
SONAR: Towards User-Centric Social Network Analysis and Visualization

Christian Hütter*, Björn-Oliver Hartmann*, Klemens Böhm*, Till Heistermann*,
Kevin-Simon Kohlmeyer*, Reno Reckling*, Martin Reiche* and David Soria Parra†

*Institute for Program Structures and Data Organization
Karlsruhe Institute of Technology, Germany

Email: christian.huetter@kit.edu

†MAYFLOWER GmbH
München, Germany

Email: david.soria_parra@mayflower.de

Abstract—Social network analysis (SNA) has attracted a lot
of attention over the past years. Existing tools for SNA do not
allow a user-centric analysis of the social neighborhood, i.e., the
subgraph of the user’s friends and friends of a friend. In this
paper, we introduce SONAR, an open source Web application
for user-centric SNA. Its extensible architecture and flexible
data model allows developers to embed SONAR directly into
social networking websites. A performance evaluation shows
that our application scales well with the number of users and
adds only minimal overhead to the SNA algorithms.

I. INTRODUCTION

In recent years, social networks (SN) have gained great
importance, which has spurred the research on social net-
work analysis (SNA). One important technique in SNA is
centrality measures (CM), which determine the importance
of the individuals within a network [1]. Each CM is designed
for a specific context and satisfies specific information needs.
In this paper, we consider the following application scenario:

A social networking service for business contacts wants
to gain a competitive advantage by allowing its users to
analyze their contact networks with techniques from SNA.
This lets users identify ‘central’ contacts which they might
want to intensify relations with. Since users have individual
information needs, they must be able to select different
analysis techniques. This results in the usage of different
CM. To address many users, the analysis and visualization
must be embedded into the social networking website.

Regarding the Web-based analysis and visualization of
SN, the following problems arise: (𝑃1) The state-of-the-art
of SNA is under constant development. So far, dozens of
CM have been proposed [1], and we can expect more in
the future. Thus, the architecture of SNA tools has to be
extensible to allow the addition of novel CM. (𝑃2) Users
have different analysis needs than network analysts. Analysts
typically examine the network as a whole. In contrast, users
are interested in their social neighborhood, i.e., the subgraph
of nodes that are only a few hops away from them. Today,
no major SN service supports user-centric analysis.

Answering these problems is difficult because of the
following technical challenges: (𝐶1) SN typically are very
large and SN services have to serve many requests. Thus,
SNA tools must be scalable. (𝐶2) The underlying data
models vary between the services. Thus, the internal data

model of the tool has to be flexible. (𝐶3) Dedicated tools
are hard to deploy to SN services. Most existing tools for
SNA are standalone desktop applications [2]. A Web-based
analysis and visualization tool requires a complete redesign
of the software.

We meet these problems and challenges by introducing
SONAR, a Web-based tool for SNA. SONAR has an exten-
sible architecture by providing a plug-in API. While SONAR
already offers a set of commonly used CM, the plug-in
API allows developers to add new CM on the fly. SONAR
features a user-centric view that allows each user to analyze
his individual SN. To cope with the difficulties of large net-
works, i.e., expensive computations, SONAR computes the
CM on dedicated servers. The client Web browser visualizes
the results of the analysis. SONAR provides a flexible data
model which handles arbitrary relational representations of
the data. We achieve this flexibility by a configurable meta-
model for the data. Our Web-based architecture allows social
networking services to embed SONAR directly into their
websites.

In this paper, we present the architecture of SONAR as
well as a performance evaluation. We have developed an
operational implementation which can be deployed to any
Java Servlet container. SONAR is freely available under the
GPL license. The source code as well as a demo are available
on the project website http://projectsonar.org/. The results of
the evaluation show that our application scales well with the
number of users and adds only minimal overhead to the CM
computation.

II. RELATED WORK

SNA models social relationships between individuals as a
graph. Nodes represent the individuals, and edges represent
relationships between the individuals. The centrality of a
node describes its importance relative to other nodes within
the network. Research has proposed many CM that can be
used to gain knowledge of the network structure. For lack
of space, we limit this section to a short overview and refer
to the standard text by Wasserman and Faust [1] for more
details.

Brandes and Erlebach [3] distinguish three categories
of CM: local, distance-based, and eigenvector-based. Local
measures such as In- and Outdegree take into account only

http://dbis.ipd.kit.edu/
http://www.mayflower.de/
http://projectsonar.org/


direct neighbors of a node. Distance-based measures such
as Betweenness [4] and Closeness [5] compute the shortest
paths between all nodes. In eigenvector-based measures
such as Google’s PageRank [6], nodes may ‘pass’ their
score to their neighbors. While local measures have linear
computational complexity, eigenvector-based measures have
quadratic complexity and distance-based measures even have
cubic complexity. This is challenging for SNA which is
typically applied to large graphs.

