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ABSTRACT
Large-scale smart meter roll-outs all over the world are one effect

of the ongoing energy transition. This poses a significant risk to

consumer’s privacy. Battery based load hiding (BBLH)—where an

energy storage system is employed to obscure actual demand pat-

terns—is one possibility to still retain privacy. In recent years many

different BBLH algorithms have been proposed. But although most

of them were assessed with some formally defined privacy measure,

the current state of the art sorely lacks any comparability.

We give an overview of privacy measures which were proposed

for this scenario, available storage technologies, and datasets used

for the assessment of BBLH. Furthermore, we conduct a study of

how all of these factors influence the different ratings of several

state-of-the-art BBLH algorithms. Our results illustrate the need for

standardization as well as further research into meaningful privacy

measures. Achieving this is necessary for private households to

make an informed decision which BBLH algorithm is best for their

specific situation.
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1 INTRODUCTION
In electrical grids, smart meters become more and more widespread.

Such devices record power consumption, voltages and currents with

high frequency (minutes or seconds) and typically send the data to

the utility provider. Smart meters are assumed to be necessary for
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future electricity systems. This is because they allow monitoring

the status of the grid in almost real time. This is important since

power generation becomes increasingly volatile with a higher share

of renewable and distributed energy resources.

However, high-resolution data collected by smart meters (load
profiles) can leak sensitive information. For private households,

this includes employment status [61], sleep-wake cycles [32, 33,

60, 67, 74, 80, 85, 100], habits [21, 22, 32, 38, 43, 61, 72, 79, 102]

and many other characteristics – cf. [8, 9, 11, 16, 18, 20, 30, 36, 41,

45, 50, 53, 54, 57, 62, 65, 86, 87, 91, 92, 98, 99, 104]. The privacy

of commercial and industrial costumers can be violated similarly.

Numerous methods have been proposed to minimize the leakage

of private information. These privacy-enhancing methods either

change the consumption measured by the smart meter, or they alter

the data after collection but before sending it to the utility provider.

However, such a retroactive manipulation of smart meter data is

not possible under the legislation of most countries. Germany is an

example [3]. It may also be infeasible, since the provider directly

controls the metering infrastructure, like in the US [1]. So we only

consider methods from the first category in this work.

A common technique to modify consumption is battery-based

load hiding (BBLH). They deploy energy storage systems to mask

electricity-consumption patterns. Various BBLH algorithms have

been proposed and evaluated. But they have rarely been compared

in a meaningful way. When comparisons were attempted [22, 100,

102, 104], they lack breath regarding potentially important factors.

The following example illustrates this.

Example 1.1. Bob’s household has a smart meter installed, and

he decides to buy a Li-ion battery to mask his private information.

He knows that BBLH Algorithm A has been shown to outperform

Algorithm B when tested with (i) specific battery characteristics,

on (ii) data with the hourly resolution coming from a three-person

householdwhen (iii) ‘relative entropy’ quantifies the level of privacy.

However, Bob does not know what this privacy measure means,

whether there are other measures, and, if so, which one might be

better. His battery has characteristics beyond the ones used for

testing, he lives alone, and his smart meter takes measurements at

a higher frequency. So is Algorithm A still preferable for Bob?

In line with the literature, three factors may affect the relative

performance of BBLH algorithms:
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(i) Privacy measure. Various measures were proposed to quan-

tify the privacy level provided by charging algorithms. These

measures typically take original and modified load profiles

as input and output a value representing the privacy gain or

absolute level of achieved privacy.

(ii) Storage characteristics. Capacity, charging/discharging rates

(power) and round trip efficiency often serve as inputs for

BBLH algorithms.

(iii) Data. Discretization rate, length of a load profile, household

location, behavior of inhabitants and other information as-

sociated with a load profile may affect the performance of a

BBLH algorithm.

Contributions. To our knowledge, the combined influence of

these factors has not been studied before. This paper closes this

gap. More specifically: (1) We review privacy measures proposed

in the literature on privacy of smart meters. We cover all mea-

sures we are aware of and comment on their properties, possible

design alternatives and assumptions they rely on. There is a broad

variety of measures, so this part is relatively long. (2) We review

characteristics of and existing technologies for storage, focusing

on their usefulness for privacy protection of private households.

(3) We perform an exhaustive experimental study of the relative

performance of five BBLH algorithms. We vary privacy measures,

storage characteristics and load profiles. Our results suggest that

all three factors are significant: Different privacy measures, when

evaluated on varying load profiles and storage characteristics, rank

the tested BBLH algorithms very differently. In other words, there

is no BBLH algorithm which is best for a majority of combinations

of these factors. This result underlines the need for standards for

the evaluation of privacy algorithms. (4) We take a first step to-

wards such a standard by discussing ways to select data sets for

evaluation and choosing the most suitable privacy measure. We also

consider other relevant factors one must observe when developing

or evaluating BBLH algorithms. (5) We share our implementation

of BBLH algorithms, privacy measures and our experiments
1
.

Outline. Sections 2–5 review the four components of our study:

privacy measures, storage systems, load profiles and BBLH algo-

rithms. Section 6 describes the experimental setting and results.

Section 7 discusses the results and possible future work.

2 PRIVACY MEASURES
In this section, we review measures which previous work has pro-

posed or deployed to quantify smart meter privacy. The measures

typically compare the consumption before and after modification

through BBLH and output a single value representing the degree of

privacy. Many measures require additional information such as the

respective pricing function, or rely on additional assumptions, e.g.,

that load profiles follow first-order Markov processes. Depending

on the type of additional information, we distinguish between gen-
eral and specialized privacy measures. For now we concentrate on

general privacy measures and refer to Appendix A for specialized

ones. Before going into details, we introduce some notation.

1
https://github.com/Arzik1987/SaP

2.1 Notation
xT = (x1, . . . , xT ) denotes the (finite or infinite) time series of an

original load profile, measured at equidistant times t ∈ {1, . . . ,T }.
A value xt either gives the amount of energy consumed in the time

period [t − 1, t), measured in kWh, as in [85], or the power in kW

needed at time t , as in [100]. The literature suggests the terms user
load [42] or demand load [100] for xT . Applying BBLH to a user

load results in a modified load yT = (y1, . . . ,yT ), referred to as grid
load or external load. The modification bt := yt −xt (t ∈ {1, . . . ,T })
from user to grid load is the in-/output of the storage system.

