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Abstract: Energy data often is available at high temporal resolution, which challenges
the scalability of data-analysis methods. A common way to cope with this is to
aggregate data to, say, 15-minute-interval summaries. But it often is not known how
much information is lost with this, i.e., how good analysis results on aggregated data
actually are. In this article, we study the effects of aggregating energy data on
clustering. We propose an experimental design to compare a wide range of clustering
methods found in literature. We then introduce different ways to compare clustering
results obtained with different aggregation schemes. Our evaluation shows that
aggregation affects the clustering quality significantly. Finally, we propose guidelines to
select an aggregation scheme.

ACM CCS: Information systems → Data mining → Clustering; Hardware → Smart
grid.
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1 Introduction

A common way to scale analysis methods for energy da-
ta to high volumes is data reduction, such as downsamp-
ling or temporal aggregation. Data reduction induces a
loss of information, which in turn may deteriorate the
result quality of the analysis. Therefore, understanding
the tradeoff between the volume of the reduced data and
the information content is fundamental to design data
processing pipelines.

In this article, we focus on clustering, a data-mining ap-
proach that is common with time series of energy data.
Clustering has been used to obtain consumption pro-
files [1], to improve consumption forecasts [2–4], or to
group the energy consumption of households for pro-
grams and policies of utilities [5,6]. Clustering of energy
data must cope with various electrical quantities like vol-
tage, current, and frequency. In industrial settings, high
data volumes may come from hundreds of machines, col-
lected in second intervals. This may require significant
computational resources. Further, distances between ti-
me series become very similar when the length of the
time series, i.e., the number of observations, increases.
This is due to the curse of dimensionality [7] and often
affects clustering-result quality.

To give way to scalability, users often reduce the data
volume before clustering, by aggregating over time win-
dows, mostly by averaging over 15 min intervals. We re-
fer to these windows as aggregation levels. However, such
an aggregation may distort the clustering result and the
ensuing findings. Literature on energy data largely dis-
regards these effects. We think that this is because (a)
users may not be aware of the effects of aggregation,
and (b) there is no systematic approach to compare dif-
ferent aggregation schemes, i.e., aggregation functions
and levels.

Deriving a simple set of rules to select an aggregation
scheme is unrealistic, given the diversity of energy data,
clustering algorithms and the manifold applications. In
a previous short article, we have sketched an experimen-
tal design to evaluate the tradeoff between clustering
quality and energy-data aggregation [8]. We now pro-
pose and evaluate different ways to assess the effect of
aggregation on clustering quality systematically. The
outcome is evaluation methods and guidelines to arrive
at informed decisions regarding the aggregation scheme
for a specific application. This entails several challenges.

Data Characteristics: Electrical quantities may have dif-
ferent characteristics, like the typical shape of a time
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series. This makes the choice of a suitable aggregation
function for a specific quantity difficult. To illustrate, the
active power of a machine depends on its type and its
usage pattern. The net frequency in turn is determined
and regulated by the grid operator. Hence, while “ave-
rage” might be a suitable function to summarize power
consumption in a time window, this may not be true for
the net frequency. Here, volatility may be better.

Evaluation Methods: For unsupervised techniques like
clustering, there is no ground truth to evaluate against.
Instead, there exist several, often complementary mea-
sures of result quality. It is not clear how to compare
quality values when aggregation schemes are different,
as we will show later.

Design Space: There is a daunting variety of cluste-
ring algorithms and dissimilarity measures for time
series [9, 10]. The best method usually is application-
specific [11–13]. In addition, one must select an ag-
gregation function and the size of the time window
for aggregation. This results in a huge design space,
i.e., the cross-product of data characteristics, clustering
methods, dissimilarity measures, and aggregation func-
tions. A full factorial experiment is prohibitive, and one
needs to identify a subset which is conclusive.

Contributions. In this article, we present an experi-
mental design to study the effects of aggregation on clu-
stering results. It has certain dimensions, which we ex-
plain in the body of the paper, as follows:

(D1) Data: Time series of several electrical quantities
in fixed and variable length.

(D2) Clustering algorithms: Representative-based,
hierarchical and density-based algorithms.

(D3) Dissimilarity measures: Lock-step, elastic and
complexity-based dissimilarities.

(D4) Aggregation functions: Summary statistics of
location, shape and statistical dispersion.

(D5) Aggregation levels: Windows from 30 s up to
6 h.

Based on this design, we conduct experiments on high-
resolution smart meter data from industrial producti-
on [14].

Next, we propose different ways to compare clustering
results across aggregation levels. For instance, we clu-
ster data with increasing level of aggregation, and we
evaluate the resulting clusters both on the given aggre-
gation level and against the original data. Our methods
to compare results across different levels have led to in-
sights not achievable with conventional evaluation me-
thods for single aggregation levels. For instance, we ha-
ve discovered that the size of the effect of aggregation
depends on the data resolution, e.g., aggregating from
30 s to 1 min has a stronger impact than from 5 min to
10 min.