As SNA is obtaining more and more attention, developers
have created a multitude of software tools, both free and
commercial. Huisman and Van Duijn [2] have compiled an
overview of the most important applications. Two popular
research tools are UCINET [7], which is quite comprehen-
sive, and Pajek [8], which focuses on the visualization of
large data. NetMiner [9], a commercial tool, is specialized
on visual analysis. However, all of these applications are
desktop-based. The only other Web-based tool we are aware
of is NetVis [10], which is specialized on the visual explo-
ration of online surveys. In contrast, SONAR focuses on the
user-centric analysis and visualization of SN services.

III. REQUIREMENTS

Considering the application scenario from the introduc-
tion, there are functional and technical requirements which
must be fulfilled. From problems 𝑃1 and 𝑃2, the following
functional requirements arise:

𝑅𝐸 Extensibility: The techniques for SNA are improved
continually, and new CM keep coming up. Thus, the ap-
plication must allow both the modification of the CM
implemented and the addition of novel CM.

𝑅𝑈 User Centricity: Users might only be interested in
their social neighborhood. Further, users have individual
information needs and want to specify which CM are used
for the analysis. Hence, the application must support user
centricity by letting users make customized analyses based
on their social neighborhood.

Challenges 𝐶1 to 𝐶3 lead to the following technical
requirements:

𝑅𝑆 Scalability: Scalability has two aspects: (1) Large sets
of data require a tool that adds only minimal overhead to
the calculation of the CM to be visualized. (2) Users might
not be able to perform the analysis on their machines due
to lack of resources. Thus, computation and visualization
should be separated.

𝑅𝐹 Flexible Data Model: Different SN sites have differ-
ent data models. To be suitable for multiple environments,
the application must allow a mapping of the given data
model to its internal representation of the SN.

𝑅𝐼 Integrability: In order to make SONAR accessible for
many users, SN services must be able to embed SONAR
directly into their websites.

Figure 1. User interface of SONAR showing a user-centric graph

IV. SONAR

In this section, we explain how SONAR meets the re-
quirements and describe its architecture. Figure 1 shows a
graph resulting from the following use case:

User Martin wants to analyze his contacts by using
the measures Indegree and Betweenness. He specifies that
Indegree is visualized as size of the nodes and Betweenness
as distance to the center of the graph. The analysis should
consider frame 𝑡 = [52, 56] and 2 hops of the network.

A. Features

Plug-in API: In order to fulfill 𝑅𝐸 , we have developed
a plug-in API which simplifies the addition of new CM.
Minimal knowledge of the inner workings of SONAR is
needed to write new CM. A developer only has to implement
the actual algorithm. By inheriting SONAR’s base plug-in
class, the CM has access to the graph representing the SN.
The results of the CM are returned as annotations of the
edges or nodes. As soon as the new CM class is accessible to
the Java classloader, SONAR deploys it on the fly. SONAR
runs on a Java Servlet container, so CM can be written in
Java as well as in Java-based functional languages like Scala
or Clojure. We have included a set of commonly used CM
plug-ins into SONAR: In- and Outdegree, Betweenness [4],
Closeness [5] and PageRank [6].

User-Centric View: SONAR features two different views:
(1) Network analysts are able to calculate CM based on the
global graph, i.e., the entire SN consisting of all users and all
relationships. They can combine different CM by specifying
how the individual measures are visualized as color, size or
distance of the nodes and edges. To handle large graphs,
analysts can also specify the time frame of their analysis
as well as a number 𝑛 of nodes to be displayed. Then,
the CM calculation takes into account nodes and edges that
existed within the time frame, and displays only the 𝑛 most
central nodes. (2) What we introduce as User-Centric View
is the ability to limit the analysis to the social neighborhood
of a single user. Users define their social neighborhood
by specifying the number of hops they want to analyze,
i.e., their friends (1 hop), also the friends of their friends
(2 hops), and so on. Except for the limited graph, users have



the same analysis features as analysts. SONAR also supports
the exploration of the network by displaying information
about each node and edge (see Figure 1). In our example,
user foobar has a Betweenness of 18.5 and an Indegree of
3.0. The user-centric view fulfills 𝑅𝑈 , and we believe that
it motivates further engagement of the users in the platform.