One can think of xT as a realization of amultivariate random vari-

able XT = (X1, . . . ,XT ) with a density function fXT . fXt denotes

the marginal densities of its components. Many privacy measures

discussed in this section take random variables XT
or YT as input.

The distributions of these variables are usually estimated from re-

alizations xT , yT . This however is impossible without additional

assumptions. This is because xT , yT are only single samples from

the distributions. In some cases, XT
and YT are estimated from

sets of realisations {xT }, {yT }. A common assumption is that Xt ,
Yt are independent from time, i.e., there are functions fX and fY
with fXt = fX and fYt = fY for all t ∈ {1, . . . ,T }. Hence we use X
and Y (without sub-/superscript) to denote Xt or Yt , respectively,
whenever they do not depend on the time t . Furthermore, most pa-

pers treat the random variables X , Y as discrete and estimate their

probability mass functions PX , PY instead of probability density

functions. Discreteness is usually gained by quantizing the under-

lying load profiles xT , yT into bins. In most cases these bins are of

equal size, except for [85] where the size follows the µ-law [15].

Some authors use the first differences ∆xt = xt − xt−1 and

∆yt = yt − yt−1, t ∈ {2, . . . ,T } instead of the load profiles xT

and yT respectively. These can be construed as the realization of

random variables ∆XT
, ∆YT , and we extrapolate the notation so

far to this case. We use ΩU to denote the sample space of a random

variableU , whereU can be any of the variables XT
, YT , X , Y etc.

Table 1 lists notation used for all privacy measures. Notation

specific to individual measures is explained whenever it appears.

2.2 General Privacy Measures
Table 2 lists all surveyed general privacy measures. It also states

whether a paper applies the respective measure to original load

profiles (x,y) or to their time differences (∆x,∆y).

2.2.1 Cluster Similarity. Cluster similarity is calculated as follows:

(1) Determine the number of bins n ∈ N for clustering.

(2) Cluster xT into n clusters Ci ⊆ {x1, . . . , xT }, i ∈ {1, . . . ,n}.
Let the value ci ∈ R be the cluster center of Ci . W.l.o.g. we

assume that the sequence (C1, . . . ,Cn ) of clusters is ordered
according to their corresponding values c1 < · · · < cn .

(3) Cluster yT into n clusters Di ⊆ {y1, . . . ,yT }, i ∈ {1, . . . ,n},
with cluster centers di ∈ R. Again we assume w.l.o.g. that

the sequence (D1, . . . ,Dn ) of clusters is ordered according

to their corresponding values d1 < · · · < dn .
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Notation Interpretation
1 Indicator function: 1[α] = 1 if the statement α is

true, otherwise 1[α] = 0.

bt Battery load: Electricity demand of the storage sys-

tem at time t .

bT = (b1, . . . ,bT ). Battery load time series.

∆ Difference operator: ∆xt = xt − xt−1 and ∆xT =
(∆x2, . . . ,∆xT ).

E Expectation E[U ] of a random variableU .

fU Probability density function of a continuous ran-

dom variableU .

P Probability P[u] of the event u occurring.

PU Probability mass function of a discrete random vari-

ableU .

t ∈ {1, . . . ,T }. Timestamp, at which the smart-meter

takes a measurement.

T ∈ N ∪ {∞}. Number of timestamps, at which the

smart-meter takes measurements.

xt User load: Electricity demand of all household ap-

pliances. Either the energy consumed in the period

[t − 1, t) or the power measured at time t .

xT = (x1, . . . , xT ). User load time series.

XT = (X1, . . . ,XT ). Random user load vector with real-

izations xT ← XT
.

X Univariate random variable. Used to denote Xt
whenever it is independent of time t .

yt Grid load: Electricity demand of all household ap-

pliances plus storage at time t .

yT = (y1, . . . ,yT ). Grid load time series.

YT YT = (Y1, . . . ,YT ). Random grid load vector with

realizations yT ← YT .
Y Univariate random variable. Used to denote Yt

whenever it is independent of time t .
u∗ Estimate of a value u.
ΩU Sample space of a random variableU .

Table 1: Overview of common notation.

(4) Compute the cluster similarity as the ratio of times t where
xt and yt are classified differently:

CS
(
xT ,yT

)
:=

1

T

T∑
t=1

1
[
∃i ∈ {1, . . . ,n} : xt ∈ Ci ∧ yt < Di

]
.

The assumption behind this privacy measure is that clustering re-

sults for user and grid load will not differ much if they are similar,

giving low privacy. Kalogridis et al. useCS(x,y) in [50],CS(∆x,∆y)
in [53], and both in [52]. All these studies exclude the first clusters

C1 andD1 as they represent periods of negligible electricity demand.

The choice of clustering algorithm and of the number of clusters

influence the output of this privacy measure. The above mentioned

research proposes to use the Clara clustering algorithm [56] (for de-

terminism and scalability reasons) and silhouette maximization [81]

to specify n in Step (1). But there are many approaches to perform

clustering analysis which have different meta-parameters and rely

on different ideas. Alternatives to silhouette are available as well to

quantify clustering quality and select the number of clusters [7, 68].

Measure (x,y) (∆x,∆y)

Cluster similarity [50, 52] [52, 53]

Coefficient of determination [20, 52] [50, 52, 53]

Conditional entropy [86, 101] [53]

Entropy ratio [72]

Feature mass [72, 99, 102]

K-divergence [51]

KL divergence [104] [53, 54, 98]

Load variance [85]

Mutual information [8, 21, 22, 34, 41, 43,

45, 60, 63, 79, 82, 85–

87, 92, 102, 104]

[100, 102]

Removed uncertainty [61]

Total variation distance [50, 104], [11]
a

a
It is not clear from the description whether time differences are taken.

Table 2: Overview of general smart-meter privacymeasures.

2.2.2 (Pseudo-) Coefficient of Determination. Let y∗t be a function
attempting to predict yt from xt without additional information

2
.