We conclude by proposing guidelines to select an ag-
gregation scheme. For instance, some dissimilarities and
aggregation functions perform poorly in almost every
setting, and we suggest to exclude them from further
experiments. In our use case, this has reduced the num-
ber of experiments necessary from 43092 to 378. Further,
we have identified spurious improvement of clustering-
validity indices, i.e., data aggregation may boost index
values without real improvement in clustering quality. A
consequence is that our guidelines strongly advise to va-
lidate clustering results against randomly generated se-
quences. Researchers and practitioners can use our gui-
delines as a reference to select aggregation schemes for
their specific application.

Outline. Section 2 is a review of related work and fun-
damentals. Section 3 introduces our experimental de-
sign, and Section 4 proposes different ways to compare
clustering results across aggregation levels. In Section 5,
we present our experimental results and propose guide-
lines for selecting aggregation schemes. Section 6 con-
cludes.

2 Related Work

In this section, we discuss related work on energy data
aggregation, as well as on comparative studies on clu-
stering algorithms and dissimilarities.

The literature on clustering energy data mainly reli-
es on load (kW) or consumption (kW h) measurements
from households [1,3,5,13,15–25]. Some references con-
sider commercial and industrial facilities [19,26,27], lar-
ge buildings [28–31], medium voltage consumers [12,32]
and transformers [33]. The references differ by the
sampling rate and the representation of the time-series
measurements. The most common sampling rate is at
least 15 min, and only a few approaches use more fine-
granular data [1, 15, 33]. For the time-series representa-
tion, one can distinguish between raw data and feature-
based approaches. Most approaches for raw data work
with fewer than 100 measurements per time series, with
a few exceptions [1, 23, 24]. Feature-based approaches
transform the time series into a feature vector before clu-
stering, e.g., mean, periodicity, or seasonal scores. The
number of features varies, but can be as high as 96 [25].

Our work focuses on temporal aggregation. The idea is to
split the time series into non-overlapping intervals. An
aggregation function is then applied to each interval.
The result still is a time series, but of reduced length.
This is different from instance-based aggregation, i.e.,
aggregation across different consumers, often used for
load forecasting [19, 23]. Instance-based aggregation is
far more common in literature on clustering energy da-
ta. There only are few references for temporal aggrega-
tion [25,29].
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Literature on energy-data clustering mostly relies on a
single clustering algorithm. In many cases, this is a vari-
ant of k-means. There only are few comparative studies
for clustering that use energy-consumption data [12,28].
A recent one compares algorithms on residential house-
hold data [13]. It shows that the clustering results are
not consistent across different validity indices, and that
the choice of a suitable clustering algorithm depends on
the application. However, all of these studies focus on a
specific aspect of the experimental design, such as the
clustering algorithm or the dissimilarity measure. They
also do not cover data aggregation.

3 Experimental Design

We first discuss the data set and our pre-processing (D1)
in Section 3.1 and Section 3.2. Then we present the di-
mensions (D2)-(D5) of our experimental design in Sec-
tion 3.3 to Section 3.5. We present measures to assess
the effects of aggregation in Section 4. In the followi-
ng, experiment setting refers to a specific combination
of (D1)-(D5).

3.1 Data Set (D1)

Our data is an extension of the HIPE data set [14],
which contains smart meter data from a production si-
te for power electronics. It includes 10 machines, e.g.,
a heat furnace, a soldering machine and a pick-and-
place machine which have been monitored over eight
months. Each machine is equipped with a smart meter
that measures more than a hundred attributes with a
sampling rate between 2 s and 28 s. We select a subset
of six electrical quantities as representatives for different
time-series characteristics. Active power, amperage and
power factor depend on the machine usage and follow an
on-off behavior. Frequency and voltage both depend on
the electrical grid and fluctuate almost independently
of the machine usage since the energy consumption of a
machine is comparatively low. Positive energy is the to-
tal energy consumption. It is quantized to 1 kW h steps,
which results in a staircase pattern.

3.2 Pre-Processing (D1)

Within a sensor, the time between subsequent measure-
ments varies. So we use the mean over 30 seconds as the
base-level data. From each time series, i.e., the measu-
rements of one electrical quantity over the entire obser-
vation period, we extract non-overlapping intervals. We
refer to these intervals as sequences. We use two methods
to extract the sequences: fixed and variable length.

3.2.1 Fixed Length

We extract sequences of one day with fixed start and
end time at midnight. This is the method frequently
used in related work. We only consider sequences with

less than 1 % missing values and exclude days where all
measurements of a machine are constant.

