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Abstract— Realizing a Smart Grid without sacrificing the
privacy of consumers is a challenging problem. Data-centric
approaches like Pufferfish ensure privacy by transforming data
so that certain user-specified information, so-called secrets,
cannot be inferred. Deploying Pufferfish on smart-meter data
requires application-specific decisions, i.e., a general definition
of secrets in time series. We investigate how to perturb energy
consumption data in this manner, and we quantify the tradeoff
between privacy and utility.

I. INTRODUCTION

Designing a smart grid electricity-supply infrastructure is
an important issue. This is because it promises to reduce
CO2 emissions and to guarantee supply at affordable prices.
The smart grid initiative requires the installation of smart
meters in private households. These devices measure the
power consumption in short time intervals, e.g., every 15
minutes. Thus, they produce time series that contain the sum
of the energy consumption of all electrical devices active
during such a time interval. Various applications require
access to the this data. Think of demand-side management
or local energy markets [7], an efficient way of allocating
renewable energy. However, privacy regulations and indi-
vidual privacy preferences prevent arbitrary parties from
accessing smart-meter data. Such data contains personal
information [18, 3, 11, 6], e.g. on devices running and on
the presence of residents. Obligations such as the European
Directive 95/46/EC allow the disclosure of data only if it is
non-personalized or if the individuals have consented.

Any smart grid service must deal with the tradeoff be-
tween the usefulness of data disclosed and the privacy
of individuals. Which information actually is considered
private depends on the individual. Thus, processing time
series while protecting privacy requires privacy constraints
that one can define individually. Libraries of constraints
to are conceivable as well. The information to be hidden
is referred to as secrets. Potential secrets go well beyond
aggregated values from several households approaches such
as [2] have exclusively focused on so far. De-personalization
of such data (‘anonymization’) is not applicable in many
cases either: Work on re-identification [6] shows that it is
very difficult to remove all relationships to individuals from
smart-meter data while preserving utility, and use cases such
as demand-side management require data with identifiers.
Example 1: Bob is willing disclose his smart-meter data if
it does not contain certain information. Suppose that Bob has
a flow heater which starts when he begins showering, stops
when he finishes and does not consume power otherwise. To

keep the presentation simple, this heater will be our running
example. Bob wants to keep private when he is showering on
weekends and in the morning during weekdays. This defines
the secrets. An adversary should not be able to learn whether
the flow heater is starting or stopping between 8:00 and
11:00 on a weekday by inspecting the disclosed data. On
weekends, the data should be so noisy that inferring the time
when the heater is working is unlikely. To this end, one has
to know how the time series reflect the heater usage and
hide this on a weekday and detect when the heater starts
and stops on a weekend. Approaches such as differential
privacy applied on smart meter data [2] do not help with
this kind of secret, because they do not allow such a detailed
specification of the information to remain private. Finally, to
preserve utility the data should still contain information that
Bob does not explicitly want to hide. �

Individuals might allow the disclosure of their smart-
meter data if their privacy preferences are strictly respected.
Each individual should have the option to specify such
private information. The Pufferfish privacy framework [15]
guarantees that certain sensitive information is removed from
a data set. Pufferfish supports the definition of intuitively
understandable privacy requirements and their semantics,
and it also considers correlations within the data set.

Example 2: Let f(A), f(B), f(C) be smart-meter time
series of Alice, Bob and Carl’s household. f(B)[t] is the
total power consumption of Bob’s household at time slot t.
Differential privacy approaches [2, 22] publish the privacy-
enhanced sum at each time slot of the households consid-
ered, i.e., f(B)[t] + f(A)[t] + f(C)[t] + . . . : If there is not
any correlation of the consumptions of Bob, Alice and Carl,
an adversary cannot infer the actual consumption of one
of them. However, there also are correlations when looking
at each time series in isolation: Suppose that Alice, Bob
and Carl each have a flow heater (for the shower) and bath
lighting. f(B)1[t] is Bob’s flow heater consumption and
f(B)2[t] the one of the bath lighting. f(B)[t] is the sum
of all appliances in Bob’s household: f(B)[t] = f(B)1[t] +
f(B)2[t] + . . . . Privacy cannot be guaranteed in the same
way as for the sum of f(B)[t], f(A)[t] and f(C)[t]: The
flow heater and the bath lighting obviously have correlations
Differential Privacy does not deal with [14]. �

Pufferfish is an abstract framework that has received much
attention from many communities. However, (i) its deploy-
ment to smart-meter data requires challenging conceptual
work, and (ii) a quantitative evaluation does not exist, i.e.,



it remains unclear which price one has to pay for Pufferfish
privacy guarantees. The challenges are to represent private
information in smart-meter data, to perturb the aggregated
data according to Pufferfish guarantees, to ensure generality
and to evaluate utility and coverage of privacy requirements.
Regarding (ii), we examine the tradeoff between privacy and
utility in a smart-grid scenario.

A run of a specific device results in a sequence of power-
consumption values added to the total consumption. Such
sequences corresponding to runs of the same device may
vary in the actual values. This is because (a) appliances
have a slightly different consumption each time they run, and
(b) the smart meter may measure their consumption together
with the ones of other devices. A first challenge is to find
an abstracted representation of time series flexible enough to
cover this uncertainty and specific enough to have a meaning
for the secret in question. We call a single value of such an
abstracted representation coefficient. This abstraction must
have a clear-cut semantics, and the transformation of the
time series to this representation must be well-defined. The
goal of the abstraction is to have coefficients allowing to for-
mulate specific secrets: One should choose transformations
whose results correspond to potential secrets.