Let furthermore ȳ := (y1 + · · · + yT )/T . We define:

TSS :=

T∑
t=1

(yt − ȳ)
2, ESS :=

T∑
t=1

(y∗t − ȳ)
2, RSS :=

T∑
t=1

(yt −y
∗
t )

2

standing for total sum of squares, explained sum of squares and

residual sum of squares. Textbooks in statistics and econometrics [5,

46, 96] define the coefficient of determination either as the average

deviation of the predicted values from the mean in relation to the

average deviation of the original values:

R2

1
:= ESS/TSS or as R2

2
:= 1 − RSS/TSS .

like [10, 48] do. Let us additionally define the pseudo-coefficient of

determination
3
in line with Chen et al. [20] as

R2p
(
xT ,yT , (y∗)T

)
= 1 − RSS/(RSS +TSS).

If y∗t is estimated through ordinary least squares (OLS) then TSS =

RSS + ESS and R2

1
= R2

2
[25]. If user and grid loads are similar,

then one can construct a (linear) estimator y∗t which resembles the

behavior of yt well. In this case RSS ≪ TSS , and all measures take

values close to 1, indicating low privacy.

Kalogridis et al. [50, 52, 53] use R2

2
; they align load profiles max-

imizing their cross-correlation and obtain y∗ through OLS
4
. Kalo-

gridis et al. use ∆xT , ∆yT in [50, 52, 53] and xT ,yT in [52]
5
. Chen

et al. [20] compute R2p(x
T ,yT , (y∗)T ) with y∗t = xt .

2.2.3 Entropy Ratio. Entropy quantifies the uncertainty of a ran-

dom variable. The entropy ofU is defined as

H(U ) := −
∑

u ∈ΩU

PU (u) logb [PU (u)] .

2
Note that—although it might seem counterintuitive—it is indeedyt which is estimated

from xt , not vice versa.
3
The authors also call it “coefficient of determination”, although in general it does not

coincide with R2

1
or R2

2

4
In fact they use the equation 1 − RSS/(RSS + ESS ), which coinsides with R2

2
in

their case, as we have just explained.

5
We observe, that one does not need the OLS estimation in these works to compute

coefficient of determination, since it is equal to the cross-correlation squared [46]
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For example, an experiment with a highly unfair coin (e.g., falling

tails with a probability close to 1) has a less uncertain outcome

than one conducted with a fair coin. Consequently it has lower

entropy. The common value of b is 2, and the corresponding unit of

entropy is bit. McLaughlin et al. [72] use the ratio ER(∆X ,∆Y ) :=

H(∆Y )/H(∆X ) to measure privacy. They estimate P∆Y and P∆X in

two ways – using zero values in ∆yT , ∆xT (ERz) and excluding

them (ERnz). They assume that a greater reduction of entropy due to

BBLH stands for a higher difference between user load and grid load,

i.e., better privacy. However, ∆xT and ∆yT can differ significantly,

still having the same entropy.

2.2.4 Feature Mass. A “feature” in this context is defined as one

ocurrence of the time series value exceeding a predefined threshold

thr . So the feature mass FM of a user load xT with respect to the

threshold thr is defined as:

FM
(
xT

)
:=

T∑
t=1

1 [xt > thr] .

To be able to compare user and grid load, CFM gives the number of

points in time where features of both time series coincide:

CFM
(
xT ,yT

)
:=

T∑
t=1

1
[
|xt | > thr ∧ |yt | > thr

]
.

Several proposals for smart meter privacy derived measures from

FM and CFM . McLaughlin et al. [72] use the relative feature mass

FMr
(
∆xT ,∆yT

)
:= FM

(
∆yT

)
/FM

(
∆xT

)
with thr = 0; Yang et al. [99] use FM(∆yT ) with thr = 50W ; Zhao

et al. [102] introduce event detection accuracy with thr = 50W :

FMed
(
∆xT ,∆yT

)
:= CFM

(
∆xT ,∆yT

)
/FM

(
∆yT

)
.

Low values supposedly indicate high privacy.

2.2.5 K-Divergence. One computes the K-divergence K of random

variables V andU with joint domain ΩU = ΩV as

K(U ∥V ) =
∑

u ∈ΩU

PU (u) log

2PU (u)

PU (u) + PV (u)
.

It is used by [51] where K
(
X ∥Xavg

)
is compared to K

(
Y ∥Yavg

)
or

K
(
Y ∥Xavg

)
. Xavg (resp. Yavg) denotes a random variable of aver-

age consumption estimated from 30 different user loads (or rather

different time windows in the same user load) instead of just one.

Higher K-divergence K
(
Y ∥Yavg

)
supposedly indicate higher levels

of privacy, as it stands for more variability and therefore more

randomness in the time series. In our experiments we use K(X ∥Y ).

2.2.6 Kullback–Leibler Divergence. This privacy measure is some-

times referred to as relative entropy. For two random variables U
and V sharing the sample space ΩU , it quantifies how different the

distribution ofU is from that of V :

KL(U ∥V ) :=

∫
u ∈ΩU

fU (U ) log

fU (u)

fV (u)
du

For discrete distributions PU and PV the integral simplifies to

KL(U ∥V ) :=
∑

ω ∈ΩU

PU (u) log

PU (u)

PV (u)
.

Kullback–Leibler divergence is not symmetric in general, i.e., there

areU , V with KL(U ∥V ) , KL(V ∥U ). Kalogridis and others [53, 54]

use KL(∆X ∥∆Y ), while Yang and others [98] use KL(∆Y ∥∆X ). This
measure is also mentioned but not used in [104], where the authors

operate on distributions X and Y of non-differenced load profiles.

In order to compute this measure, Kalogridis and others [53, 54]

use the last formula and preliminarily quantize load profiles in

bins of equal size. In [53] the bin size is set to 6W, whereas in

[54] they consider different sizes and recommend 100W. Intuitively,

more bins result in better estimates if the length of load profiles is

sufficiently large. Otherwise, some bins will have a small number of

observations, resulting in an unreliable estimate of Kullback–Leibler

divergence. Yang and others [98] do not specify the procedure they

use to calculate this measure.

2.2.7 Load Variance. Tan et al. [85] propose the load variance

LV
(
yT

)
:=

1

T

T∑
t=1

(yt − E)
2

as a privacy measure, where E is a constant picked by the user.

They argue that a constant load would yield perfect privacy. Hence

a deviation of the grid load from some constant would be a good

indicator of privacy. If E is the average grid load
1

T (y1 + · · · + yT ),

this is nothing but the sample variance of the time series yT .