3.2.2 Variable Length

The reason to extract variable-length sequences is that
periods where the machine is idle may not be of inte-
rest. In general, several ways to extract variable-length
sequences are conceivable. In this study, we proceed as
follows. We first search for values which make up more
than 5 % of the data and consider them as candidates
for periods of inactivity. For example, this could be 0
when the machine is switched off or a small value for a
stand-by state. We limit the minimum length of a se-
quence to 30 min and the maximum length to one day.
Some electrical quantities like frequency do not have an
on-/off-behavior. In this case, we use the active power
measurements to select the start and end times.

For both extraction strategies, we fill missing values with
linear interpolation. We remove sequences which con-
tain outliers. These are measurement errors, i.e., negati-
ve spikes for single measurements, machine shutdowns,
i.e., measurements drop to zero, and days where machi-
ne activity is less than 30 min. We select machines with
a clear on-/off-behavior for active power, amperage, and
power factor. We also apply min-max normalization to
active power, amperage and positive energy, because the
range of these attributes is machine-dependent. Table 1
summarizes the data set.

3.3 Clustering Algorithms (D2)

Clustering algorithms fall into several categories, e.g.,
representative-based, hierarchical, and density-based
[34]. We select standard approaches from different ca-
tegories which support arbitrary dissimilarity measures.
The specific parameter settings are not essential for the
further understanding and are listed in Appendix Ta-
ble 4.

3.3.1 Representative-Based Methods

Methods from this category assign objects to clusters
based on their dissimilarity to representative objects. A
popular member is Partitioning Around Medoids (PAM)
[35]. PAM takes the number of representative objects
k as an input. To determine k, we run PAM with
k ∈ [2, 10] and choose the result with the maximum Sil-
houette Coefficient. In addition, we use Affinity Pro-
pagation (AP) [36], parameterized as proposed in [36]
and [37].

3.3.2 Density-Based Methods

Density-based approaches focus on the local neighbor-
hood of individual objects. Clusters are regions of high
density, i.e., with many objects within a certain dissimi-
larity threshold. We select DBSCAN [38], a prominent
algorithm from this category. It takes two parameters:
the minimum number of objects in a cluster, which we
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Table 1: Sequences of fixed (F) and variable (V) length.

Quantity
Sequences Machines

Norm.
F V F V

Active power 489 516 4 4 min-max
Amperage 479 540 6 6 min-max
Frequency 725 856 3 8 —
Positive Energy 479 819 7 7 min-max
Power Factor 702 789 8 8 —
Voltage 706 612 3 6 —

set to 1, so that all objects are part of a cluster, and
the neighborhood radius ε, which we set to the mean
one-nearest-neighbor dissimilarity.

3.3.3 Hierarchical Methods

Hierarchical methods are popular for shape-based time-
series clustering [39]. They create a hierarchy of clusters
either bottom-up (agglomerative) or top-down (divisi-
ve). The merging or splitting of clusters during hierar-
chy construction depends on a dissimilarity measure, the
linkage criterion. This criterion can influence the cluste-
ring result significantly [12,13,32,34]. So we use different
linkage criteria: single linkage, complete linkage, average
linkage and Ward’s criterion [34, 40]. We determine the
number of clusters k∈ [2, 10] with the Silhouette Coeffi-
cient.

3.4 Dissimilarity Measures (D3)

There is a great variety of dissimilarity measures, and a
good choice depends on the application [41]. So we se-
lect representative measures of different types, i.e., lock-
step, elastic and complexity-based dissimilarities. When
necessary, we make slight adaptations so that the mea-
sures are symmetric and have value zero if objects are
indistinguishable. The adaptations and the parametri-
zation are not essential for the further understanding
and are listed in Appendix Table 5.

3.4.1 Lock-Step

These measures compare sequences element-wise. An
element-wise comparison entails a linear time comple-
xity, a sensitivity to noise and inflexibility to shifts
on the time axis. Common representatives are the Lp

norms, in particular L1 (Manhattan), L2 (Euclidean),
and Lmax (Chebyshev).

3.4.2 Elastic

Elastic measures allow for offsets between values. Given
this, these measures also are applicable to sequences of
different length. A popular representative is Dynamic
Time Warping (DTW) [42]. DTW searches for a mi-
nimum distance assignment between elements of both
series, the warping path, by allowing for stretching and
compression of the time axis. To reduce computation ti-

me, one can control the warping procedure by global
constraints [11, 43]. We apply the well-known Sakoe-
Chiba band [44].

Other dynamic approaches transfer the concept of the
string edit (Levenshtein) distance to numeric sequences.
Instead of a binary match criterion like the one for
string distances, the Edit Distance With Real Penalty
(ERP) [45] calculates the absolute difference between
time-series values. Operators allowed in the matching
are edit, removal and addition of values.