Caching and Load Balancing: To handle large graphs and
to serve many requests, SONAR has been developed with
scalability aspects in mind. SONAR features the caching of
the network graph as well as of the centrality calculation.
SONAR executes costly calculations on dedicated servers,
while all visualizations are done by the clients using a
JavaScript-based rendering approach. Since centrality calcu-
lation in SONAR is stateless, it is possible to set up a load
balancer which distributes the requests among the available
servers. The caching and load balancing satisfy 𝑅𝑆 .

Flexible Data Model: SONAR features a directed multi-
graph with annotatable nodes and edges as a universal repre-
sentation of the SN. We decided to separate the annotations
of nodes and edges from the actual structure of the graph.
This allows each node and edge to have several annota-
tions (i.e., centrality values), which the individual plug-ins
compute. We assume that SN services store their graphs
in a relational database management system. An important
design decision of ours is to use an object-relational mapping
(ORM) between the relational graph database and SONAR’s
multigraph. We chose Hibernate as ORM library because it
enables configuring the database mapping via XML files.
This lets us support arbitrary relational representations of
SN and thus conform to 𝑅𝐹 .

Customizability: The flexible data model and the Java-
Script GUI provides easy customizability and thus allows
embedding SONAR into existing Web applications. Further,
SONAR is open source software: If necessary, developers
can adjust every component to conform to an existing user
interface. We conclude that SONAR meets 𝑅𝐼 .

B. Architecture

An important design decision has been to implement
SONAR as Web application using the Google Web Toolkit
(GWT). We chose GWT because it provides a power-
ful infrastructure for high performance Web applications.
As illustrated in Figure 2, the architecture of SONAR is
split into three parts resembling the Model-View-Presenter
(MVP) [11] design pattern. We favor MVP over the classic
Model-View-Controller because it features a strong separa-
tion between the data model and calculation logic on one
hand and the user interface on the other.

Model (Server): The model contains the data to be
displayed in the user interface. The server keeps track of all
queries, caches incoming requests and responses, communi-
cates with the database and loads and runs the CM plug-ins.
The server processes requests as follows: (1) The Remote
Procedure Call (RPC) system reacts to client requests by

Server Client

Model

Graph

CM Plug-Ins

View

Calculation

Presenter
JSXGraph

GraphDrawer

GUI

GraphConverter

RPC

DB Interface

DB Browser

Event Bus

GUI Controller

Figure 2. Software architecture of SONAR

dispatching the requests to the centrality calculation unit.
(2) The server fetches the specified subgraph 𝑆 using the
database interface. In our use case, the server traverses the
graph starting with Martin. All nodes 𝑁 that are at most
2 hops away from Martin and that existed during time
frame 𝑡 are part of subgraph 𝑆. All edges between nodes 𝑁
from the original graph that existed during time frame 𝑡 are
part of 𝑆 as well. (3) The CM Plug-in System loads the
specified plug-ins, i.e., Betweenness and Indegree, in our
use case. (4) The server provides access to subgraph 𝑆 to
all plug-ins, which calculate the CM. (5) The RPC system
returns the annotated subgraph to the client.

Presenter (Client): The presenter retrieves data from the
model and prepares it for the view component. It runs as
JavaScript executable within the user’s Web browser. The
RPC Handler submits asynchronous RPC requests to the
server. It receives the annotated subgraph from the server and
forwards it to the Graph Converter. Events are dispatched
through a central Event Bus, implementing the author-
subscriber design pattern. We decided to use an event bus
to avoid dependencies between the modules and to decouple
the layers. This separation of duties enables easy unit testing
of the presenter and the view. To abstract from asynchronous
server requests, all inter-module communication is done via
the event bus. The GraphConverter transforms the subgraph
into a visualizable structure. This data structure contains
specific information needed to display the network graph,
such as the position of each node, its size and its color. As
this information is bound to the specific implementation of
the client, it is kept away from the server. In our use case,
the Graph Converter maps the Indegree of a node to its size
and the Betweenness of a node to its distance to the center
of the graph. The GUI Controller module coordinates the
functionality of the client.

