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Abstract. Energy-efficient query dissemination plays an important role
for the lifetime of sensor networks. In this work, we consider probabilis-
tic flooding for query dissemination and develop an analytical framework
which enables the base station to predict the energy consumed and the
nodes reached according to the rebroadcast probability. Furthermore, we
devise a topology discovery protocol that collects the structural infor-
mation required for the framework. Our analysis shows that the energy
savings exceed the energy spent to obtain the required information after
a small number of query disseminations in realistic settings. We verified
our results both with simulations and experiments using the SUN Spot
nodes.

1 Introduction

Wireless sensor networks have been established in many important applica-
tion areas from ambient intelligence over scientific research to industrial uses.
Such sensor networks usually consist of numerous battery-powered nodes [3,2]
equipped with sensing devices, low-power wireless communication and limited
computational resources. In order to fulfill complex measurement tasks, the
sensor-nodes use self-organization techniques to form ad-hoc networks where
the nodes (1) forward queries from a central base station, (2) measure sensor
values, (3) do in-network query processing and (4) return the results to the base
station. In this paper, we focus on the query dissemination phase, i.e., the first
step of query processing in sensor networks.

One of the most important optimization goals in sensor networks is to maxi-
mize their lifetime by minimizing the energy spent for communication. However,
saving communication effort obviously may have a negative effect on quality-of-
service parameters of the query. For example, if energy is saved by querying only
50% of the nodes, the accuracy of the query degrades. How much it degrades de-
pends on many factors and is not very well understood. Quantifying this tradeoff
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between communication strategy and service quality for query dissemination is
the topic of this paper.

Related Work. While numerous sophisticated in-network query processing tech-
niques have been developed [11,12,18,19], they mostly focus on operator process-
ing, optimization and aggregation techniques. The dissemination of the query
from the base station into the network has either been disregarded or is done
via simple flooding [8,14]. It is well known that flooding wastes energy. For ex-
ample, analyses [13] have shown that a rebroadcast increases the area where
the message is received by 61% at most, dropping to ≈ 20% for average net-
works. Therefore, most of the rebroadcasts will not result in additional nodes
receiving the query. Furthermore, most nodes receive the query more than once,
which results in additional energy consumption because receiving messages also
consumes energy.

To avoid the disadvantages of simple flooding, several mechanisms for broad-
casting in wireless networks have been proposed (see [17] for an overview). Gen-
erally, these approaches try to control which nodes rebroadcast a message in
order to keep the number of nodes that receive the query more than once as
small as possible. For example, in counter-based flooding schemes [13,17], if a
node hears k or more of its neighbors rebroadcast the message, it suppresses
its own transmission. In neighbor knowledge broadcasting schemes [10,15], nodes
use local topology information to determine which nodes must rebroadcast a
message. The advantage of these approaches is that the overlap of recipients
can be reduced in a controlled manner, but this comes at the significant cost
of acquiring and updating the neighborhood information. Furthermore, [16] has
shown that finding a minimal set of rebroadcasting nodes can be reduced to the
Dominating Set Problem, which is NP-complete [6].

A very promising approach are probabilistic or epidemic broadcast algorithms
[13,5] where every node forwards a message with a predefined probability p.
Compared to schemes using neighborhood knowledge, these methods do not in-
duce the overhead of acquiring, storing and updating neighborhood knowledge.
However, these schemes require information about the network in order to de-
termine an optimal p. If p is set too high, the disadvantages of simple flooding
arise, and if p is too low, the probability that all nodes receive the broadcast
message decreases. In this paper we will focus on probabilistic flooding.

Contributions. In this paper, we study query dissemination techniques that can
be seen as a combination between neighbor knowledge broadcasting and prob-
abilistic flooding. Using extensive simulations we explore the tradeoff between
energy, reachability and structural information required. We show that using
very moderate structural information on the network it is possible to predict
the number of nodes reached according to a certain broadcast probability p.
Furthermore, the number of transmissions can be estimated in advance.