We also select the Shaped-Based Distance (SBD) [46], a
semi-elastic measure. It uses the maximum normalized
cross-correlation coefficient between sequences across all
possible time-axis offsets.

3.4.3 Complexity-Based

These methods compare complexities of time-series pat-
terns. A measure based on information-theoretic prin-
ciples is the Compression-based Dissimilarity Measure
(CDM) [47, 48]. It compares the size of two sequences
compressed individually to the size of compressing the
concatenation of both sequences. Similarly to [47], we
first convert the sequences to a discretized SAX re-
presentation [49] before compressing them. In additi-
on, we use the Permutation Distribution Dissimilarity
(PDD) [50]. It compares the frequency distribution of
subsequence patterns, extracted with a sliding window
from each sequence.

3.4.4 Correction Factors

In addition to the standard dissimilarities, we also use
modified versions of L2 and DTW. The first modifica-
tion is CORT [51], which adjusts the dissimilarity ac-
cording to the correlation between the sequences. It de-
creases the dissimilarity in case of positive correlation
and increases it for negative correlation. The second mo-
dification is Complexity-Invariant Distance (CID) [52].
It compensates that dissimilarities between simple pat-
terns tend to be lower than ones between complex pat-
terns.

3.5 Aggregation (D4, D5)

We aggregate the time series along the time axis over
non-overlapping windows of equal length. This is similar
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to Piecewise Aggregate Approximation (PAA) [53, 54],
but with varying aggregation functions. Our aggregati-
on functions cover summary statistics for data location
(mean, median, minimum, maximum). We further use
measures of dispersion (standard deviation) and shape
(skewness, kurtosis), although we expect these measures
may perform worse than the location statistics. By incre-
asing the window length, we reduce the number of aggre-
gated measurements that are in a sequence. For instan-
ce, a full day sequence consists of 2880 measurements.
An aggregation to 10 min intervals reduces this sequence
to 144 values. We aggregate to intervals commonly used
in the literature: 1 min, 5 min, 10 min, 15 min, 30 min,
1 h, 2 h and 6 h. We refer to longer aggregation intervals
as higher aggregation levels.

4 Evaluating the Effects of Aggregation

A suitable evaluation of clustering depends on the app-
lication, be it to discover groups of similar consumers,
to identify recurring voltage patterns, or to find nodes
in an electrical grid with similar behavior.

A common way to evaluate clustering results is validi-
ty indices. Internal validity indices evaluate properties
of the clusters, such as the shape, compactness or di-
stinctness. They can be useful to determine parameters
of clustering algorithms, e.g., the number of clusters.
External validity indices compare clustering results to
a pre-defined ground truth. They tend to be used with
synthetic data where a ground truth is available.

Other methods have been proposed to evaluate fur-
ther properties of the clustering result. Examples are
the robustness of clustering on different samples [18],
variability of consumption over time [5], and proper-
ties to distinguish between clusters [25]. There also
are informal evaluation approaches, like textual des-
cription or visual inspection of cluster representatives
[5,16,18,25,27,33]. One can also evaluate clustering indi-
rectly, by using the clustering result for subsequent data
mining. An example is the forecast of energy consumpti-
on [3,19,21,23,24,31]. The hypothesis is that clustering
of consumers into homogeneous groups might yield bet-
ter forecasts. Clustering quality is the improvement of
this accuracy.

In this article, we use an extensive set of evaluation me-
trics to cover a broad range of possible applications. To
assess the effects of data aggregation, we propose sever-
al ways to compare validity indices between aggregation
levels.

4.1 Internal Validity

Different internal validity indices focus on different
aspects of clustering quality. Most of them quantify co-
hesion and separation of clusters [55]. Cohesion mea-
sures the dissimilarity within clusters, which should be

Table 2: Internal validity measures.

Name Ref. Range

Inverted Normalized Connectivity [60] [0, 1]

Inverted Generalized
Davies-Bouldin

[57] (0,∞)

Generalized Dunn Index [59] [0,∞)

Silhouette Coefficient [56] [−1, 1]

Dissimilarity
Matrix
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. . .
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. . .
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.
.
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.

.

.

.
. . .




. . .

.

.

.
.
.
.

.

.

.
. . .



Cluster
Assignment

Aggregation
Level

30 s

1 min

6 h

...

Base Level

Current Level

[1,2,. . . ,2,4]

[1,1,. . . ,3,5]

[1,1,. . . ,2,2]

Figure 1: Schematic for comparing internal validity indices.
The dissimilarity matrix to calculate the index either is from the
current aggregation level or the base level [8].

low. Separation measures the dissimilarity between clu-
sters, which should be high.