Example 3: In Example 1 the coefficients have to allow
conclusions regarding the heater. Suppose that a heater
consumes 25kW when running and 0W otherwise. Thus,
a difference of the power consumption at point of time t
to t+ 1 of around 25kW possibly indicates a starting flow
heater. Exactly this can be subject of a privacy requirement.
A meaningful abstraction then has a coefficient representing
this kind of change. While the start of the flow heater results
in two successive consumption values, other devices will
create more complex sequences. For example, a washing
machine carries tasks like heating or spinning. �

Pufferfish requires to adapt the data that represents a
secret. It is not straightforward to devise perturbations fulfill-
ing Pufferfish requirements [15]. In particular, perturbing an
aggregate of several appliances is difficult, since it requires
a decomposition. Next, we must take into account that
different appliances in the decomposed representation may
have correlations. Our approach is to deal with such time
series individually per appliance.

Quantifying the usefulness of the perturbed smart meter
data is not obvious, too: General distance measures for
time series do not necessarily quantify utility. It is more
conclusive to compare the performance of a real-world ap-
plication using perturbed and unperturbed smart-meter data.
Sometimes, the application may need information that is
supposed to be secret. Think of an application depending on
the aggregate sum of the consumption over some time, and
exactly this is the Pufferfish secret. In general however, the
needs of the application and the secrets may be orthogonal
to each other. Because Pufferfish does not allow to specify

characteristics of the data the perturbation must not affect,
the impact of Pufferfish on the utility of the data is unclear.

Next, the evaluation of utility requires meaningful user-
defined privacy requirements. Finding realistic requirements
is challenging since many individuals are not yet aware of
the privacy risks of the smart grid. Thus, an objective source
of requirements is needed for a meaningful evaluation.

We address all these challenges as follows: Since the
kinds of possible secrets are broad, we carefully select
different abstracted representations together with adequate
transformations for each of them. We illustrate this using the
wavelet transformation as example; it covers several kinds of
possible secrets. Privacy is guaranteed by the decomposition
of the aggregated power signal into several channels on a
conceptual level and the application of noise following the ε-
Pufferfish principle [15] . Before publication, a time series is
transformed back to the original, time-based representation.

In our evaluation, we show that this transformation princi-
ple is general enough to cover a wide range of requirements.
We arrive at objective privacy requirements by looking at
the outcome of various information-extraction methods from
literature, i.e., features of smart metering data that others
have deemed relevant. In this article, we define secrets
covering features used for re-identification [6]. An extended
version [13] features further secrets, with similar results.
Next, in a local energy market [7], the utility of participants
depends on the accuracy of the description of their demand;
using perturbed data instead of the real one is expected
to curb utility. Here, utility can be quantified as welfare,
an established notion from economics. Welfare allows to
quantify the cost of privacy as a real currency amount, which
is more intuitive than, say, measures for prediction quality.
The impact of privacy guarantees on utility is relatively
low, while hiding realistic secrets: Even with secrets that
require modifying the entire time series, the market welfare
is reduced by 26% only in one setting we have examined.

Paper outline: We start with related work (Section II) and
then introduce our way of applying Pufferfish (Section III).
Section IV evaluates our approach, and Section V con-
cludes. – Note that there exists an extended version of this
article, containing a more detailed description of Pufferfish
and the wavelet transformation, proofs of the lemmas and
material that complements the evaluation [13].

II. FUNDAMENTALS

Having defined a common notation in Section II-A, we
review well-known privacy-protection approaches in Sec-
tion II-B. The Pufferfish Framework is explained in Sec-
tion II-C. The wavelet transformation (Section II-D) is a
technique to process and analyze time series, which we use
as well. Other related work in turn is discussed in Section IV.

A. Notation
To support different abstract representations of time se-

ries, we have chosen a vector-based representation. The



coefficients of each vector defined on a basis express a
finite linear combination of this basis. In other words, the
basis defines the meaning of the coefficients. Vectors also
allow to change the basis, resulting in other meanings of
the coefficients. The standard representation of a time series
is a mapping between points of time and the value domain,
e.g., consumption values measured. Thus we define the time
domain T first and then define a time series as a vector.

Definition 1 (Time domain T ): T is the standard domain
of the time series considered. We assume that it is discrete
and of finite length, i.e., ‖T ‖ ≤ ∞.

Definition 2 (Time series): A time series is an n-
dimensional vector with the basis B, referred to as fB . To
refer to its t-th element, we write: fB [t].

The common vector notation requires a standard basis
consisting of canonical unit vectors ei. For a given T , we
define the relationship of a time series f to each t ∈ T :
Let [t1, ..., tn] be the ordered list of all ti ∈ T . Then
fB [ti] = f>B · ei is the electricity consumption at time slot
ti. In other words, ei represents the ith ordered element of
T , and B = {ei|i = 1 . . . n} forms the standard basis.

Definition 3 (Vector space): VB is the vector space
containing all linear combinations of basis B.

