2

0.4

0.6

0.8

1.0

G
ol

d
R

at
io

g

lo-ars hi-ars lo-alo

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
hi-alo

0.0 0.2 0.4 0.6 0.8 1.0

Ratio of Colluders ncol/n

uni

0.05

0.15

0.40

0.80

1.00

N
or

m
al

iz
ed

C
ol

lu
si

on
R

en
t

(a) Setting UNIFORM with ratio of collusion objects 0.3.

0.0

0.2

0.4

0.6

0.8

1.0

G
ol

d
R

at
io

g

lo-ars hi-ars lo-alo

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
hi-alo

0.0 0.2 0.4 0.6 0.8 1.0

Ratio of Colluders ncol/n

uni

0.05

0.15

0.40

0.80

1.00

N
or

m
al

iz
ed

C
ol

lu
si

on
R

en
t

(b) Setting SKEWED with ratio of collusion objects 0.1.

Fig. 13: Collusion rent for different gold strategies as a function of the ratio of colluders and the gold ratio.

Protecting the Dawid-Skene Algorithm Against Low-Competence Raters and Collusion Attacks 21

their algorithm (implicitly) assumes that the mean compe-
tence c̄ is higher than 0.5. For example they state that “the
methods proposed in Dawid and Skene [. . .] can automati-
cally flip the labels for the malicious annotators”, which is
clearly not true if c̄ < 0.5, as our results show. Further, it is
clear from the description of their simulation experiments
that the settings they study to show the effects of their method
have a mean competence greater than 0.5.

Wang et al. (2011) propose an integration of gold objects
into DSA. Further, they develop an algorithm that integrates
gold objects in a setting with Amazon Mechanical Turk work-
ers, as opposed to an open community setting like ours. Their
method tells AMT workers to label a priori created gold ob-
jects based on the expected utility of additional ratings by
these workers. However, forcing members of the community
to rate particular contributions is not possible in our setting.

11 Discussion

To discuss the implications of our findings, we distinguish be-
tween four situations where a community of raters classifies
data objects.

The first situation is a typical crowdsourcing setting with
payments such as Amazon Mechanical Turk that lets the
employer decide which data objects a crowd worker has to
rate. There, the method proposed by Wang et al. (2011) might
allow using gold objects efficiently based on the expected
utility of additional ratings issued by the crowd worker.

The second and the third situation occur in an open com-
munity setting where it is not possible to force raters to rate
specific data objects. Here, we have to differentiate between
communities with a high probability that the mean compe-
tence is greater than 0.5 and those with the risk of having a
mean competence less than 0.5. If there is a high probability
that the mean competence is greater than 0.5, DSA will clas-
sify data objects with high accuracy. Our results show that
gold objects cannot improve this situation much.

If, on the other hand, the open community faces the risk
that its mean competence is near 0.5 or lower, DSA or related
methods will not suffice. Such a low mean competence oc-
curs whenever the community is afflicted by a large fraction
of low-competence raters, such as spammers, biased raters,
malicious raters, and raters with a consistent misunderstand-
ing. In that case, the gold strategies we have proposed can
increase the classification accuracy considerably, compared
to the vanilla DSA without gold objects. Here, the preferred
gold strategies are HI-ALO and, to a lesser degree, HI-ARS.
The accuracy gains achieved by a given gold ratio depend on
the characteristics of the community. Roughly, the more ho-
mogeneous the community, the higher the rating rate, and the
lower the competence, the higher the gold ratio required to
achieve high accuracy gains compared to the vanilla DSA. In

case of a typical open online community with sparse ratings
and a skewed rating distribution, a gold ratio as low as two
percent can be enough to offset the impact even of a large
number of spammers and biased raters. Further, if we also
take the costs of gold objects into account, the adaptive gold
algorithm can determine the optimal gold ratio with high
accuracy.

As the fourth situation, communities face the risk of col-
lusion attacks, in particular if raters are remunerated based on
their competence inferred by DSA. Here, gold strategies can
successfully counter collusion attacks. HI-ARS is particularly
effective against collusion attacks, both in homogeneous set-
tings and in settings with a skewed rating rate that is typical
for open communities.

In summary, HI-ARS and HI-ALO can safeguard against
the risk of both the impact of (i) a large fraction of low-
competence raters, and (ii) of collusion attacks. In such cir-
cumstances, a low ratio of gold objects together with the
HI-ALO and HI-ARS strategies can be much more effective
than simply selecting gold objects randomly. Further, the
optimal gold ratio does not need to be guessed but can be de-
termined with high accuracy by our adaptive gold algorithm.