2.2.8 Mutual Information. Mutual information is one of the most

widely used privacy measures for BBLH algorithms. The mutual

information of two random vectorsU and V is

I (U ;V ) :=
∑

u ∈ΩU

∑
v ∈ΩV

PUV (u,v) log

PUV (u,v)

PU (u) PV (v)
.

One often uses the average mutual information

MI
(
XT ,YT

)
:=

1

T
· I

(
XT

;YT
)

as a privacy measure, also referred to as information leakage rate.
Since generally only one sample xT ,yT of the random variablesXT

,

YT is available, further assumptions, like i.i.d. or Markov properties,

are often employed to estimate XT
, YT from given data and to

simplify the calculation ofMI .
Under the assumption that Xt are i.i.d. and Yt are i.i.d., like in

[21, 22, 34, 41, 43, 45, 100, 102, 104], this formula simplifies to

MI
(
XT ,YT

)
i
= I (X ;Y ).

Some authors [85, 100] make the less strict assumption of stationary

first-order Markov processes, so the formula becomes

MI
(
XT ,YT

)
s
=
(T − 1)I (Xt ,Xt−1;Yt ,Yt−1) − (T − 2)I (Xt ;Yt )

T
.

In contrast to [100], Tan et al. [85] only model XT
and (XT ,YT ) as

stationary first-order Markov processes, but not YT . In this case the

privacy measureMIs , defined by the right hand side of the above

equation, provides a lower boundMIs (X
T ,YT ) ≤ MI (XT ,YT ) for

the mutual information.

Chin et al. [22] propose so-called feature-dependent first-order

Markov processes to model consumption (X̃K , ỸK ), K ≤ T . To
construct (X̃K , ỸK ), the period {1, . . . ,T } is split into K intervals

{1, . . . ,T1} ∪ · · · ∪ {TK−1, . . . ,TK = T } = {1, . . . ,T }. Within each
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interval {Tk−1
, . . . ,Tk }, with k ∈ {1, . . .K}, the values xt resp. yt

are assumed to be i.i.d. realizations of the random variables X̃k
resp. Ỹk which form first order Markov processes X̃K

and ỸK
. The

resulting privacy measure is the mutual informationMIm(X̃K , ỸK )

of these (not necessarily stationary) first-order Markov processes.

Yang et al. [100] useMI
(
∆XT ,∆YT

)
with and without assumption

of a first-order Markov process; they also apply it to ‘binary ver-

sions’ of ∆xT , ∆yT , i.e., when these load profiles are quantized

using two bins to estimate respective probability functions. We call

this versionMIb in our experiments. Zhao et al. [102] apply mutual

information to both differenced and non-differenced load profiles,

the other references mentioned above useMI
(
XT ,YT

)
. Other work

using or mentioning average mutual information as a measure of

smart meter privacy is [8, 60, 63, 79, 82, 86, 87, 92].

2.2.9 Conditional Entropy. Conditional entropy—also referred to

as equivocation—of a random variable U given V is the difference

of the entropy ofU and the mutual information ofU and V :

H (U |V ) := H (U ) − I (U ;V ) .

High relative entropy indicates low similarity of U and V . Condi-
tional entropy is mentioned as a potential privacy measure in [53,

86]. Yao and others [101] use a slightly more specialized variant

of conditional entropy: They include a random variable PT which

models the time series of prices and also normalize the measure to

lim

T→∞
H

(
XT

���YT , PT ) / lim

T→∞
H

(
XT

)
.

For the evaluation—where they model distributions rather than es-

timating them from data—they assume X∞ and T∞ to be i.i.d. and

Xt to be independent of Pt (t ∈ N). For experiments restricted to

fixed demand series XT
, this measure differs from negative mutual

information only by a constant. Hence although indication of abso-

lut privacy levels differ between both measures, ranking different

BBLH algorithms with conditional entropy and mutual information

yields the same results. In our experiments we use H (X |Y ).

2.2.10 Removed Uncertainty. Depending on how reversible a BBLH

algorithm is, it can be possible to reconstruct original values xt from
yt . Let x

∗
t denote a reconstruction, x̃t := xt − x

∗
t and ỹt := xt − yt

for t ∈ {1, . . . ,T }. Assuming that x̃t and ỹt are i.i.d. realizations of
random variables X̃ , Ỹ , Laforet et al. [61] use the standard deviations
σX̃ and σỸ of X̃ and Ỹ to calculate a privacy measure

RU
(
X̃ , Ỹ

)
:= 1 − σX̃ /σỸ

called removed uncertainty. If reconstruction is successful (i.e., little

privacy), the difference xt −x
∗
t is small and RU takes values close to

1. Note that the formula is similar to the one of R2

2
in Section 2.2.2.

Hence removed uncertainty behaves similarly if one uses OLS to

obtain predictions (x∗t here or y∗t in Section 2.2.2).

In [61], the authors propose to fit linear regression of yT on xT

(RU r
) or to apply wavelet filtering to yT , to obtain (x∗)T (RU w

).

2.2.11 Total Variation Distance. This is a distance measure of prob-

ability distributions. For two random variablesU andV with ΩU =

ΩV , the total variation distance, also dubbed variational distance, is

TVD(U ,V ) :=
1

2

∑
u ∈ΩU

|PU (u) − PV (u)|

The interpretation of this measure is similar to that of Kullback–

Leibler Divergence (Section 2.2.6). Indeed, according to Pinsker’s

inequality [69] (Theorem 2.16) we have

2 · TVD(U ,V ) ≤
√
KL(U ∥V ).

Kalogridis et al. [50] use TVD(X ,Y ) and assume independence of

time. Other work [11, 104] mentions but does not use this measure.

2.3 Other Measures
Many of the above privacy measures quantify the distance or degree

of association of two time series. There exist manymore approaches

to do so. Crooks [24] alone describes more than 50 information-

theoretic measures, Giusti at al. andWang et al. [44, 93] list different

(dis)similarity measures for time series. while this section contains

an exhaustive list of measures applied to the BBLH setting thus far,

one cannot by no means see it as a complete list of possibilities.