In particular, we make the following contributions:

1. We introduce an analytical framework to estimate the reachability and the
number of transmissions in dependence to the rebroadcast probability p. Our
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framework bases on connectivity information and a histogram containing the
number of nodes reached with each rebroadcast, starting at the base station.

2. We describe a lightweight distributed topology discovery protocol which ob-
tains the required information. Our analysis shows that gathering structural
information and computing an optimal p saves energy after a small number
of probabilistic floodings in realistic settings.

3. We conducted simulations with up to 425 nodes to verify the results of our
framework for large numbers of nodes. Furthermore, we tested our findings
on a testbed consisting of 17 Sun Spot sensor nodes.

Outline. In Section 2 we present a framework which estimates the number of
nodes reached and energy spent by probabilistic flooding for a particular re-
broadcast probability p. The framework depends on topological information. In
Section 3 we show how to gather the required information efficiently. In Section 4
we present simulation and experimental results, and we conclude in Section 5.

2 Reachability and Energy Consumption Prediction for
Query Dissemination

In this work we focus on probabilistic flooding where each node rebroadcasts
queries with a fixed probability p. Parameter p allows to fine-tune the tradeoff
between energy spent for query dissemination and the number of nodes reached.
Moreover, in most (densely connected) sensor networks there exists a p0 < 1
such that all nodes are reached by the base station. Thus, if the rebroadcast
probability p is larger than p0, more queries are rebroadcast than necessary,
and the query dissemination can save energy by using p0. On the other hand, if
p < p0, the query reaches only a fraction of nodes. This can be useful to trade
energy with result quality.

Our goal is to develop a framework to predict for every p the number of
reached nodes R and the energy E consumed by the query dissemination pro-
cess. Knowing the dependencies between p, R and E allows the base station to
estimate how many nodes can be reached using a fixed amount of energy, or
at which p the reachability cannot be improved any more (at least, for reason-
able energy cost). Obviously, energy usage prediction depends on reachability
prediction, which in turn depends on the network topology. The more the base
station knows about network topology, the more precise prediction can be made.
On the other hand, gathering information about network topology consumes en-
ergy. Thus, we are interested in making predictions using a set of topological
information which can be obtained without exhausting potential energy savings
due to deriving an optimal p.

In the following we will present our framework for predicting reachability R(p)
and energy consumption E(p) according to given topological information and a
rebroadcast probability p. More specifically, R(p) estimates the number of nodes
reached, and E(p) provides an estimate for the number of sent and received
messages, which is proportional to the energy consumed.
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2.1 Assumptions and Notations

Our estimation of the reachability bases on two assumptions:

– The sensor network is in a stable state while flooding the query, i.e., the num-
ber of nodes in each hop set does not change significantly between obtaining
topology information and flooding.

– A node is either reached by a node that is one hop closer to the base station,
or has the same hop distance to the base station.

A flooding disperses through a topology in multiple steps, beginning at the base
station. The nodes which receive the query directly from the base station (1 hop)
rebroadcast it, so that the query reaches the nodes two hops away from the base
station in the next step. The procedure recurs until each node has forwarded the
message once.

If a node A receives a previously unknown flooding message from a node B,
we say that A is reached by B in this particular flooding instance. In addition,
we will denote all nodes reached with h hops as hop set H [h].

2.2 Topological Information

Our analytical framework depends on the following topological information (Sec-
tion 3 will introduce a protocol that collects it efficiently):

– histogram[h]: stores the number of nodes reached at each hop from the base
station, i.e., ∀i ∈ {1 · · ·n} : histogram[i] = |H [i]|.

– connectivity[h] stores the average number of connections from one node in
hop set H [h] to a node from H [h − 1].

– interconnectivity[h] stores the average number of connections between the
nodes from the same hop set, i.e., the connections a node in H [h] has to
another node in H [h].

Figure 1 illustrates this with an example. In this figure the hop set H [i] consists
of 3 nodes, the previous hop set H [i − 1] consists of 2 nodes. Edges connect the
nodes that can hear each other’s broadcast. Figure 2 shows the histogram and
(inter-)connectivity for the example in Figure 1.