B. Privacy-Protection Approaches

Next to Pufferfish (cf. Section II-C), which serves as the
framework for this current work, there is further related
work. Differential Privacy provides provable privacy guar-
antees for statistical databases [9] and has been applied
to smart meter data [2] and time series [22]. Example 2
has illustrated the limitations. Other approaches for time
series disclose only aggregated results [5, 24] or build on
k-anonymity [1, 19]. In contrast to such approaches, we
are not limited to one specific information-extraction goal.
Pufferfish features a more general approach, namely hiding
user-defined secrets. Additionally, [5, 24, 1, 19] do not give
provable guarantees. The approach evaluated here in turn
allows for arbitrary queries over the disclosed data.

A perturbation method which handles each individual time
series in isolation is to add random noise. However, there
exist several methods to de-noise time series and to recover
the original values, see [20]. As a counter-measure to de-
noising techniques, the perturbation scheme in [20] transfers
the time series to a Fourier or wavelet representation and
then adds noise to coefficients exceeding a threshold. How-
ever, a data owner cannot decide what exactly is perturbed.
This may result in unnecessarily perturbed information and
in sensitive information still present.

C. The ε-Pufferfish Framework

Pufferfish [15] is a generalization of Differential Privacy
providing provable privacy guarantees and utility [14]. It
requires the following constituents: (a) A set of potential

secrets S describing which information can be hidden. It
is a domain for Spairs. (b) The discriminative pairs of
secrets Spairs, describing how a piece of information should
be hidden. (c) Finally, data-evolution scenarios D. Data-
evolution scenarios contain assumptions on how the data
has been generated. This is background knowledge of an
adversary. Technically speaking, D is a set of probability
distributions over the possible database instances I. Each
d ∈ D corresponds to the background knowledge of an
attacker on how the data has been generated. For example,
P (Data = {x1, ..., xn} |dp) = p(x1) · ... · p(xn) if the
probabilities of each record in I are independent. P (Data =
{x1, ..., xn} |dp) is the conditional probability that Data is
{x1, ..., xn} under dp.

A privacy mechanism M is a method for transferring a
data set Data into a perturbed and privacy-enhanced rep-
resentation M(Data). It guarantees the ε-Pufferfish privacy
criterion if it fulfills the following definition:
Definition 4 (ε-Pufferfish Privacy): Given a set of secrets
SP , a set of discriminative pairs SPpairs, data-evolution
scenarios D and a privacy parameter ε > 0, a privacy
mechanismM satisfies ε-Pufferfish(S,Spairs,D)-Privacy if,
for all outputs of M, all pairs (si, sj) ∈ Spairs and all
distributions d ∈ D the following holds:
P (M(Data) = o|si, d) ≤ eε · P (M(Data) = o|sj , d)
P (M(Data) = o|sj , d) ≤ eε · P (M(Data) = o|si, d)

P (M(Data) = o|sj , d) is the probability that the output of
M is o if sj holds, and the data distribution is d.

The intuition is best explained with the following equation
that is directly computed from Definition 4:

e−ε ≤ P (si|M(Data) = o, d)

P (sj |M(Data) = o, d)
/
P (si|d)
P (sj |d)

≤ eε

If an adversary thinks that si is α times as likely as sj , then,
after having access to the privacy enhanced output of M,
he may only believe that si is at most eεα times and at least
e−εα as likely as sj .

D. Wavelet Transformation

We use the wavelet-transformed representation as an ex-
ample, in order to express secrets and to hide them. The
following is a concise review, see for instance [21] for
a comprehensive introduction. Note that our study is not
limited to the wavelet transformation, see Section III-D.
Definition 5 (Wavelet): A wavelet w[t] is a finite time
series with properties:

∫ +∞
−∞ w[t] = 0 and

∫ +∞
−∞ w[t]2 = 1.

Definition 6 (Wavelet Transform): A wavelet transforma-
tion is an orthonormal basis transform to a wavelet basis.
Each element of the basis is a development over time.

To cover the n-dimensional vector space, the wavelet
transform results in multiple levels, reflecting different
horizontally stretched representations of w[t]. Further, the
wavelet transformation is invertible. The coefficient at the



highest level, the scaling coefficient, is not a multiple of the
wavelet w[t]; it represents the y-position of the time series.

To ease presentation, we include all the information for
the transformation in w. In our example, w contains the Haar
wavelet w[t] together with the transformation. An example
Haar wavelet transform of the time series on Figure 3 is
displayed in Figure 4. A value smaller than zero corresponds
to an increasing power consumption. Depending on the
position of the increase, the change influences the first or
the second level.

Discriminative Pair: 

( Flow heater is starting , 

 Flow heater is NOT starting )

Meaning of wavelet coefficient: ,Flow heater  

Level 1 0 2000

 ... does not start  ...is starting 

Level 2

Level ...

0 1500

  does not start   is starting'

Wavelet Basis

Figure 1. Example: Meaning of wavelet coefficients

Using wavelets requires specifying which elements in fw
are relevant for the individual: Switching on the flow heater
results in a strong increase of the power consumption. In
the Haar wavelet domain this leads to high coefficients on
lower levels. When the flow heater is switched off, this has
an analogous effect. This allows the distinction whether Bob
starts/stops to shower or not, cf. Figure 1.

III. PROVABLE PRIVACY
FOR SMART METER TIME-SERIES

We now explain our instantiation of the Pufferfish mech-
anism M for smart-meter data. M(f) reconstructs a time
series f resulting in one that guarantees ε-Pufferfish privacy.
We conduct the steps listed in Figure 2. To ease presentation,
we assume a single pair of discriminative secrets spair and
a single time series f . This is not a restriction since each
element of Spairs is handled in isolation for each time series.
When speaking of an aggregate, we always mean f [t], the
aggregate consumption of all running appliances.