3 ENERGY STORAGE CHARACTERISTICS
AND TECHNOLOGIES

The level of privacy achievable with BBLH algorithms depends on

the characteristics of the storage system, such as the capacity or

charging/discharging rate. In this section, we discuss the character-

istics important for privacy protection in households at a qualitative

level. We review and compare storage technologies for this appli-

cation. While recommending a specific storage system requires

considering many factors including user load and BBLH algorithm,

our analysis already allows to rule out certain technologies. Finally,

we list some currently available systems and their characteristics,

which we use for our experiments in Section 6.

3.1 Characteristics of Energy Storage Systems
Many BBLH assessments assume arbitrary values, e.g., 2 kWh and

2 kW [101], for capacity andmaximum (dis)charging rate of the stor-

age system. Here, we discuss why one should carfully choose these

values. We do so by closely looking at the practical requirements

of using storage systems for privacy protection in households.

Capacity. The capacity of an energy storage system is a critical

factor for hiding time-consuming loads and temporal dependencies

in the load profile. Higher capacities can lead to higher privacy,

but it can be unnecessary or not worthwhile to have a storage

capacity above some limit, as shown in [8, 21, 100, 102]. In practice,

however, one often chooses the storage capacity proportional to

the yearly electrical energy consumption of a household [83]. This

value strongly depends on the country, climate, type of residence,

the number and consumption behavior of occupants. For instance,

a residential consumer in the U.S. uses 10972 kWh annually on

average [31], whereas a 3-person household in Germany consumes

4000 kWh per year [17]; 29.5 kWh and 11 kWh per day, respectively.

Charging/Discharging Rate. The maximum charging/discharging

rate of the storage system also impacts the level of privacy achieved

using BBLH algorithms [21]. Home appliances with high consump-

tion, such as tumble dryers, heat pumps, water heaters and chargers

for electric vehicles, can change the overall consumption pattern

and cause sharp spikes in the load profile, leaking private informa-

tion. For instance, a tumble dryer and a water heater can have a
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consumption as high as 6 kW and 4.5 kW, respectively [78]. It might

be necessary for the energy storage system to have a higher charg-

ing/discharging rate (power) than the demand of these appliances

to be able to protect privacy of a private household, depending on

the sampling rate of the smart meter’s recordings.

Lifetime and Cycling Times. BBLH algorithms often mandate a

high number of charging cycles of the storage system. Each storage

system has a maximum number of useful cycles. This number usu-

ally indicates when a significant part of the capacity of the system

is lost. Charging and discharging of a storage system can also be

optimized, as not all charges and discharges have the same effect

on lifetime. Although controlling the rate of charge/discharge in

a lifetime-preserving manner can mitigate capacity loss [75], the

effect cannot be neglected.

Round-Trip Efficiency. Round-trip efficiency is the ratio of the

energy retrievable from a storage system to the energy given as

input. The higher the round-trip efficiency, the lower is the cost of

privacy protection. Protecting privacy using storage systems calls

for a high round-trip efficiency, as the systems are discharged much

more frequently compared to applications like backup power.

Cost. The cost of an energy storage system is undoubtedly sig-

nificant as well. While the price of some storage technologies, such

as lithium-ion batteries [90], has been plummeting drastically over

the last decade, some are still too costly for private households.

3.2 Energy Storage Technologies
This section gives an overview of energy storage technologies from

the perspective of their suitability for privacy protection with a

focus on characteristics described above. While many reviews of

storage technologies for various applications exist [26, 35, 47, 73],

there is none for this perspective. For each technology we comment

on the issues which arise when it is used for privacy protection.

Besides the following storage technologies, there are many others

which we do not address here because we deem them unsuitable

for BBLH algorithms in households. We explain this in Appendix C.

3.2.1 Electrochemical Battery Energy Storage Systems. Electrochem-

ical energy storage systems are a common choice for household

applications [37]. This is mainly due to their low cost and wide-

spread availability and despite reliability and lifetime concerns.

Lead-Acid Batteries. Lead-acid batteries are the oldest and most

mature electrochemical batteries [26, 73, 103]. They offer several

significant advantages such as low investment costs, availability,

low self-discharge rates (less than 0.1% per day [26]), high efficiency,

and ease of transport. But limited lifetime (1200–1800 cycles [103]),

reliability issues, low energy and power densities are big drawbacks.

High discharge rates and frequent deep discharge cycles further

reduce their lifetime. Lead-acid batteries also suffer from sensitivity

to ambient temperature. High temperatures (> 45
◦C) reduce their

lifetime, low temperatures (< −5
◦C) reduce efficiency. This is due

to a thermodynamic effect which increases the resistance in the

electrolyte [29, 35]. According to Figgener et al. [37], lead-acid

batteries are almost forced out of the market in developed countries.

Due to the limited lifetime of the lead-acid battery and its sen-

sitivity to high discharge rates, it is not well-suited for privacy

protection, despite being suggested in the literature [72]. BBLH

algorithms often require frequent power cycling, in particular at a

partial state of charge, i.e., when the battery is not fully charged.

This can lead to premature failure of a lead-acid battery [70].

Lithium-Ion Batteries. Lithium-ion (Li-ion) batteries, commer-

cially produced since the 1990s, have a higher energy density (en-

ergy per unit of volume), longer lifetime, higher charging and dis-

charging rates, faster response, and higher cycle efficiency (up to

97% [73]) in comparison to lead-acid batteries. A Li-ion battery can

be about one-quarter of the weight and one-half of the volume of

a lead-acid battery with the same energy content. Capital costs

of Li-ion batteries have plummeted drastically over the last years,

falling below 80% of its price in 2010. This could continue to at least

50% of its 2018 price by 2030 and another 25% by 2040 [90]. Deep

discharge of the battery can wear out the capacity. But one can

avoid this by limiting the maximum rate of discharge.

There are different possible combinations of the materials for

electrodes in Li-ion batteries, which can improve one or more char-

acteristics of the technology, including energy density, lifetime, or

charging/discharging rate. Among these different types of Li-ion

batteries, Lithium Iron Phosphate batteries can be well-suited for

privacy protection, because they can have more cycles in their

lifetime, higher peak power and a more gradual loss of capacity.