12 Conclusion

In this paper we have analyzed the problem of classifying
contributions in an open peer-rating online community. We
have discussed the accuracy of majority voting schemes un-
der homogeneous competencies and known heterogeneous
competencies. We have analyzed the estimation quality of
DSA in various settings. We find that in a homogeneous
setting, where raters have roughly the same, relatively high,
rating rate, DSA stabilizes after it has classified a relatively
low number of data objects. In a more open setting, on the
other hand, with a low rating rate and a skewed rating dis-
tribution that is typical for open internet communities, DSA
requires a much higher number of data objects to stabilize.
Further, we find that for a mean competence higher/lower
than 0.5, DSA performs better/worse than majority vote. This
effect becomes more pronounced, the more widespread the
competence distribution is, and the higher the number of
raters is.

We have proposed and tested gold strategies based on
the level of agreement to increase the accuracy of DSA in
low-competence settings. Further, we have proposed and
evaluated an adaptive algorithm to maximize the net benefit
of gold objects. Finally, we have discussed the damage done
by collusion attacks against DSA and have tested how gold
strategies can reduce this damage. A main finding of ours is
that the HI-ALO gold strategy is very effective in increasing
the accuracy of DSA in low-competence settings. Further, the
adaptive algorithm determines the optimal gold ratio for each
strategy and each setting with high accuracy. Finally, we find

22 Conny Kühne, Klemens Böhm

that the HI-ARS and the UNI strategy are effective in reducing
the benefit gained by colluders. Thus, they render collusions
less attractive for raters. We have discussed the implication
of these findings and have found that HI-ALO and HI-ARS

can effectively safeguard typical open online communities
against the risk of both the impact of (i) a large fraction of
low-competence raters, and (ii) of collusion attacks. In such
circumstances, a low ratio of gold objects together with the
HI-ALO or HI-ARS strategy can be much more effective than
simply selecting gold objects at random.

We have focused on a binary setting. However, the meth-
ods we have discussed are also applicable to multi-type set-
tings, i.e., |T | > 2. In particular the gold strategies can be
readily modified to work in multi-type settings. In this case,
arsk would have to be computed for each type t of a given
data object individually. For this computation each rating
needs to be encoded as 1 if it is in favor of t, as -1 otherwise.
The modification of strategies based on alok is straightfor-
ward as well: instead of using alok the modified strategies
select data objects that have the highest/lowest MAP estimate
for any of their types.

13 Proof of Proposition 1

Proof For simplicity and brevity, we omit the subscript k in
the following. Thus, sk becomes s, Rk becomes R, ok becomes
o, ri,k becomes ri, and so on. Further, let i refer to the s raters
of the data object in question.

The posterior probability that the object is of type t given
the ratings is

P(o = t | R) = P(R | o = t)P(o = t)
P(R)

.

Since P(R) is the same for both types, the ratio of the poste-
rior probabilities (or posterior probability ratio, ppr) of the
data object being of type -1 and being of type 1 given its
ratings is

ppr =
P(o =−1 | R)
P(o = 1 | R) =

P(o =−1)
P(o = 1)

P(R | o =−1)
P(R | o = 1)

.

Since we assume conditional independence of the ratings
given a type, their joint probability can be written as a product

ppr =
P(o =−1)
P(o = 1)

s

∏
i=1

P(ri | o =−1)
P(ri | o = 1)

. (10)

Per definition of the homogeneous competence we have
P(ri = q | o = t) = c, if q = t, and 1− c otherwise. Thus,
we can express each likelihood ratio as

P(ri = q | o =−1)
P(ri = q | o = 1)

=

{
c/(1− c) if q =−1
(1− c)/c if q = 1.

Let lrr = ∏
s
i=1 P(ri | o =−1)/P(ri | o = 1) denote the prod-

uct of the likelihood ratios of all s ratings. Since s is odd
and c > 0.5 and therefore c/(1−c)> 1 the likehood ratio llr
cannot be equal to 1. Instead either

– lrr≥ (c)/(1−c)> 1, if more ratings are in favor for type
-1, or

– lrr ≤ (1− c)/c < 1, if more ratings are in favor for type
1.