We use three respective indices which have been used be-
fore when clustering energy data: the Silhouette Coeffi-
cient [56], the Davies-Bouldin Index [57] and the Dunn
Index [58]. We use a generalized version of the Dunn
Index [59] for stability against outliers. We generalize
Davies-Bouldin so that one can use it for clustering al-
gorithms without representative objects. In addition, we
use Connectivity as a neighborhood-based index [60].
While many internal validity indices prefer spherical clu-
sters [61], Connectivity works well for clusters of arbitra-
ry shape. We invert some of these indices so that higher
index values stand for better clusterings. See Table 2 as
an overview, and Appendix 1.1 for details.

So internal validity evaluates a cluster assignment ba-
sed on the dissimilarity matrix of the objects. In the
conventional case, i.e., without aggregation, the same
dissimilarity matrix is used to calculate the assignment
and the validity index. With aggregation, however, one
may assign clusters with the dissimilarity on one aggre-
gation level, but calculate the validity index with the
dissimilarities from a different one. By doing so, one can
assess the clustering obtained from aggregated data by
evaluating it on the original data. We therefore propose
two alternatives to evaluate internal validity for different
aggregation levels, see Figure 1.
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Aggregation
Level

Cluster
Assignment

30 s

1 min

6 h

...

[1,2,. . . ,2,4]

[1,1,. . . ,3,5]

[1,1,. . . ,2,2]

[1,2,. . . ,3,4]

Base Level

Previous Level

Ground
Truth

.

.

.

Figure 2: Schematic for comparing external validity indices.
The cluster assignments are compared against the base level,
the previous aggregation level or a ground truth [8].

4.1.1 Base Level

The idea of the base-level comparison is to evaluate how
well aggregation preserves the structure of the unaggre-
gated data. So the cluster assignments come from the
clustering of aggregated data. The index calculation ho-
wever uses the dissimilarities of the unaggregated data.

4.1.2 Current Level

With this variant, both the cluster assignment and the
index calculation use the aggregated data. This quanti-
fies the clustering quality on a given aggregation level.

4.2 External Validity

External validity indices quantify the similarity of an
actual clustering result and a target cluster assignment.
We select representative indices from common catego-
ries [62].

The first category is pair counting with the Fowlkes-
Mallows [63], Phi [64] and Rand Index [65]. These in-
dices rely on the confusion matrix between the actual
clustering result and the target assignment. The Rand
Index relates to accuracy, Fowlkes-Mallows to the geo-
metric mean of precision and recall, and the Phi Index to
the Pearson correlation of the actual and the target assi-
gnment. The second category of external validity indices
is the set overlap, from which we select the van Dongen
measure [66]. Indices from this category map each clu-
ster from the actual assignment to a cluster in the target
assignment and then calculate the maximum overlap.
The third category is information-theoretic measures,
from which we select the Normalized Mutual Informati-
on [67] between two clusterings. We normalize all indices
according to [68], so that the index value is 1 if cluste-
rings are indistinguishable. Table 3 is an overview of the
external validity indices.

Like for internal indices, we propose variants to com-
pare different aggregation levels. More specifically, we
suggest to compare an actual clustering assignment to
three different target assignments, see Figure 2.

Table 3: Normalized external validity measures.

Name Ref Category Range

Fowlkes-
Mallows

[63] pair-counting (−1, 1]

Phi Index [64] pair-counting (−1, 1]
Rand Index [65] pair-counting (−1, 1]
Normalized
Mutual
Information

[67] information-
theoretic

[0, 1]

Inverted van
Dongen

[66] set overlap [0, 1]

4.2.1 Ground Truth

Cluster assignments are compared to domain-specific in-
formation. For example, we could expect data from the
same machine, from the same sensor type, or collected
at the same day of the week to be in the same cluster. If
available, one may also use production-specific informa-
tion such as the product type or the production step.

4.2.2 Base Level

In this variant, the base-level clustering is the target
assignment. Clustering results from other aggregation
levels are compared to it. This quantifies the information
loss for a specific aggregation level. A similar method has
been applied in [25], but with fewer experiment settings.

4.2.3 Previous Level

This variant is a relative comparison of clustering for
adjacent aggregation levels. The idea is to quantify the
change in the clustering when increasing the aggregation
level by one step.

5 Results

Our experimental design includes 7 clustering algo-
rithms, 13 dissimilarity measures, 7 aggregation tech-
niques and 9 aggregation levels to cluster subsequences
for 6 electrical quantities of variable and fixed length. In
total, we evaluate 43092 settings. Our implementation
is publicly available.1

5.1 Design Space

The large design space results in daunting runtimes for
all experiment settings. The summary and interpreta-
tion of such a large result set would be challenging as
well. So we first discuss effects of aggregation functions
and dissimilarity measures, to see where differences are
marginal. This might help to reduce the design space for
further experiments.