For further explanations see Algorithm 1. It contains
of three steps: At first, we transform a time series f to
an abstracted representation fw. Second, secrets determine
the perturbation of the abstracted time series according to
Pufferfish guarantees. Third, we transform the modified time
series back to a time based representation f ′. We now
explain these steps in detail.

Input: time series f
Input: Set of discriminative pairs Spairs of secrets S,

(Inverse) Transformation Mechanism CtransB′ ,
ICB′ and basis B′

Input: Data evolution scenarios D
Input: Privacy parameter ε
Result: Time series with privacy guarantees f ′

foreach spair ∈ Spairs do
// Step 1: Transformation;
fB′ = CtransB′ (f);
// Step 2: Perturbation;
Determine Nε to fulfill ε-Pufferfish Privacy based
on D and spair;
Set pcoeff according to spair;
f ′B′ = P(fB′ ,Nε, pcoeff );
// Step 3: Inverse Transformation;
f ′ = ICB′(f ′B′)

end
return f ′;

Algorithm 1: Pufferfish Privacy Mechanism M

Step 1: Trans-
formation

time-series f
discriminative

pair spair

abstracted representation fw

Step 2: Perturbation

Time series with privacy guarantees f ′w

Step 3: Inverse Transformation

Privacy enhanced time series f ′

Figure 2. Privacy preservation for spair

A. Step 1: Transformation

This step transforms a given time series to an abstracted
representation where each value carries a specific meaning
in relation to secrets (and not necessarily to a point of
time). Secrets are geared to specific transformations. Thus
we first need to define the transformation mechanisms
(Section III-A1), before formulating secrets respectively
discriminative pairs for smart meter data (Section III-A2).

1) Transformation: Abstract representations of time se-
ries are numerous [8]. The right choice depends on the
privacy requirements. Thus, we define requirements on trans-
formation approaches to be applicable with our approach.

Definition 7 (Transformation Mechanism): Let B be
the standard basis and B′ a different basis of a vector
space. A transformation mechanism CB′ is a function of



type VB → VB′ that converts a time series from the time-
based representation f to an abstracted representation fB′

with basis B′ and fulfills the following properties:
1) The transformation is invertible, i.e., there exists an

inverse of CB′ We refer to it as ICB′ : VB′ → VB .
2) CB′ is an endomorphism for the +-operator. Let f, g

be time series, then: CB′(f + g) = CB′(f) + CB′(g)
Suppose that the time series is an aggregate of power

consumptions. The endomorphism property simplifies the
perturbation: Noise can be added to certain parts of the ag-
gregate as well as to the aggregate, yielding the same result.
Section III-A2 explains the importance of this property.

The invertibility property implies the following: First, if
fB′ is invertible, any information of f is present in fB′ .
Thus, any information of f is also included in the abstracted
representation. Second, invertibility requires well-defined
semantics of every element in fB′ . Consequently, such clear
semantics also hold for secrets dependent on the coefficients,
i.e., each coefficient has a specific meaning in relation to a
secret. Note that we do not make any restriction on the length
of fB′ in comparison to f ; so the transformation output may
also have a higher dimensionality than f .

Haar-Wavelet example transformation. The wavelet
transformation as described in Section II-D satisfies Defi-
nition 7. This transformation for the Haar basis is invertible
and an endomorphism for addition. See Lemma 1. Addition-
ally, the wavelet transformation keeps the time location; each
value in fB′ [x] corresponds to a specific number of entries
in f [t]. We refer to the wavelet-transformation mechanism
with the Haar basis as CWave

h .

Lemma 1: The Haar wavelet transformation is invertible
and an endomorphism for the +-operator

2) Secrets in Smart-Meter Data: Possible secrets S an
individual may want to hide range from relatively simple
ones like ‘The dishwasher is running’ to rather complex ones
involving several appliances like ‘There is cooking activity’.
Other examples are ‘There is activity in the kitchen’, ‘The
fridge is running’ or ‘Someone is watching a certain TV
program in the morning’.

The power-consumption data of a household, usually
monitored by a smart meter installed at the main power
connection, is the aggregate of all appliances. However, only
parts of it typically are relevant for certain secrets. Hence,
it is important to be able to examine parts of the aggregate
in isolation. Looking at the smart meter time series as a
signal, it is the aggregate of several channels. For example,
the consumption of the television is one channel f1[t], the
dishwasher is another one, f2[t].

Definition 8 (Signals and channels): A signal is the
complete power consumption measured at the smart meter
of the household and is represented as a vector f [t]. A
channel is a part of the signal, referred to with a superscript,
e.g., f i[t]. We see a signal as the sum of n channels:

f [t] = f1[t] + · · ·+ fn[t]
Even on channels only containing the consumption of

individual devices, a sequence of consumption values is
still required in many cases to gain interesting information.
From non-intrusive appliance load monitoring (NIALM)
approaches [11, 17, 16, 10, 4] it is well-known that a
sequence of time-value pairs identifies appliances and their
state, and appliances tend to be detectable in f .

The connection between values of a time series (even if
it is an abstraction) and intuitive descriptions of possible
secrets is not obvious. Thus, we define the following.