The same is true for the ppr. This is because we assume
that 1− c < P(o = t) < c for both types t ∈ {−1,1}. Thus,
the ratio of the priors is (1− c)/c < P(o =−1)/P(o = 1)<
c/(1− c) and therefore cannot “reverse the direction” of the
ppr: If lrr > 1, then ppr = lrr ·P(o = −1)/P(o = 1) > 1.
Likewise, if lrr < 1, then ppr = lrr ·P(o =−1)/P(o = 1)<
1.

Thus, the posterior probability is greater for the type that
receives the majority of ratings in its favor. ut

14 Proof of Proposition 2

Proof For simplicity and brevity, we omit the subscript k
in the following. Thus, sk becomes s, lk becomes l, arsk
becomes ars, and so on.

Let corr(ô = o) denote the number of correct ratings for
a correct classification by MV. Correspondingly, let corr(ô 6=
o) denote the number of correct ratings for an incorrect clas-
sification by MV. We first proof the following lemma.

Lemma 1 For a given ars and a given odd s, if the number
of correct ratings for an incorrect classification by MV is
corr(ô 6= o) = l, then the number of correct ratings for a
correct classification by MV is corr(ô = o) = s− l. Further,
l = (s−ars)/2.

Proof Let rs denote the rating sum for a given ars, i.e.,

ars = |rs|=
{
−rs if rs < 0
rs if rs > 0

. (11)

Note that since the number of ratings is odd, rs cannot be 0.
Let rs+ denote positive rating sum, i.e., the rating sum rs > 0
in Eq. 11. Further, let s− be the number of negative ratings
of rs+, that is, the number of ratings that equal -1 if rs > 0.
Thus, the number of negative ratings for rs+ is (s− s−). The
positive rating sum is the sum of the negative ratings and the
positive ratings

rs+ =−s−+(s− s−) (12)

with the number of negative ratings of rs+ being the smaller
of the two summands 0≤ s− < s− s−.

Note, that there is at most one s− for a given rs+ and a
given s. To see why this is true, suppose, for contradiction,
there is a second s− := s−+ k, for some integer k 6= 0. Then,

Protecting the Dawid-Skene Algorithm Against Low-Competence Raters and Collusion Attacks 23

the number of positive ratings for rs+ is (s− (s−+ k)). But
the sum of the number of negative ratings and the number
of positive ratings must be s = s−+k+(s− (s−+k)) which
can only be true if k = 0.

The negative rating sum rs−, i.e., the rs < 0, is

rs− =−rs+

=−(s− s−)+ s−. (13)

Hence, s− is the number of positive ratings of rs− and (s−
s−) is the number of negative ratings of rs−.

For a given ars and a given s, let corr(ô 6= o) = l be the
number of correct ratings for an incorrect classification. For
incorrect classification by MV, the number of correct ratings
must be less than the number of incorrect ratings. Thus, l
must be the smaller one of the two terms s− and (s− s−),
i.e., l = s−. For the correct classification by MV, the number
of correct ratings must be the larger of the two terms, i.e.,
corr(ô = o) = s− s− = s− l.

To prove the second part of Lemma 1, we use the rela-
tionship between ars and rs− and rs+ defined in Eq. 11. We
substitute s+ = s− l and s− s+ = l in Eq. 12

ars = rs+ =−l +(s− l)

= s−2l

and in Eq. 13

ars =−rs− =−(−(s− l)+ l)

= s−2l.

Rearranging, either one of the above equations proves the
second part of the lemma: l = (s−ars)/2.

The probability of an incorrect classification by MV given
ars is

P(ô 6= o | ars)=
P(ô 6= o,ars)

P(ars)
=

P(ô 6= o,ars)
P(ô 6= o,ars)+P(ô = o,ars)

.

(14)

As Lemma 1 shows, to obtain a given ars out of s ratings,
we need exactly l = (s−ars)/2 correct ratings. The proba-
bility that exactly l out of s ratings are correct for a given
competence c, is

(s
l

)
cl(1− c)(s−l) (see Eq. 2). Thus, the joint

probability of MV classifying the data object incorrectly and
having rating sum ars is

P(ô 6= o,ars) =
(

s
l

)
cl(1− c)s−l .

where l = (s−ars)/2. By Lemma 1, the joint probability of
MV classifying the data object correctly and having rating
sum ars is

P(ô = o,ars) =
(

s
s− l

)
cs−l(1− c)l .