1
https://www.ipd.kit.edu/clustagg

6

https://www.ipd.kit.edu/clustagg


● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

Internal (Silhouette) External (Inv. van Dongen)

1 
m

in

5 
m

in

10
 m

in

15
 m

in

30
 m

in 1 
h

2 
h

6 
h

1 
m

in

5 
m

in

10
 m

in

15
 m

in

30
 m

in 1 
h

2 
h

6 
h

0.00

0.25

0.50

0.75

Aggregation level

B
a
se

 l
ev

el
 v

a
li

d
it

y

Aggre−
gation

● kurtosis
max

mean
median

min
skewness

stddev

Figure 3: Base Level comparison of internal and external vali-
dity index. The figure shows the median validity over all expe-
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against the Previous Level. The figure shows the median over
all experiment settings grouped by dissimilarity.

5.1.1 Aggregation Function

Figure 3 graphs the median base-level Silhouette Coeffi-
cient and the Inverted van Dongen measure for different
aggregation functions. For both external and internal va-
lidity, the results differ between location statistics and
measures of shape and dispersion. For low aggregation
levels in particular, location statistics lead to a signi-
ficantly better validity. It is intuitive that a piecewise
location summary is more characteristic for energy data
than a piecewise summary of shape or dispersion. With
increasing aggregation level, the validity decreases for
location statistics. A reason might be that, for short in-
tervals, location statistics are a good approximation of
the raw data. With increasing window size, the error of
this approximation increases and affects the clustering
quality negatively.

5.1.2 Dissimilarity

In general, there is no dissimilarity measure that is best
for all experiment settings. For example, Figure 4 dis-
plays the previous-level external validity for different
measures. For fixed-length sequences, elastic dissimila-
rities and some of the lock-step dissimilarities yield si-
milar results. However, the runtime complexity for ela-
stic measures is quadratic or log-linear in the sequence
length. For lock-step measures, it is linear. So lock-step
measures yield roughly the same results and have a com-
putational advantage.
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Figure 5: Current Level comparison of internal validity over all
experiment settings.
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Figure 6: Base Level comparison of internal validity over all
settings.

The corrections CORT and CID for the L2 and DTW
dissimilarities do not generally improve clustering va-
lidity. The complexity-based dissimilarities PDD and
CDM+ have a low overall internal and external validity.
We also observe that Lmax results in lower external and
also lower internal validity than L1 and L2. One expla-
nation is that noise has a higher impact on Lmax than
on L2 and L1.

5.2 Evaluation Methods

We now discuss the usefulness of evaluation methods to
assess the effects of aggregation.

5.2.1 Validity Index Selection

We first strive to identify the most relevant validity in-
dices for a comprehensive view on the effects of aggre-
gation. The rationale behind our selection is that in-
dices with little or no correlation give complementary
information, and highly correlated indices are redun-
dant. For the internal indices, the correlation is mode-
rate to strong. We select Silhouette Coefficient and In-
verted Connectivity, which have the lowest correlation.
For external validity indices, we find a strong correla-
tion between all indices. In the following, we select the
Inverted van Dongen measure. This is in line with re-
commendations in [68].

5.2.2 Method of Comparison

We now discuss insights from using the evaluation me-
thods presented in Section 4. The following observations
apply to all experiment settings. However, the extent of
the effects may vary.
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Figure 7: Comparison of energy data clustering and clustering
of random sequences based on internal Current Level validity
(Silhouette Coefficient). The figures shows the median over all
experiment settings.

Internal Validity: Figure 5 graphs the current-level in-
ternal validity over all experiment settings with incre-
asing aggregation level. The index values increase for
levels larger than 15 min, with the best index value at
6 h aggregation. However, one can observe the same ef-
fect for randomly generated data as well. To illustrate
this, we sample 600 random sequences independently
from a Gaussian distribution, of the same length as the
sequences on the base level. We then apply our setup to
these random sequences. We also use two further stra-
tegies besides the seven standard aggregates. The first
one is sample which randomly samples one value per ag-
gregation interval from the base-level data. The second
one is random which generates sequences randomly, i.e.,
independently of the base-level data. Figure 7 shows the
current-level Silhouette Coefficient both based on ran-
dom data and for our dataset. As one might expect,
the absolute validity of clustering random sequences is
lower than for the real-world data. However, we observe
an increase in current-level validity in both cases. In par-
ticular, validity increases for the random strategy. This
rules out smoothing effects introduced by aggregation
as a possible explanation for the increasing validity.

If one considers a sequence as a vector, each observation
corresponds to one dimension in the data space. Thus,
the difference between aggregation levels is the number
of dimensions. This indicates that the reason for incre-
asing clustering quality is the curse of dimensionality.