Definition 9 (Description of a Secret): A description of a
secret is a triple

s = (sBase, sTrans, sCoeff )

where sBase is the basis for a transformation mechanism
sTrans. sCoeff is the formal description of the coefficients
in the abstracted representation fsBase that make s true. We
write fw[t] ∈ sCoeff if an element of the transformed time
series makes the secret true.

We do not require a specific language to describe the coef-
ficients. However, the description has to be non-ambiguous.

A description of a secret reflects what should be hidden,
but not how. It rather is necessary to have discriminative
pairs of secrets. Thus, Pufferfish requires a description of
discriminative pairs of secrets on smart-meter time series.

Definition 10 (Description of a Discriminative Pair of
Secrets): A description of a discriminative pair of secrets
spair is a pair of descriptions of secrets spair = (s1, s2), so
that the following holds:
• The base as well as the transformation method are the

same (sBase1 = sBase2 and sTrans1 = sTrans2 ).
• The secrets are mutually exclusive but do not need to

be exhaustive, i.e., there may exist values in the range
of a coefficient that neither make s1 nor s2 true.

• The coefficients in question for s1 and for s2 are non-
overlapping: sCoeff1 ∩ sCoeff2 = ∅.

Typically, only parts of the entire signals are relevant for
secrets and discriminative pairs.

Definition 11 (Relevant Channel): For a given signal f
consisting of i ∈ [1 . . . n] channels and for a discriminative
pair spair = (s1, s2), we call the channel that contains the
information whether s1 or s2 is true the relevant channel
r. We refer to the corresponding time series as fr. The
decomposition partitions the signal. Formally:

f [t] = f1[t] + · · ·+ fr[t] + · · ·+ fn[t]

There typically are correlations between channels. They
depend on the actual discriminative pair and the assumptions
contained in D regarding an adversary. In Example 2, the
lighting f2 is correlated with the heater f1. But the lighting
consumption is not part of the relevant channel, since it is
not directly related to the showering activity.
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Figure 3. Example of a starting/stopping flow heater
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Figure 4. Haar Wavelet decomposition of a flow heater (three levels)

Correlations result in different data-evolution scenarios
and require a different distribution of the noise applied.
The specifics are part of the Pufferfish Framework [15]. The
following example illustrates the description of the secrets
in smart-meter time series.

Example 4: Bob wants to hide whether secret s1 ‘The heater
is starting/stopping’ or secret s2 ‘The heater is not start-
ing/stopping’ is true. The wavelet transform with the Haar
basis reflects ‘switch on’ respectively ‘switch off’ events and
is suitable for the discriminative pair spair = (s1, s2). Let h
be the Haar wavelet basis, then sTrans1 = sTrans2 = CWave

h .
For the sake of simplicity, we assume that the heater power-
consumption function is of rectangular shape over time, as
illustrated in Figure 3 (generated with the model of [23]).
Figure 4 contains CWave

h (f) of the time series illustrated in
Figure 3: The x-axis in Figure 4 shows the time location and
the y-axis the ‘intensity’ of the Haar basis. Coefficients in
Level 1 and 2 reflect the starting and stopping of the heater,
as explained in Section II-D. To include small inaccuracies,
we define sCoeff1 to cover coefficients of Level 1 if their
value is in [13, 17] or [−17,−13] and Level 2 if their
value is in [18, 22] or [−22,−18]. Consequently sCoeff2

contains all values of coefficients on Level 1 except for
[13, 17] and [−17,−13] and Level 2 except for [18, 22] and
[−22,−18]. s1 and s2 qualify as a discriminative pair spair
since sTrans1 = sTrans2 and sCoeff1

⋂
sCoeff2 = ∅. In this

example, the channel relevant for spair only contains the
heater consumption. �

For different transformations or for different bases the
determination of coefficients works in the same way, as long
as the proposed specification of coefficients holds. Using
a different transformation or basis allows to cover other
requirements, see Section III-D.

B. Step 2: Perturbation

This section explains how we have ensured Pufferfish
privacy in time series of smart meter data. One common
method explicitly illustrated in the following is to apply ad-
ditive Laplace noise to aggregates [15]. If different channels
are correlated, the noise should follow other distributions,
see [15]. However, this does not affect the following descrip-
tion. As explained in Section III-A2, a smart meter signal
is an aggregate of different appliances, but noise is only
required for some channels. Identifying the channels and
the noise distribution applicable is not obvious.

1) Perturbation of Time Series: We explain our approach
for perturbing a time series of smart meter data in the
transformed representation. The perturbation must have a
noise distribution. We refer to the transformed version with
mechanism sTrans and basis sBase, where w consists of
sTrans and sBase, as fw. The perturbed time series is
f ′w. The perturbation also requires the selection of the
coefficients to add noise to. This leads to the following
definition.
Definition 12 (Perturbation Mechanism for a Discrimi-
native Pair): A perturbation mechanism P is a function
that takes a time series fw in abstracted representation, the
noise Nε to be applied dependent on the privacy parameter ε
and a formal definition of the coefficients to be perturbed
pcoeff . It returns the privacy-enhanced time series in the
transformed representation, referred to as f ′w.

f ′w = P(fw,Nε, pcoeff )

2) Noisy elements: pcoeff specifies the elements of f ′w
to be perturbed. Similarly to the definition of secret de-
scriptions, we leave aside the language for selecting these
coefficients. Examples for pcoeff are as follows:
• All: This is the most simple strategy. Additive noise is

applied to all coefficients.
• Trigger dependent: Since coefficients in a certain

range have a defined meaning, they are perturbed.
This is similar to [20]. However, the ranges and the
noise have a well-defined meaning (c.f. Figure 1),
guaranteeing a certain level of privacy. Note that it is
now possible to define the noise relative to fw[x].