Electric Vehicles (EV). Earlier Electric Vehicles (EV) used lead-

acid or other electrochemical batteries, but nowadays almost all EVs

are based on Li-ion batteries. Batteries in EVs are usually charged at

times when people are home, as more than 80% of EV drivers charge

their cars at their own house [2]. If the EV charging device does not

have a separate meter (which is required by some grid operators

[40]) EV batteries can potentially be used for privacy protection

as well. Depending on the car model, today’s EV batteries have a

capacity between 6 and 100 kWh and power in the range of 2.5

to 40 kW—which is significant. However, using an EV battery to

protect privacy has various limitations. The availability of the EV

during the day is not guaranteed, and a BBLH algorithm would

significantly reduce the lifetime of the EV.

3.2.2 Flow Battery Energy Storage Systems. In contrast to electro-

chemical batteries, which store the energy in the electrodes, flow

batteries, also known as redox flow batteries, store energy in the

electrolyte. An advantage of these batteries is that their capacity

and power can be scaled independently from each other. The capac-

ity scales with the amount of electrolyte stored in external tanks,

while the power depends on the active area of the cell compartment.

Therefore, these batteries can be customized in accordance with

a household’s needs. Flow batteries also have a long lifetime (in

the order of 10,000 cycles) and no degradation with deep discharge

or overcharge [103]. However, their market share for household

applications is negligible [37]. This might be due to their relative

complexity, high space requirements, and low efficiency (around

75-85% [19]). Here, we briefly describe two common types of flow

batteries which can be used in households.

Vanadium Redox Flow Battery (VRB). VRB is the most mature

type of flow batteries. AVRB cell has an efficiency of up to∼85% [19],

much lower than the efficiency of the Li-ion batteries. One other
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drawback of the VRB is its low power and energy density, requir-

ing considerable space. Vanadium Bromide redox flow batteries,

also known as the “Generation 2” VRB, have a higher energy den-

sity, but a decreased lifetime [89], an essential characteristic for

implementing BBLH algorithms.

Zinc Bromium Flow Battery (ZnBr). ZnBr batteries are not as ma-

ture as VRBs. Nevertheless, utility-scale and even small-scale ZnBr

batteries for households are now available on the market (Table 4).

They have higher energy density in comparison to VRB. However,

these batteries require an additional pump for the circulation of

bromine complexes [26]. Like with many other technologies, the

lifetime of ZnBr batteries has improved significantly over the years.

3.2.3 Comparison. The final choice of a storage system for pri-

vacy protection requires comprehensive simultaneous evaluation

together with the choice of a BBLH algorithm (cf. Section 7), which

is beyond the scope of this paper. We can however qualitatively

compare the reviewed technologies according to their characteris-

tics described, see Table 3. From our review, one specific chemistry

of Li-ion batteries—the Lithium Iron Phosphate batteries—seems to

be a better candidate for privacy protection than the others. This

is because they can provide high peak power to cover spikes in

the load profile, have a higher lifetime and lower degradation with

more cycles. Redox flow batteries can in some cases provide a higher

number of cycling times than Li-ion batteries but at a lower round

trip efficiency. There is a need for energy storage systems which

can provide more cycles with fewer concerns for their lifetimes.

Table 4 shows a comparison of storage systems currently avail-

able on the market. All Li-ion batteries in this table are lithium iron

phosphate batteries. We provide efficiencies and costs considering

both battery and inverter. In the case of the LG Chem and BYD

batteries which are sold without an inverter, we assume an inverter

efficiency of 95.3% (efficiency of SMA-SB-240 inverter [97]). Next,

we assume the cost of an inverter to be half the price for a battery

with the same rating.

4 BBLH ALGORITHMS
In our experiments we use five BBLH algorithms which are the

most prominent ones in literature. They specify the logic of setting

yt given xt and storage characteristics.

4.1 Best-Effort
The idea of the best-effort algorithm (BE1) [53], also known as the

water-filing algorithm [54], is to keep the grid load constant for

as long as possible, given the constraints implied by the storage

system. At each point in time t , BE1 chooses the rate bt = xt−1 −xt
of charge/discharge to compensate for the change in user load if

the remaining storage capacity and maximal charging/discharging

rate allow to do so. Otherwise, BE1 charges/discharges the storage

system at the maximal rate. See [53] for the formal description.

Yang et al. [100] propose a slightly different variant of this al-

gorithm (BE2). There, when maintaining the required charging/-

discharging rate is not possible given storage capacity and its cur-

rent state of charge, it is set to yt = xt .

4.2 Non-Intrusive Load Leveling (NILL)
By default, in a stable state, the NILL algorithm [72] uses a battery to

keep the external load stable at the value yst. It does so by drawing

power from the battery to supply the appliances when the power

demand is higher than yst and by charging the battery from the

smart grid when the demand is lower than yst. When the battery

is relatively empty or full, the algorithm enters the so-called low
recovery state or high recovery state with the new target load values

of the grid yl and yh , respectively. The value yl is equal to the max-

imal affordable charging rate, while yh is set below (1–5A in [72] or

0.5A in [100]) the most recent measured electrical current (xt /V , if

xt is power and V is the grid voltage). After certain conditions are

satisfied, such as the charge of the battery reaching a certain level

or the current dropping sufficiently, the algorithm returns to the

stable state. The original paper [72] does not account for the case

when the difference between yt and xt is greater than the maximal

battery charging/discharging rate. Yang et al. [100] describe the al-

gorithm more completely. Our implementation of NILL is based on

their paper, incorporating additional actions to avoid errors, which

would have occurred with batteries with relatively low capacities.

4.3 Stepping Algorithms
Stepping algorithms [100] set the grid load to multiples yt = ht · β
of the maximal (dis-)charging rate β of the storage system. The

factor ht is either ⌈xt /β⌉ or ⌊xt /β⌋. Let st be the charging signal.
I.e., the battery is charging if st = 1 and discharging if st = 0.

Stepping algorithms are defined by the logic to control this signal.

Lazy Stepping. This algorithm aims at keeping yt constant. This
fails if (1) the battery is full and cannot maintain the previous exter-

nal load without being overcharged. In this case it will discharge.

(2) If the battery is empty and cannot keep up the external load

any more, it will charge. (3) If the load demand is so low or so

high that |yt − xt | > β , the battery charges if its less than half

full and discharges otherwise with Algorithm (LS1). With (LS2), st
randomly takes value 0 or 1 in this case.