The base-level comparison of internal validity in Figu-
re 6 shows an opposite trend. It decreases with increa-
sing aggregation level. As before, we also compare the
results to randomly generated data. With random da-
ta, the median base-level Silhouette Coefficient is close
to zero on all aggregation levels. We conclude that the
decrease of base-level validity is not just a random effect.

In summary, a high internal validity might support the
interpretability of the results, because clusters are mo-
re distinct. Increasing the aggregation level improves
current-level internal validity. But this is also true for
random data. So a base-level comparison is necessary to
identify potential information loss. This finding shows
that our evaluation methods are indeed useful to assess

the effects of aggregation, as claimed in the introducti-
on.

External Validity: Our results on external validity sup-
port this finding. With the base-level comparison, ex-
ternal validity decreases with increasing aggregation le-
vel. This means that similar sequences on the base level
are assigned to different clusters after aggregation. The
effect is strongest in the initial aggregation steps, e.g.,
from 30 s to 1 min. There only is little difference between
15 min and 30 min aggregation. This is one of the subtle
insights announced in the introduction. The previous-
level comparison supports the finding.

Nevertheless, relying only on external validity can also
be misleading. For example, DBSCAN yields the hig-
hest external base validity across all aggregation levels.
But it also has a low internal base-level validity. In such
a case, i.e., the base-level clustering already is of poor
quality, further comparison across aggregation levels is
not meaningful.

5.3 Guidelines for Selecting Aggregation
Schemes

Our experiment results suggest that there is no simple
set of rules to select an aggregation function and level.
The selection of a suitable aggregation scheme rather
depends on the application as well as on practical cons-
traints, like an upper limit on runtime. We therefore
have extracted guidelines to help selecting an aggregati-
on scheme. Researchers and practitioners can use them
as a reference for their application.

Experimental Design: We propose to reduce the experi-
mental design to ease analysis of aggregation effects with
industrial smart-meter data. For fixed-length sequences,
elastic dissimilarities and some of the lock-step dissimi-
larities yield similar clustering quality. In this case, one
may reduce the experiments to lock-step measures, be-
cause runtimes for elastic measures are much higher.
Further, the corrections CORT and CID for the L2 and
DTW dissimilarities do not generally improve clustering
validity. The complexity-based dissimilarities PDD and
CDM+ have a low overall internal and external validity.
We also observe that Lmax results in lower external and
also lower internal validity than L1 and L2. Consequent-
ly, we have decided to remove all of these dissimilarities
and corrections from the experimental setup.

For aggregation functions, location-based statistics ge-
nerally outperform measures of shape and dispersion for
base-level comparisons. Among them, mean has been
most robust against aggregation, and we deem it the
preferred choice.

On the other hand, the clustering algorithms and the
linkage criteria do affect result quality significantly. Mo-
re specifically, a good choice depends on the electrical
quantity, and on whether sequences are of fixed or varia-
ble length. So we suggest to compare these dimensions
carefully.
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Evaluation Method: One has to consider both external
and internal validity indices, since they evaluate two dif-
ferent aspects of clustering quality, see Section 4. Howe-
ver, our results suggest that it is sufficient to limit the
analysis to one internal and one external validity index,
see Section 5.2. Next, comparing aggregation functions
by external base level is only meaningful if the base-level
internal validity is high. In any case, one should com-
pare against a ground truth, if available. For internal
validity, one should rely on base-level comparisons.

Random Effects: We strongly advise to validate against
randomly generated sequences to check whether quality
improvements through aggregation are spurious.

Base-Level Selection: Selection of the base aggregation
level should be with respect to a ground truth, if availa-
ble. Namely, all conclusions rest on the assumption that
clustering of the base level is the best possible clustering
from an application perspective. The lowest aggregati-
on level might not always be suited as the base level,
for instance when the curse of dimensionality affects the
data, or when the data contains a lot of noise.

6 Conclusions

The large volume of energy data challenges the scalabi-
lity of data-analysis methods. In this article, the focus is
on clustering. A common way to deal with that challen-
ge is data aggregation. However, it often is not known
how aggregation affects the quality of analysis results.

We have proposed an experimental design and different
evaluation methods to compare clustering results across
aggregation levels. Our experiments show that the ag-
gregation function and level can have a significant ef-
fect on clustering results. Based on our experimental
results, we have extracted guidelines to help researchers
and practitioners when selecting an aggregation scheme.
They can be useful to validate our findings with other
specific applications, such as data from residential areas,
or with activities of different length, such as machine-
startups.