2.3 Reachability Prediction

Let Rdirect(h, p) be the number of nodes in hop set h which received their flooding
message directly from a node in the hop set H [h−1], and let Rindirect(h, p) denote
the number of nodes which received the flooded message from a node in the same
hop set H [h]. Then the number of nodes reached at the h-th hop for a specific
rebroadcast probability p can be computed as follows:

R(h, p) = min(Rdirect(h, p) + Rindirect(h, p), histogram[h]) (1)

The total reachability for some p is the sum over all hops:

R(p) =
h∑

R(h, p) (2)



Query Dissemination with Predictable Reachability and Energy Usage 283

Fig. 1. Example for hop sets and their (Inter-)Connectivity
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Fig. 2. Histogram, Connectivity and Interconnectivity in Figure 1

Note that Rdirect(h, p) + Rindirect(h, p) can be larger than the actual number
of nodes in the hop set H [h], because rebroadcast messages can be received
from nodes which might have received the message before. Thus the minimum
function ensures that at most the actual number of nodes in the hop set is
returned. Rdirect(h, p) can be computed recursively: histogram[h−1] nodes could
forward a message directly to a node in H [h], but only k = p ∗ R(h − 1, p) of
histogram[h − 1] nodes have received the message in the previous step.

Let P (event) denote the probability for a certain event. Now we need the
probability for the event “A node from hop set H [h] receives its message from a
node from hop set H [h − 1]” The probability for this event is:

P (reached directly) = 1 − P (not reached directly) (3)

The counter-event “not reached directly” can be obtained by considering the
nodes which did not receive the message in the previous step. Thus, the problem
corresponds to an urn model where k black and n − k red balls are placed
in an urn, and P (not reached directly) means to draw red balls only. Let l =
connectivity[h] be the number of connections a node in H [h] has to the previous
hop set H [h − 1] on average. The probability P (not reached directly) can be
computed as follows:

P (not reached directly) =
�connectivity[h]�−1∏

l=0

n − l − k

n − l
(4)

After having obtained this probability, we can calculate the number of nodes
from hop set H [h] receiving the flooding directly by multiplying the probability
for the opposite case with the number of nodes in the hop set:

Rdirect(h, p) = P (reached directly) ∗ histogram[h] (5)
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The remaining nodes in hop set H [h] can still be reached indirectly, i.e., by a
subsequent broadcast by nodes from the same hop set. To calculate the number of
nodes reached indirectly, we assume that the nodes which received the message
are equally distributed over the hop set, i.e., if k from n nodes are directly
reached, each node in the hop set obtained the message with probability k

n . Our
experimental evaluation will show that this simplification is legitimate, i.e, it is
not necessary to collect topological information in more detail. We calculate the
number of neighbors of a node which directly received the flooding message and
then rebroadcast it as:

ndr = P (reached directly) ∗ interconnectivity[h] ∗ p (6)

Finally, we estimate the number of nodes which received the flooding message
indirectly:

Rindirect(h, p) = ndr ∗ histogram[h]. (7)

2.4 Energy Consumption Prediction

After having estimated the number of nodes reached, we will estimate the energy
required by probabilistic flooding. Therefore, we distinguish between sent and
received messages. The number of messages sent in hop set H [h] is as follows:

msgssent(h, p) = R(h, p) ∗ p (8)

Next, we estimate the number of messages received from the nodes of the previ-
ous hop:

Rec1(h, p) = R(h − 1, p) ∗ p ∗ connectivity[h] ∗ histogram[h]
histogram[h − 1]

(9)

connectivity[h]∗histogram[h]
histogram[h−1] calculates the average number of outgoing links from

hop set H [h − 1] to H [h]. The number of all “receive” events induced at nodes
of the hop set H [h] and hop set H [h− 1] by the rebroadcast of reached nodes of
hop set H [h] can be calculated as follows:

Rec2(h, p) = R(h, p) ∗ p ∗ (connectivity[h] + interconnectivity[h]) (10)

Finally, the total number of received messages can be estimated as

msgsreceived(h, p) = Rec1(h, p) + Rec2(h, p) (11)