Lazy Charging (LC). The lazy charging algorithm keeps st con-
stant whenever possible: If the battery is full, it provides electricity

until it is empty. Then it will fully charge again. An advantage of

this algorithm is the reduced number of charging cycles.

Random Charging (RC). Here, st does not depend on st−1. The

probability of (dis)charging the storage is P[st = 0] = SOCt /C ,
where SOCt is the state of charge of the battery andC its capacity.

5 LOAD PROFILES
For our experiments we form 37 load profiles from four different

sources listed in Table 5. We achieve a high diversity concerning

(1) sampling rate, (2) number of residents, (3) day of the week

(working day or weekend), (4) employment status, (5) location

and (6) time of the year. To obtain different sampling rates, we

aggregate high-resolution load profiles. Some data sets havemissing

measurements. We impute these by repeating the last available

measurement. For each load profile we add seven preceding days.

We use them for BBLH algorithms to make the result less dependent

on initial parameters, like state of charge of the storage, but exclude
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Storage Technology Energy
Density

Power
Density

Number
of Cycles

Round-trip
Efficiency Degradation Costs Applicable

Lead-Acid Battery − ++ −− ++ −− + + + No

Lithium-ion Batteries + + + + + + + + + ++ − ++ Yes

Vanadium Redox Flow Battery (VRB) − −− + + + − + ++ Yes

Zinc Bromium (ZnBr) Batteries + + + + + − + ++ Yes

Table 3: Comparison of storage technologies suitable for privacy protection.

Type Manufacturer Model C
(kWh)

CR/DR
(kW)

RE
(%)

Lifetime
(cycles)

ECC
(e/kWh)

CpC
(cent/kWh)

Price
(e)

Li-ion

Tesla
b

PowerWall 2 13.5 4.6 90 3200 385 16 6850

Enphase
c

AC Battery 1.20 0.27 90 3650 1417 39 1700

Sonnen-

Batterie
d

eco 8.0/4 4 2 89 10000 1949 19.4 7795

eco 8.0/6 6 3.3 89 10000 1467 14.96 8800

Solarwatt
e

Myreserve Pack 2.4 4 92 N/A 729 20 1750

LG chem
f

RESU 3.3 3.3 3.6 85.5 6000 1636 27.7 2450

RESU 6.5 6.5 5 85.5 6000 1060 17.9 6890

RESU 10 10 5 85.5 6000 7640 12.7 7640

BYD
g

B-Box 2.5 2.45 2.5 85.5 6000 954 15.9 2238

B-Box 5 4.9 5 85.5 6000 815 13.60 3995

B-Box 7.5 7.35 7.5 85.5 6000 821 13.77 6073

B-Box 10.0 9.8 10 85.5 6000 798 13.31 7830

VRB VoltStorage
h

Smart 6.8 1.5 74.6 10000 882 8.82 6000

Zinc

Bromiom

Redflow
i

Zcell 10 3 75.2 3650 760 20.82 7600

Schmid EverFlow
j

Compact 15 5 N/A ≥10000 N/A N/A N/A

b
https://www.tesla.com/de_DE/powerwall?redirectno

c
https://enphase.com/en-au/products-and-services/storage

d
https://sonnen.de/stromspeicher/sonnenbatterie-eco/

e
https://www.solarwatt.com/solar-batteries/myreserve

f
https://www.lgchem.com/product/PD00000149

g
https://en.byd.com/energy/b-box-ess/

h
https://voltstorage.com/en/voltstorage-smart-home-battery/

i
https://redflow.com/products/redflow-zbm2/

j
https://schmid-group.com/en/business-units/energy-systems/everflow-energy-storage-solutions/compact-storage

Table 4: Comparison of energy storage technologies. C — capacity, CR/DR — charging/discharging rate, RE — roundtrip effi-
ciency, ECC — energy capital cost, CpC — cost per cycle.

Name Used in Resolution
REDD [59] [32, 34, 36, 61, 85, 101, 102, 104] 1s

CER [39] [22, 57, 61, 62] 30m

ECO [13] [9] 1s

Smart* [12] - 1s

Table 5: Data sources used in experiments.

them when computing privacy measures. The lengths of resulting

load profiles are 1–14 (+7) days with sampling rates of {30, 60, 900,-

1800}. This is similar to the ranges used by many of the papers

mentioned in Section 2 – see Tables 11 and 12 in Appendix D.

Table 15 in Appendix F summarizes load profiles we used.

6 EXPERIMENTS
This section contains our experimental setting and results. We study

towhich extent (1) privacymeasures, (2) load profiles and (3) storage

characteristics affect relative performance of BBLH algorithms.

6.1 Experimental Setting
The algorithms studied here require specification of the battery

capacity, charging/discharging power and initial state of charge.

We chose the latter to always be 0.5. We experiment with four sets

of capacity, charging and discharging power values, corresponding

to ‘AC Battery’, ‘eco 8.0/4’, ‘Myreserve Pack’ and ‘RESU 6.5’, see

Table 4. We apply the five algorithms from Section 4, including

two versions of the BE and the LS algorithm, to 37 load profiles (cf.

Section 5). For each pair of user load and respective grid load we

compute the level of privacy. To this end, we use 11 privacy mea-

sures introduced in Section 2.2 and listed in Table 2. If the measure

was applied to undifferenced or differenced load profiles (or both) in

previous research, we do the same. As mentioned before, we adapt

K-divergence and relative entropy for our experimental setting as

K(X ∥Y ) and H (X |Y ) respectively. We use different variants of en-

tropy ratio (ERz and ERnz), coefficient of determination (R2

2
and

R2

p ), feature mass (FMr , FM and FMed), mutual information (MIi,

MI s ,MIm andMIb) and removed uncertainty (RU r
and RU w

). This
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Measure ∆ BE1 BE2 LC LS1 LS2 NILL RC
R2

2
y 2 3 7 4 5 6 1

R2

2
n 5 7 2 3 6 4 1

MIb y 2 1 7 6 5 4 3

MIi y 4 3 6 2 1 7 5

MIs y 5 3 6 1 2 4 7

min rank 1 1 1 1 1 1 1

max rank 7 7 7 6 7 7 7

Table 6: Average algorithm ranking with respect to privacy
measures (excerpt).

results in 25 different privacy measures and 37 · 25 · 7 · 4 = 25900 ex-

periments in total. For the measures which require quantization of

load profiles we use 20 equidistant bins as suggested in [21, 22, 101].