The guidelines are already helpful with our use case
(cf. [14]). For instance, we now strive for ground-truth
data to improve the base-level selection. Next, for a pos-
sible extension of our smart meter installations, we now
deem it sufficient to estimate the effect of aggregation on
a subset of the initial experimental space. In this case,
we may focus on fixed-length sequences, mean aggregati-
on and the L1 metric. This is a reduction from 43092 to
378 instances, which will reduce the experimental bur-
den significantly.
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1 Appendix

1.1 Adaptation of Indices

Notation Let D = {x1, x2, . . . , xm} be a set of m time
series. A cluster Ci ⊆ D is a subset of all time series.
A clustering C partitions the data set D into k clusters
C1, . . . , Ck. The dissimilarity between two time series x
and x′ is d(x, x′).

Connectivity In the original version, high Connectivi-
ty indicates poor clustering quality [60]. We invert the
index such that higher values indicate good clustering
quality. As an intermediate step, we normalize Connecti-
vity to [0, 1] by dividing through the maximum Connec-
tivity possible. Connectivity obtains its maximum if for
all objects, the L nearest neighbors are assigned to a
different cluster. The inverted and normalized Connec-
tivity is:

i.Con(C) = 1− Con(C)

|D| ·
∑L

l=1
1
l

Davies-Bouldin Index The original Davies-Bouldin
Index [57] relies on dissimilarities between and to clu-
ster centroids. To make the index applicable to non-
representative-based algorithms, we use average-based
instead of centroid-based dissimilarities. The average
intra-cluster dissimilarity of a cluster Ci is:

δavgintra(Ci) =
1

|Ci| · (|Ci| − 1)
·

∑
x,x′∈Ci, x 6=x′

d(x, x′) (1)

The average inter-cluster dissimilarity between two clu-
sters Ci and Cj is:

δavginter (Ci, Cj) =
1

|Ci| · |Cj |
·

∑
x∈Ci,x′∈Cj

d(x, x′) (2)

We also invert the summands of the original Davies-
Bouldin definition such that higher index values indicate
good clustering quality. Our generalized and inverted
version of the Davies-Bouldin Index is:

i.D-B(C) =
1

k
·
∑
Ci∈C

min
Cj∈C, i6=j

{
δavginter (Ci, Cj)

δavgintra(Ci) + δavgintra(Cj)

}

Dunn Index The original Dunn Index [58] is defined
as the ratio of the minimum dissimilarity between any
two objects in different clusters, and the maximum dissi-
milarity between any two objects belonging to the same
cluster. We use one of the generalized forms proposed
in [59] to make the index more stable and less prone to
outliers. With Equation 1 and Equation 2, the generali-
zed version of the Dunn Index is:

Dunn(C) =

min
Ci∈C, Cj∈C, i6=j

δavginter (Ci, Cj)

max
Ci∈C

δavgintra(Ci)

External Indices We apply the normalizations propo-
sed in [68]. We also invert the normalized van Dongen
measure by subtraction from 1 such that higher values
indicate good clustering quality.
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Table 4: Overview of clustering algorithms.

Algorithm Ref. Category Parameters

PAM [35] representative-based 2≤k≤10 with maximum Silhouette

AP [36] representative-based s(x, y) = −d(x, y)*,
s(x, x) = median

x,y
(s(x, y)),

max iterations = 1000, λ=0.9

DBSCAN [38] density-based minPts = 1,
ε = mean

x
(d1NN (x))*

Hier.avg [40] hierarchical average linkage, 2≤k≤10 with maxi-
mum Silhouette

Hier.comp [40] hierarchical complete linkage, 2≤k≤10 with maxi-
mum Silhouette

Hier.sin [40] hierarchical single linkage, 2≤k≤10 with maximum
Silhouette

Hier.ward [69] hierarchical Ward’s criterion, 2≤k≤10 with maxi-
mum Silhouette

* s(·, ·) = similarity, d(·, ·) = dissimilarity

Table 5: Overview of dissimilarity measures.

Diss. Ref. Category Parameters V*

CDM+a [47] complexity SAX alphabet size = 8, compressi-
on = gzip

X

DTW [42] elastic — Xb

DTW.CID [42,52] elastic +
complexity

— Xb

DTW.CORT [42,51] elastic +
lock-step

tuning parameter k = 2 X

DTW.Band [42] elastic Sakoe-Chiba window size = 10% Xc

ERP [45] elastic gap value g = 0 Xb

L1 lock-step — X

L2 lock-step — X

L2.CID [52] lock-step +
complexity

— X

L2.CORT [51] lock-step tuning parameter k = 2 X

Lmax lock-step — X

PDD [50] complexity embedding dimension m by entro-
py heuristic

Xd

SBD [46] elastic — X
* Applicable to sequences of variable length (yes/no).
a We modify the formula of CDM slightly to obtain a dissimilarity in [0, 1] instead of (0.5, 1)
b We additionally normalize the resulting dissimilarities to account for differences in length.
c Undefined if lengths of sequences differ too much and therefore not used.
d Undefined for sequences of length 1 and therefore not used.
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