The total energy cost of the probabilistic flooding is calculated by vector mul-
tiplication of the tuple of sent and received messages with the vector of energy
costs for sending and receiving and adding them up for every hop set:

E(p) =
∑

h

(msgssent, msgsreceived)(h,p) ∗
(

energyPerSend
energyPerReceive

)
(12)
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3 Topology Discovery Protocol

We now describe the light-weight topology discovery protocol used in our exper-
iments. It is an adaption of the well-known echo algorithm by Chang [4], i.e., it
is structured in two waves: The first expansion wave of messages is flooded from
the base station and is used to explore the network. When this waves reaches the
borders of the network, a second contraction wave flows back to the base station,
aggregating topology information / histograms on its way. The prediction for-
mulas presented in Section 2 use these histograms to determine the parameter p
for probabilistic flooding. Due to space limitations, we only present the general
idea of the protocol here.

The base station initiates the topology discovery by broadcasting a Topology
Discovery Message (TDReq), thus starting the expansion wave.

Expansion Wave. When a node receives a TDReq for the first time, the receiver
must accomplish 4 steps:

1. Create an empty histogram data structure as described in Section 2.2 and
mark the sender of the TDReq as its parent node. The receiver also extracts
the hop number from the TDReq and stores it.

2. Start a timeout to ensure that the receiver does not wait forever for potential
children.

3. Broadcast own request message with the receiver as sender, an incremented
hop number, and parent id of the receiver.

4. Wait until the afore mentioned timeout expires. Note that the timeout should
be sufficiently long to allow the children of the node to receive, process
and rebroadcast their own TDReq messages. When the timeout expires, the
contraction phase starts.

If a TDReq is received, then it could have three different originators. It could
either be (1) a sibling of the node’s parent, (2) a sibling of the node itself, or (3)
a node in the subsequent hop set. Note that all three cases can be distinguished
from the information contained in the TDReq. For example, in case (3) the request
will contain the id of the receiver node. Depending on the case, the connectivity
or inter-connectivity value in the histogram data structure is modified.

Contraction Wave. While a node waits for the timeout to expire, all incoming
Topology Discovery Responses are recorded into the histogram data structure.
On leaf nodes, the timeout expires without any incoming response messages, thus
leaf nodes create response messages containing their hop number and appropriate
values for connectivity and inter-connectivity1. Every leaf node sends such a
response message to its parent and thereby starts the contraction wave.

1 The average values for connectivity / inter-connectivity are stored as tuples to allow
aggregation: The first value contains the sum of connections and the second stands
for the number of nodes which have aggregated these connections. This allows the
aggregation at every node and avoids floating point numbers in messages.
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In case the node has children, the histogram lists of every response are aggre-
gated in a way that the position i of the resulting list contains the sum of the
histograms of the children. These aggregates histograms are always forwarded to
the parent node and eventually reach the base station. Based on these values, the
base station is able to predict reachability and energy consumption as described
in Section 2.

Energy Cost and Message Size of Topology Discovery Protocol. As
every node only broadcasts one Topology Discovery Request and only sends one
Topology Discovery Response, the energy costs per node can be estimated as
follows:

ENode = Esend(b1)+Esend(b2)+AverageNodeDegree∗(Ercv(b1)+Ercv(b2)) (13)

The value b1 stands for the number of bytes in the Topology Discovery Request of
the node, b2 stands for the number of bytes in the Topology Discovery Response.

Later we calculate energy consumption of Topology Discovery Protocol for a
particular scenario and show after how many probabilistically flooded queries
the protocol pays off.

4 Evaluation

In this section we evaluate the prediction framework with different node setups
using simulations and a deployment of 17 Sun SPOT sensor nodes [2] in our
faculty building. We compare the predictions made by our framework with the
flooding of queries in simulated networks of up to 425 nodes and in the real
sensor network, showing the following:

1. For all simulated networks and the real sensor network, the accuracy of the
reachability prediction based on the topology information is sufficiently high.

2. Any inaccuracy related to the probabilistic flooding is clearly outweighed by
the amount of energy saved through decreased communication overhead.