Substituting the two equations above in Eq. 14, we obtain

P(ô 6= o | ars) =

(s
l

)
cl(1− c)s−l(s

l

)
cl(1− c)s−l +

(s
s−l

)
cs−l(1− c)l

.

P(ô 6= o | ars) =
cl(1− c)s−l

cl(1− c)s−l + cs−l(1− c)l ,

where l = (s−ars)/2.

15 Summary of Notation

Table 2 summarizes the most frequently used symbols of this
paper and their meanings.

References

Inmaculada B Aban, Mark M Meerschaert, and
Anna K Panorska. Parameter estimation for the
truncated Pareto distribution. Journal of the Amer-
ican Statistical Association, 101(473):270–277,
2006. doi: 10.1198/016214505000000411. URL
http://amstat.tandfonline.com/doi/abs/10.
1198/016214505000000411.

Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman.
Power-law distributions in empirical data. SIAM Rev., 51
(4):661–703, November 2009. ISSN 0036-1445. doi: 10.
1137/070710111. URL http://dx.doi.org/10.1137/
070710111.

Jean-Antoine-Nicolas de Caritat Marquis de Condorcet. Es-
sai sur l’application de l’analyse à la probabilité des
décisions rendues à la pluralité des voix. Imprimerie
royale, Paris, 1785. URL http://gallica.bnf.fr/
ark:/12148/bpt6k417181.

Alexander Philip Dawid and Allan M Skene. Maximum
likelihood estimation of observer error-rates using the EM
algorithm. Journal of the Royal Statistical Society. Series
C (Applied Statistics), pages 20–28, 1979.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, Series B, 39(1):
1–38, 1977.

Richard O. Duda and Peter E. Hart. Pattern Classification
and Scene Analysis. John Wiley & Sons Inc, 1 edition,
February 1973. ISBN 0471223611.

Bernard Grofman, Guillermo Owen, and Scott L. Feld. Thir-
teen theorems in search of the truth. Theory and De-
cision, 15(3):261–278, 1983. ISSN 0040-5833. doi:
10.1007/BF00125672. URL http://dx.doi.org/10.
1007/BF00125672.

Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. Qual-
ity management on Amazon Mechanical Turk. In Proceed-
ings of the ACM SIGKDD Workshop on Human Com-
putation, HCOMP ’10, pages 64–67, New York, NY,

http://amstat.tandfonline.com/doi/abs/10.1198/ 016214505000000411
http://amstat.tandfonline.com/doi/abs/10.1198/ 016214505000000411
http://dx.doi.org/10.1137/070710111
http://dx.doi.org/10.1137/070710111
http://gallica.bnf.fr/ark:/12148/bpt6k417181
http://gallica.bnf.fr/ark:/12148/bpt6k417181
http://dx.doi.org/10.1007/BF00125672
http://dx.doi.org/10.1007/BF00125672

24 Conny Kühne, Klemens Böhm

USA, 2010. ACM. ISBN 978-1-4503-0222-7. doi: 10.
1145/1837885.1837906. URL http://doi.acm.org/
10.1145/1837885.1837906.

Gabriella Kazai, Jaap Kamps, and Natasa Milic-Frayling. An
analysis of human factors and label accuracy in crowd-
sourcing relevance judgments. Information retrieval, 16
(2):138–178, 2013.

Ludmila I. Kuncheva. Combining Pattern Classifiers: Meth-
ods and Algorithms. Wiley-Interscience, 2004. ISBN
0471210781.

Ludmila I. Kuncheva, Christopher J. Whitaker, and Cather-
ine A. Shipp. Limits on the majority vote accuracy in
classifier fusion. Pattern Anal. Appl., 6(1):22–31, 2003.

Louisa Lam and C.Y. Suen. Application of majority voting
to pattern recognition: an analysis of its behavior and per-
formance. Systems, Man and Cybernetics, Part A: Systems
and Humans, IEEE Transactions on, 27(5):553–568, 1997.
ISSN 1083-4427. doi: 10.1109/3468.618255.

Hongwei Li, Bin Yu, and Dengyong Zhou. Error rate analysis
of labeling by crowdsourcing. In ICML Workshop: Ma-
chine Learning Meets Crowdsourcing. Atalanta, Georgia,
USA, 2013.

Lena Mamykina, Bella Manoim, Manas Mittal, George
Hripcsak, and Björn Hartmann. Design lessons from the
fastest q&a site in the west. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI
’11, pages 2857–2866, New York, NY, USA, 2011. ACM.