• Time dependent: The user specifies coefficients to be
perturbed (e.g., from t1 to t2 etc.), independent of the
value. However, this only works if the transformation
mechanism keeps the time location.

• Trigger and time dependent: This combines both
possibilities just mentioned.

3) Noise Distribution: P used with noise according to
Pufferfish and to the discriminative pair spair = (s1, s2)
guarantees privacy.
Lemma 2: Let f be a time series of smart meter data,
spair = (s1, s2) the information an individual wants to hide,
CsBase a transformation mechanism suitable for spair and



P a perturbation mechanism. There exists a distribution of
noise Nε with P for CsBase(f) that satisfies the ε-Pufferfish
Privacy Definition.

The following example illustrates how to choose noise for
the starting flow heater appropriately.

Example 5: Bob wants to hide the pair spair = (s1, s2)
from Example 4. To do so, we carry out the proposed
wavelet transformation CWave

w with the Haar basis w. Let
fr be the relevant channel for spair. To ease presentation,
suppose that the channels are statistically independent. The
coefficients in question for s1 and s2 correspond to non-
overlapping intervals by definition. For instance, let fw[x] be
a value of Level 1 of the wavelet-transformed representation.
If frw[x] ∈ [y − k, y + k], s1 is true for y = 15 with an
imprecision interval of k = 2, otherwise s2. For Level 2
s1 is true for y = 20 and k = 2. In this case, we want
to prevent an adversary from learning the value of frw[x] by
accessing the privacy-enhanced signal f ′w[x]. [15] shows that
adding noise drawn from the Laplace(4k/ε) distribution with
density function ε

8ke
−ε|x|/4k guarantees ε-Pufferfish privacy

for the aggregate as follows: An adversary cannot distinguish
whether the value of a single channel is between y− k and
y+ k or one of the neighboring intervals [y+ k, y+3k) or
[y−3k, y−k). Let X be a random variable drawn from the
above distribution and x be the coefficient to hide. We then
generate the privacy-enhanced aggregate f ′w[x] as follows:

f ′w[x] = frw[x] + f iw[x] + · · ·+X

Note that adding noise does not require the disaggregation
of the signal into several channels, i.e., f ′w[x] = fw[x] +X .
Adding noise already ensures Pufferfish privacy.

Since wavelet coefficients are time-located, it is possible
to add noise for weekdays between 8:00 and 10:00, cf.
Example 1. On the weekends, we add noise during the whole
day on Levels 1 and 2. �

C. Step 3: Inverse Transformation

The last step transforms the abstracted and perturbed
representation f ′w back to the time-based one f ′. This is
possible, since Definition 7 requires invertibility. Note that
this approach ensures that only values relevant for the secrets
specified, are perturbed, and the perturbation affects these
values as little as possible.

D. Alternative Transformations

Using the Haar wavelet transform does not allow to
express any secret conceivable. However, our approach can
use any transformation fulfilling Definition 7. This includes
well-known ones such as the decomposed wavelet trans-
form, the wavelet packet transform, and the discrete Fourier
transform. For example, the last one is suitable to represent
secrets covering periodic events. Please see the technical
report [13] for details.

IV. EVALUATION

Our evaluation has two goals, generality and utility: First,
an individual should be able to hide arbitrary information.
Second, the disclosed data should still be useful while
guaranteeing privacy to the extent specified.

Regarding the first issue, to evaluate objectively whether
our approach is general enough to cover a broad range of
privacy requirements we need a reliable source of such re-
quirements. To our knowledge, such a source for smart meter
data does not exist. However, there exist recent approaches
extracting various kinds of information on individuals from
smart meter data. The information these approaches try to
extract can be perceived as information that is worth to be
protected, i.e., as privacy requirements. We show that it is
possible to define discriminative pairs of secrets suitable for
these requirements. The approach explicitly considered in
what follows is a re-identification approach (Section IV-A).
We also have evaluated whether our approach can prevent
non-intrusive appliance-load monitoring from extracting sen-
sitive information. One result is that the appliance-detection
rates drop. See [13] for details.

We now preview the second issue of quantifying utility.
Abstract time-series-distance measures do not allow for
meaningful conclusions regarding the utility of a modified
time series for applications. To ensure realistic conditions,
we evaluate the utility of a noisy, privacy-enhanced data set
by means of a local electricity market (Section IV-B).

The approach presented hides user-defined preferences in
a time series of smart-meter data. A comparison of our
approach with another one regarding utility would only be
conclusive if the reference point offered the same extent of
privacy; but we are not aware of any such approach.

A. Generality: Re-Identification

Re-Identification means linking personal data which does
not contain any direct identifiers (name, address, etc.) to
individuals. Features of the consumption help to re-identify
time series of power-consumption values [6]. To illustrate,
we focus on the following four features: sum, maximum
and minimum of the power consumption for a time interval
and average bedtime hour, i.e., the first point of time in
the evening when the consumption decreases significantly.
Note that we also can hide all other features listed in [6].
Table I lists the necessary transformations and the relevant
coefficients. Those four features have the same structure as
almost half of the features in Table I.

We now review how re-identification works:
1) The adversary has feature values of households as

external knowledge, e.g., a certain household usually
goes to bed at 11pm.