Our framework produces stochastic results for the average case, i.e., it works well
for sufficiently dense networks or for large numbers of trials.Thus, we expect a
deviation between the predicted values and experimental results. Nevertheless,
our predictions can be successfully used for query optimization purposes, life-
time estimation or the computation of the rebroadcast probability with a small
additional safety margin.

4.1 Simulations

For the simulation we used a custom Karlsruhe Sensor Networking Simulator
which is interface-compatible to Sun SPOT sensor nodes, thus enabling us to
deploy the prediction framework as well as the topology discovery protocol in
both the simulated environment and the real deployment.
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Simulations Setup. We considered the following simulation scenarios: uniform
and Gaussian distributed nodes, a scale-free distributed scenario, and a real
world set up from the Intel Lab Website [1]. Due to space limit we only present
the results for the first two scenarios below.

Uniform node distribution. All topologies of this scenario distribute the sensor
nodes uniformly in a circular area around the centre where the base station is
located. The parameter of this scenario is the average number of neighbors of
every node. The radius of the simulation area is fixed, and the number of nodes
is adjusted accordingly to obtain the respective average node degree. We used
networks of node degrees 4, 8, 12 and 16, and generated for each node degree 40
different topologies. For each topology we ran 100 experiments.

Table 1. Average node degree in Uniform scenario and resulting amount of nodes

Average Node Degree Used Sensors

4 125
8 225
12 325
16 425

Gaussian node distribution. In this scenario all sensor nodes are distributed
using a Gaussian distribution over an area with a fixed radius of 30 units. The
coordinates of the nodes are taken from a Gaussian sampling with the centre of
the environment as mean and a standard deviation of 18 units. By choosing this
standard deviation most of the sensors are placed in the target area, only few
nodes were placed beyond. Most nodes are located close to the centre, and the
further away from the base station the lower the node density. This scenario has
the number of sensor nodes placed as parameter. In order to compare the results
from the uniform scenario with this scenario, we generated instances with the
same average node degrees for scenarios with the same number of nodes (see
Table 1). As in uniform scenario, for each of the four network sizes we generated
40 topologies and run 100 experiments per topology.

Reachability and Energy Consumption. For this series of experiments, we
assume a message payload size of 28 bytes for the query. According to an analysis
[9] of MICAz [3] sensor nodes the energy consumption Formulae 14 and 15 were
determined. Parameter b specifies the number of bytes sent/received.

EnergyForSending(b) = 0.185191mAs+(b−28byte)∗2.48461mAs∗10−5 (14)

EnergyForReceiving(b) = 0.042mAs+ (b− 28byte) ∗ 2.47915mAs∗ 10−5 (15)

The energy consumption was firstly measured for standard TinyOS [7]
message payload of 28 bytes, and then the energy consumption for sending (re-
ceiving) b additional bytes was determined. The results of evaluation of our
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(a) average node degree 4 (125 nodes) (b) average node degree 8 (225 nodes)

(c) average node degree 12 (325 nodes) (d) average node degree 16 (425 nodes)

Fig. 3. Comparison of simulated reachability/energy cost in uniform scenarios

reachability and energy consumption prediction framework are presented in Fig-
ure 3 for the uniform scenario, and in Figure 4 for the Gaussian scenario.

One can see that our framework works reasonably well in sufficiently dense
scenarios. It systematically underestimates reachability and energy consump-
tion, but it still allows to save a large amount of energy. For example, in Fig-
ure 3(b–d), although the full reachability is achieved with smaller rebroadcast
probabilities than predicted, flooding with the predicted probability still allows
to save from 10 (b) to 37 (d) percent of energy. Moreover, reachability and
energy consumption predictions for the Gaussian scenario follow the simulated
results so closely that they allow very accurate determination of the rebroadcast
probability needed to reach a particular amount of nodes. Note that in Gaussian
scenarios, some nodes are placed so far from the base station that the network
becomes disconnected.