Raghu Meka, Prateek Jain, and Inderjit S Dhillon. Matrix
completion from power-law distributed samples. In Ad-
vances in Neural Information Processing Systems, pages
1258–1266, 2009.

Marvin L. Minsky and Seymour Papert. Perceptrons: An
Introduction to Computational Geometry. The MIT Press,
1969.

Shmuel Nitzan and Jacob Paroush. Optimal decision rules
in uncertain dichotomous choice situations. International
Economic Review, 23:289–297, 1982. URL http://www.
jstor.org/stable/2526438.

Vikas C Raykar and Shipeng Yu. Eliminating spammers
and ranking annotators for crowdsourced labeling tasks.
Journal of Machine Learning Research, 13(2), 2012.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and An-
drew Y. Ng. Cheap and fast—but is it good?: Evalu-
ating non-expert annotations for natural language tasks.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’08, pages
254–263, Stroudsburg, PA, USA, 2008. Association for
Computational Linguistics. URL http://dl.acm.org/
citation.cfm?id=1613715.1613751.

Jing Wang, Panagiotis G Ipeirotis, and Foster Provost. Man-
aging crowdsourcing workers. In The 2011 Winter Confer-
ence on Business Intelligence, pages 10–12, 2011.

Jing Wang, Panagiotis G. Ipeirotis, and Foster Provost.
Quality-based pricing for crowdsourced workers, 2013.
URL http://hdl.handle.net/2451/31833. NYU-
CBA Working Paper CBA-13-06.

Jacob Whitehill, Paul Ruvolo, Tingfan Wu, Jacob Bergsma,
and Javier R. Movellan. Whose vote should count more:
Optimal integration of labels from labelers of unknown
expertise. In NIPS, pages 2035–2043, 2009.

http://doi.acm.org/10.1145/1837885.1837906
http://doi.acm.org/10.1145/1837885.1837906
http://www.jstor.org/stable/2526438
http://www.jstor.org/stable/2526438
http://dl.acm.org/citation.cfm?id=1613715.1613751
http://dl.acm.org/citation.cfm?id=1613715.1613751
http://hdl.handle.net/2451/31833

Protecting the Dawid-Skene Algorithm Against Low-Competence Raters and Collusion Attacks 25

Symbol Meaning
T = {−1,1} binary set of types;
q, t ∈ T type q and type t;
p(t) prior probability of type t;
K = {1, . . . ,m} set of data objects;
k ∈ K data object;
ok true type of k;
m = |K| number of data objects;
I set of raters I = {1, . . . ,n};
i rater i;
n = |I| number raters;
ri,k rating that rater i gives to data object k;
R = {ri,k} set of all ratings;
Rk = {ri,k′ | k′ = k} the set of ratings of data object k;
sk = |Rk| number of ratings given to data object k;
lk number of correct ratings for k;
c(t)i type dependent competence, i.e., probability P(ri,k = t | ok = t) that rater i rates objects of type t correctly;
ci type-independent competence, i.e., probability that rater i rates correctly;
c homogeneous competence, i.e., competence c = ci that is the same for all raters i;
g gold ratio, i.e., ratio of gold objects;
Kgold set of gold objects;
mgold = |Kgold| number of gold objects;
Icol ⊆ I the subset of colluders among all raters;
Kcol ⊆ K the subset of data objects that the colluders use for the collusion attack;
Khon = K \Kcol the set of data objects rated by honest raters only;
ncol = |Icol| number of colluders;
mcol = |Kcol| number of collusion objects;
mcol/m ratio of collusion objects;
θ̂ an estimator of a given parameter θ ;
1(·) indicator function, i.e., 1(·) is equal to one if its argument holds true, and equal to zero otherwise;

Table 2: Symbols and meanings.

	Introduction
	Model and Notation
	The Accuracy of Majority Decision Rules
	Estimation of Rater Competencies and Data Object Types with DSA
	Settings of a Simulation to Analyze DSA
	Analyzing the Estimation Quality of DSA
	Using Gold Strategies to Increase the Accuracy of DSA in Low-Competence Settings
	Optimizing the Net Benefit of Gold Objects with an Adaptive Gold Algorithm
	Using Gold Strategies to Counter Collusion Attacks against DSA
	Related Work
	Discussion
	Conclusion
	Proof of Proposition 1
	Proof of Proposition 2
	Summary of Notation