2) For each time series in question, the values for these
features are computed. The adversary compares the
results with the external knowledge.
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Figure 5. Total power consumption

Features Transformation Coefficients concerned
Sum Haar-Wavelet Scaling Coefficient
Maximum Haar-Wavelet Scaling Coefficient
Minimum Haar-Wavelet Scaling Coefficient
Evening Sum Decomposed Wavelet Relevant Scaling Coeff.
Morning Sum Decomposed Wavelet Relevant Scaling Coeff.
0.9 Quantile Fourier All
Standard Deviation Fourier All
Frequency of mode Fourier Significant Frequencies
Wakeup time Haar-Wavelet Level 1/2
Bedtime Haar-Wavelet Level 1/2

Table I
TRANSFORMATIONS FOR RE-IDENTIFICATION FEATURES

3) Assuming that households tend to have repeating be-
havior over time, features computed for a household
for different time periods tend to have similar values.
The system computes a score based on the difference
between feature values that are part of the external
knowledge and the values of the household in question.
The smaller the score, the more likely the household is
the sought one.

4) A household is deemed re-identified if its time series
receives the n-th lowest score or lower. n is an external
parameter and allows to overcome imprecision.

An earlier result is that up to 82.8% of the households
can be re-identified [6] in an unmodified data set. To
hinder re-identification, certain distinctive features need to
be hidden. For the four secrets explicitly considered here, the
wavelet transform with a Haar basis is suitable: The scaling
coefficient (see Section II-D) represents the sum and also
influences the maximum and minimum, see Section IV-A1.
Levels 1 and 2 reflect the first significant decrease for the
bedtime hour, like the heater starting or stopping.

1) Hiding Sum, Maximum and Minimum: Next, we say
how the sum, the maximum and the minimum can be hidden.
To do so, we take a closer look at re-identification. The
total power consumption of a time period is the sum of all
channels i ∈ [1 . . . n]:∑

∀t∈T

f [t] =
∑
∀t∈T

f1[t] + · · ·+
∑
∀t∈T

fn[t]

An adversary with external knowledge on the power con-
sumption trying to re-identify a record has to take inaccura-
cies into account, i.e., he typically does not know the total
consumption for sure, only within a certain range. Thus,
we partition the channels into a known one, such as the
relevant channel r, and the ones not known. The channels
not known are responsible for the difference between the
known channels and the total consumption at each point of
time.∑
∀t∈T

f [t] =
∑
∀t∈T

f1[t] + · · ·+
∑
∀t∈T

fr[t] + · · ·+
∑
∀t∈T

fn[t]

Based on the sum
∑
∀t∈T f [t] the adversary has to decide

whether the known channel is consistent with his knowledge.
Adding Laplace noise in line with ε-Pufferfish privacy leads
to uncertainty regarding

∑
∀t∈T f

r[t]. Re-identification is
successful if an adversary is able to single out the true
individual record. In particular, this is relatively easy if the
feature values of individuals are spread over a wide range
and are rather unique. Thus, individual privacy requirements
depend on assumptions regarding other individuals in the
data set. Describing a suitable secret is deciding which
interval is sufficient to hide

∑
∀t∈T f

r[t] amongst other
channels. We use the following notation:

sk = ‘Known power consumption is in interval [y-k, y+k]’

The discriminative pairs can be of the form spair =
(sk, s3k). One way to determine k is to look at the distribu-
tion of a known data set. Figure 5 indicates that k = 5kWh
is sufficient to hide a single household amongst more than 10
others for a large number of households. These considera-
tions also hold for the features ‘Minimum’ and ‘Maximum’.

Applying noise to the scaling coefficient Applying
noise to the scaling coefficient is special, compared to
other coefficients. In particular, the scaling coefficient is
normed. It represents the sum, minimum and maximum,
and is calculated as follows:

∑
∀t∈T f [t]√
‖T ‖

. Thus, the addi-

tive noise Laplace(4k/ε) is normed as well:
∑

∀t∈T f [t]√
‖T ‖

+

Laplace(4k/ε)√
‖T ‖

.

2) Hiding Bed-Time and Wakeup-Time Hours: According
to [6], the bedtime hour is when a household switches
off certain devices, e.g., the television, right before going
to bed. This does not have to be the same devices for
different households as long as they are usually switched
off right before going to bed. We consider switch-off events
only between 4pm and 2am. Some appliances may still
run, but only the change of consumption is of interest.
An adversary trying to re-identify a household is interested
in deciding whether the devices are switched off or not.
Thus, an individual wants to hide the discriminative pair



spair consisting of the following secrets: s1 = ‘Household
switches off devices before bedtime’ and s2 = ‘Household
does not switch off devices before bedtime’. The relevant
channel r includes the devices mentioned for spair.

fw[x] = frw[x] + f1w[x] + · · ·+ fnw[x]