Topology Discovery and Reachability Prediction Payoff. Assuming a
uniform scenario with 425 nodes, average node degree 16 and a reachability
of about 99%, up to 150 mAs can be saved using our prediction framework
(see Figure 3(d)). Using rebroadcast probability p = 0.6 only approximately
220mAs are consumed in comparison to the simple flooding which consumes
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(a) 125 nodes (b) 225 nodes

(c) 325 nodes (d) 425 nodes

Fig. 4. Comparison of simulated reachability/energy cost in Gauss scenarios

370mAs. However, some energy was previously spent for Topology Discovery
Protocol. Using Formula 13 for energy consumption of the Topology Discovery
Protocol, and Formulas 14 and 15 for energy consumption of MICAz nodes,
we estimated that in the above scenario, the Topology Discovery Protocol has
approximate costs of 722mAs (we omit the computations due to space limit).
Thus, the Topology Discovery Protocol would have paid off after 5 probabilistic
query floodings.

4.2 Sun SPOT Deployment

After having provided simulation results, we tested our framework together with
the topology discovery protocol in real testbed. Figure 5 shows a map of 17 Sun
SPOT sensor nodes (circles) and a base station (square) that are deployed in
the offices at the Institute for Programming Structures and Data Organization
(IPD) of the University of Karlsruhe. On each node we counted incoming and
outgoing messages, as well as the sizes of the messages in bytes. These values
were stored in the memory of each node and collected after the experiments were
finished.
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To assess the quality of the flooding prediction, the following experiment was
repeated 10 times:

Fig. 5. Map of 17 Sun
SPOTs and a Base Station
deployed at the IPD

1. A simple flooding of a query was executed to de-
termine the number of reached nodes for simple
flooding.

2. Using the topology discovery protocol, the in-
formation required for the prediction was col-
lected.

3. Using the topology information, the parameter
p for the probabilistic flooding was computed
with the aim of disseminating a query to all
nodes of the network. Thus, we tried to deter-
mine the lowest p for which a reachability of
100% was predicted.

4. Based on the computed value of p, a query mes-
sage was flooded into the network using proba-
bilistic flooding.

Despite minor changes between the different ex-
periments within the topology information, which
can be attributed to environmental influences (e.g.
open/closed doors in the used offices), the topol-
ogy information was consistent throughout our
experiments.

Table 2 shows the average results for the 10 ex-
periments: Generally, the accuracy of the prediction
is sufficient, even though there is a small difference
between the 16.3 nodes reached by simple flood-
ing compared to the probabilistic flooding with 15.4
nodes reached on average.

Table 2 shows messages required by the simple
and the probabilistic flooding: The number of mes-
sages sent and received when the probabilistic flood-
ing is used, is by far lower than the amount used
by the simple flooding. Thus the amount of saved
energy due to reduced communication clearly out-
weighs the small inaccuracy of the prediction.

Table 2. Result of the flooding experiment using the Sun SPOT deployment

Flooding Avg. Reached Nodes (of 17) Messages Sent Messages Received

Simple 16.3 16.3 63.8

Probabilistic 15.4 10.2 34
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5 Conclusions and Future Work

It is challenging to realize energy-efficient query dissemination with predictable
reachability and energy usage in sensor networks: Unnecessary transmissions
should be generally avoided in order to save energy. On the other hand, it re-
quires knowledge about the sensor network to find out which transmissions are
actually required, but obtaining these information comes with an additional
communication overhead.

In this paper we have used probabilistic flooding as a model to explore the
relations between (1) energy consumption of the query dissemination phase, (2)
the number of nodes reached and (3) the energy spent to gather structural in-
formation about the network which are required to parameterize probabilistic
flooding. In particular, we have introduced an analytical framework that enables
the base station to estimate the reachability and energy consumption of prob-
abilistic flooding according to based on connectivity information. Furthermore,
we have shown how to gather such information efficiently, and we have computed
the break-even between energy saved and energy spent to obtain structural in-
formation. Both experiments with a simulator and an implementation with a
testbed consisting of 17 SUN Spot nodes validate our findings.

As part of our future work we plan to consider “back links” in flooding,
and other query dissemination strategies. In addition, we are interested in the
relations between the energy spent for query dissemination and the accuracy of
the query result returned.
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