View (Client): The view displays data from the presenter
and forwards user events to it. It is responsible for displaying
GUI elements and for drawing the subgraph within the user’s
Web browser. We decided to encapsulate the GraphDrawer
module to make it interchangeable, enabling different kinds
of graph renderings. As graph renderer we chose JSXGraph,
which provides a powerful API combined with an excellent
rendering performance.

http://www.hibernate.org/
http://code.google.com/webtoolkit/
http://jsxgraph.org


4

8

16

32

64

20 50 100 200

A
ve

ra
ge

 r
u

n
 t

im
e

 [
m

s]

Number of concurrent users

Available Centralities
User List
Global Graph
User-centric Graph

Figure 3. Results of the performance evaluation

V. EVALUATION

As a Web application that can be embedded into existing
social networking sites, SONAR has to serve requests to a
large number of users at the same time. It is critical to ensure
short response times of the application as well as a high level
of scalability. We have used common performance testing
techniques to evaluate the runtime behavior and scalability
of SONAR under heavy load.

As server we have used a Sun Microsystem M 24 Work-
station with an Intel Quad Core 3 GHz processor, 12 MB
L2 cache and 4 GB RAM. To generate the load, we have
used two ordinary computers connected to the server via
1 GBit switched Ethernet. We have simulated 20 to 200
concurrent users and their click path through the application
using Apache JMeter. We have added the users one by one
before we recorded the results so that both our application
and the server were able to fill up their caches. We have
repeated each test run 30 times to exclude random effects.

The performance test simulated a user who gets (1) the
list of available CM as well as (2) the list of users, and
calculates two different graphs, (3) a global graph with the
30 most central nodes according to the Indegree measure as
well as (4) a user-centric graph representing the friends and
friends of a friend (2 hops) of a random user according to
the PageRank measure.

Figure 3 shows the average run times of the test cases. The
run times increase linearly from 5 ms to 60 ms. We notice
that SONAR scales well with the number of users. The
server reached its capacity at 200 concurrent users. The cost
for getting the available CM and users (i.e., the overhead of
our application) is dominated by the cost for calculating the
CM on the graphs. Thus, we conclude that our application
adds only minimal overhead to the computation of the CM.

VI. CONCLUSION

We believe that a user-centric analysis and visualization is
a promising feature and a competitive advantage for social

networking services. Still, a tool that enables a Web-based
analysis and visualization has to overcome some problems
and challenges. Research in SNA leads to the emergence of
novel CM. Thus, CM extensibility is essential. Since CM
typically involve complex computations, CM computation
and visualization should be separated. Different data models
as well as the evolution of data models call for flexible data
handling. To support different kinds of online platforms,
the tool has to be customizable and in line with Internet
standards such as JavaScript.

To overcome these challenges, we propose a novel ap-
proach for SNA. Our application – dubbed SONAR – is
entirely Web-based, freely available, and can directly be
embedded into existing social networking sites. We use a
flexible data model that can be adapted to different relational
representations without touching the application’s code. The
architecture is easy to extend by means of a plug-in API
for CM. In a performance analysis, we have shown the
scalability of SONAR.

We will use our application to conduct SN field studies
with immediate network analysis and visualization. There-
fore, we are working on an adapter for the OpenSocial REST
protocol to query the friends and friends of a friend of the
users. This allows us to embed SONAR as social application
into OpenSocial networks such as MySpace or hi5.

REFERENCES

[1] S. Wassermann and K. Faust, Social Network Analysis: Meth-
ods and Applications. Cambridge University Press, 1994.

[2] M. Huisman and M. A. J. Van Duijn, “Software for Social
Network Analysis,” in Models and Methods in Social Network
Analysis. Cambridge University Press, 2005.

[3] U. Brandes and T. Erlebach, Network Analysis: Methodolog-
ical Foundations. Springer, 2005.

[4] L. C. Freeman, “A Set of Measures of Centrality Based on
Betweenness,” Sociometry, 1977.

[5] G. Sabidussi, “The centrality index of a graph,” Psychome-
trika, 1966.

[6] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageR-
ank Citation Ranking: Bringing Order to the Web,” Stanford
University, Technical Report, 1998.

[7] S. Borgatti, M. Everett, and L. Freeman, “UCINET: Software
for Social Network Analysis,” Analytic Technologies, 2002.

[8] V. Batagelj and A. Mrvar, “Pajek: Package for Large Net-
works,” University of Ljubljana, 2003.

[9] Cyram, “NetMiner II,” Cyram Co., Ltd, 2003.

[10] J. N. Cummings, “NetVis Module - Dynamic Visualization
of Social Networks,” MIT, 2003.

[11] M. Potel, “MVP: Model-View-Presenter. The Taligent Pro-
gramming Model for C++ and Java,” Taligent, Inc., Tech.
Rep., 1996.

http://jakarta.apache.org/jmeter/
http://www.myspace.com/
http://hi5.com/

	Introduction
	Related Work
	Requirements
	SONAR
	Features
	Architecture

	Evaluation
	Conclusion
	References