The switch-off decreases the power consumption of 0.5kWh
on fspair

w [x]. Thus, we apply Laplace((4× 0.5)/ε) noise on
Level 1 and Laplace((4 × 0.5√

2
)/ε) noise on Level 2 during

4pm and 2am. Hiding wakeup times is similar.
3) Results: It is possible to hide all other features for re-

identification [6]; Table I lists the necessary transformations.
To quantify effectiveness, we look at the relative decrease

in accuracy, i.e., the number of households re-identified with
and without applying noise. While re-identification makes
use of a combination of features, to isolate the effects of
hiding specific secrets we only look at features relevant for
the secret. While this reduces the number of households re-
identified, this is the case both with and without applying
noise, so our evaluation is still conclusive. We deem a
household re-identified if its time series receives the n-th
lowest score at least. In total, we tested 158 household
from the CER data set and set ε = 0.1. This data set
consists of roughly 5000 homes in Ireland with different
numbers of inhabitants, measuring electricity consumption
every 30 minutes over more than one year [12]. Table II
contains our results. It contains the feature set used for
re-identification and the accuracy decrease after applying
the Pufferfish framework. First, independent of the feature
set, there is a significant decrease in accuracy. Thus, hiding
the features in the described way is effective. However, the
algorithm still can re-identify a small number of households:
In our evaluation, we have assumed the same discriminative
pair for all households. However, for outliers in particular,
e.g., a household consuming a lot of electricity and thus
being easy to re-identify, discriminative pairs should differ.
In particular, the k of the interval must be larger. If the
feature value of a number of households is similar, then the
re-identification algorithm starts to guess. Random ‘correct’
guesses become more with n = 5. Still, Pufferfish allows
the definition of suitable secrets to hinder re-identification.
Even with secrets designed in a straightforward way without
considering outliers the accuracy decreases significantly.

B. Utility: Welfare of a Local Energy Market

A privacy method must protect sensitive information of
individuals. However, it is also important that the data can
still be used for certain purposes afterwards. In order to
evaluate to which extent the proposed mechanism preserves
utility, we integrate it into a local energy-market scenario
and measure the effect on the welfare. Welfare is a well-
known economic measure: It is the sum of consumer surplus
(difference between willingness to pay and clearing price)
and producer surplus (difference between clearing price and

costs). In a local energy market, consumers and producers
can trade electricity. In general, this leads to a more effective
allocation of renewables, including a drop of CO2 emis-
sions. However, individuals have to reveal their prospective
consumption to other market participants. Obviously, the
prospective consumption tends to be similar or even identical
to the actual one. With any reasonable market mechanism,
if participants reveal their true demand they will receive
the highest welfare. In turn, revealing a privacy-enhanced
demand induces a loss of welfare. However, protecting
privacy has a value for the individuals as well. Thus it
is insightful to investigate this tradeoff. This method has
already been tested in another similar context, cf. [7].

1) Results: We have evaluated a town with 300 persons
living in households of up to five persons. The time interval
examined is five days. The consumption data has come from
the CER data source [12]. As renewable sources we have
taken 150 photovoltaic sites as well as 150 combined heat
and power plants. As privacy requirements, we have chosen
to hide the bedtime and the total sum. Since Pufferfish as
well as the selection of households include randomness, we
repeat each experiment ten times. We measure the relative
welfare, which is the welfare using the privacy method in
relation to the welfare for the original data.

Hiding the bedtime results in a welfare loss of 26% on
average, with a low spread, see Figure 6. Hiding requires
applying noise to 10 hours a day. This includes the consump-
tion after 4pm, which contains a large fraction of the daily
consumption due to evening activities of households. Hiding
the sum respectively the minimum and maximum consump-
tion leads to a smaller relative welfare loss compared to the
bedtime requirement on average, but has a larger spread of
values. In this case, applying noise shifts all the values of the
time series up- or downwards, but it keeps the shape. This
is because the actual development is not influenced. Thus,
we see that hiding different secrets has different effects on
the utility (Figure 6). Note that the welfare loss of 26% is
relative to the theoretical maximum efficiency (cf. [7]), i.e.,
the loss of welfare is low.

C. Summary of Results

The evaluation has shown that Pufferfish privacy can
indeed shield personal information from information-
extraction approaches. The potential of an adversary to
gain information from the disclosed data set has dropped
significantly. On the other hand, we have shown by means
of a local energy market that the utility of the resulting data
set still is on an acceptable level. Again, we have used secrets
that prevent state-of-the-art information-extraction methods
from providing meaningful results.

V. CONCLUSIONS

Disclosure of data plays a significant role in the context
of the smart grid. However, time series of smart meter data



Feature Set Top n w/o noise noise Accuracy Decr.
Sum 1 6 2 66%
Min 1 15 1 93%
Max 1 7 3 57%

Sum,Min,Max 1 30 8 73%
Bedtime 5 8 5 37.5%

Wakeup time 5 6 3 50%
Bed-, Wakeup time 5 13 6 53.8%

Table II
RESULTS RE-IDENTIFICATION
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Figure 6. Relative Social Welfare

contain sensitive information, represented in many different
ways. Individuals might not allow access to the data as
long as sensitive information based on individual privacy
preferences is not removed. Pufferfish is a state-of-the-art
approach to hide specific information. However, application-
specific work is required when applying it to smart meter
data and carrying out an evaluation that is conclusive.
This includes the definition of how sensitive information is
represented, how data-evolution scenarios can be applied,
and how the information can be perturbed to give Pufferfish
guarantees. Next, it is challenging to evaluate the general
coverage of secrets and the utility of the perturbed data.
Our study has addressed these points.

Our study has featured a general way of describing secrets
in smart-meter data. Transforming time series of such data
is one possible way to facilitate the definition of arbitrary
secrets. A certain set of transformations is sufficient to
cover a broad variety of secrets, decreasing the impact of
information-extraction methods on privacy significantly with
a tolerable impact on the utility of the data.
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