Privacy measures take values in different ranges. Some are fre-

quently normalized to bring them to within [0, 1] (see, e.g., [58] for

mutual information). However, such a normalization is not straight-

forward for other measures like load variance. To overcome this

issue and gain comparability, we assign ranks {1, . . . , 7} to the algo-

rithms in accordance with the values of privacy measures for each

combination (load profile, battery characteristics, privacy measure).

Rank 1 corresponds to the best privacy level, rank 7 to the lowest.

6.2 Results
For our results, we build summary tables as follows. Given the factor

in question (e.g., privacy measures) we compute the average rank

of each algorithm over the remaining factors (load profiles/storage

characteristics), and rank the algorithms again according to this

average rank. A new rank 1 corresponds to the best, 7 to the worst

average performance. Due to limited space show only representative

results here. Complete results are in Appendix E.

Table 6 shows the results for different privacy measures (using

the same abbreviations as in Table 13). The column “∆” indicates
whether a measure is applied to differenced load profiles. Note that

even different variants of the same measure (MIb,MIs orMIi), or
the change from differenced to undifferenced load profiles (R2

2
) leads

to different rankings. To some extent, this is in line with the findings

in [100, 102] (which consider onlyMI ), but the NILL algorithm is

not a clear outsider in our experiments. The last two rows show

the lowest and the highest average rank of the algorithms.

Table 7 highlights the impact of different data sets. Both Table 6

and Table 7 indicate that almost every algorithm can be best or

worst, depending on the chosen load profile and privacy measure.

Table 8 lists results with respect to the battery characteristics.

One can see that they also have a significant influence one the

relative performance of the algorithms in terms of privacy achieved.

Our findings so far demonstrate that all three factors significantly

affect the comparison results. Since there is currently no agreement

on which load profiles, storage and privacy measures constitute

a “gold standard” for BBLH, no fair relative evaluation of BBLH

algorithms is possible at this point. Hence it is crucial to agree on a

procedure to assess the quality of BBLH algorithms.

Load profile BE1 BE2 LC LS1 LS2 NILL RC
CER5 3 5 6 4 2 7 1

ECO5 5 2 3 4 6 1 7

REDD5 6 5 3 2 4 1 7

SmartB2 4 2 6 1 3 7 5

min rank 2 1 1 1 1 1 1

max rank 7 7 7 5 6 7 7

Table 7: Average algorithm ranking with respect to load pro-
files (excerpt).

Storage BE1 BE2 LC LS1 LS2 NILL RC
AC Battery 1 2 7 3 4 6 5

eco 8.0/4 7 4 5 1 2 3 6

Myreserve Pack 7 6 3 2 1 4 5

RESU 6.5 7 5 4 3 2 1 6

Table 8: Average algorithm ranking with respect to battery
characteristics.

7 DISCUSSION
In our experiments in Section 6, we followed the common proce-

dure to evaluate BBLH algorithms. But since reality is even more

complicated than our extensive evaluation framework, some expla-

nations of the inherent simplifications of this evaluation procedure

are due. Furthermore, we will discuss costs implied by BBLH and

their potential impact on the utility of smart metering; one should

not disregard these factors when estimating the quality of BBLH al-

gorithms. Finally, we reason about possible methodologies to agree

on load profiles and privacy measures for BBLH evaluation.

Simplifications. In our experiments we applied the same simpli-

fication as related research papers: We assume the sampling rate of

a smart meter to coincide with the frequency of a BBLH algorithm

taking actions. This is a strong assumption since there is no reason

for these two rates to be equal. Allowing BBLH to operate at differ-

ent frequencies may affect the outcome significantly. Next, active

power levels are not the only output of smart meters. They also

measure reactive power, power factor, voltage and current harmon-

ics [84]. All this can reveal private information as well. Current

harmonics, for instance, can indicate types of appliances [4].

Utility of Smart Meters and Costs of BBLH. Even a BBLH algo-

rithm which provides exceptional privacy can be infeasible if it

comes at high costs or curbs the utility of smart metering. One

should account for this when assessing BBLH algorithms. Reasons

given for smart metering include flexible pricing, which encourages

consumers to shift demand to off-peak hours [11, 16, 20, 60, 63, 71,

74, 85, 94, 98–101, 104], precise load forecasts [11, 16, 60, 79, 94, 102],

support for alternative energy sources [41, 43, 50, 52, 54, 72, 87] and

others [8, 18, 21, 22, 30, 36, 38, 53, 57, 62, 64, 65, 67, 91, 92]. Since

BBLH affects consumption patterns, it will likely affect the utility

of smart meters as well. For instance, nondeterministic algorithms

like random charging may decrease the accuracy of load forecasts,

while load leveling improves it [23].
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Additional costs for consumers who apply BBLH are quite di-

verse. Obvious costs are associated with buying, maintaining and

disposal of the storage system. Table 4 lists the prices for several

storage technologies. As mentioned before, imperfect round-trip ef-

ficiencies of storage leads to energy loss and respective costs. BBLH

algorithms which make use of the storage with high intensity lead

to higher purchase and maintenance costs as well as costs due to

energy losses. To take these costs into account, we propose to use

a realistic simulation of a storage system, modelling its efficiency,

aging etc., when evaluating BBLH algorithms. In addition to pri-

vacy protection, storage systems can be used for demand response

[95]: They store energy when electricity is cheap and discharge it

when prices are high. Sacrificing this option for privacy increases

opportunity costs. Finally, widespread use of BBLH may result in

unpredictable changes of aggregated regional consumption, which

in turn could affect electricity prices.

There are several papers considering privacy together with util-

ity [23, 34, 79] or costs [60, 85, 98, 99]. But they are all limited to

picking one or few combinations of (1) privacy measures (2) load

profiles (3) battery characteristics (4) cost sources and (5) utility

measures. Our study has shown that such restrictions have a crucial

effect on the result, limiting the utility of these combined analyses.

User Load Data. Our experiments highlight that the choice of

data sets to test BBLH algorithms has a big impact on the resulting

privacy level. To achieve meaningful comparability, it is imperative

to arrive at a commonly used benchmark data set for this scenario.

This data set would need to be diverse to represent all types of user

behaviour, balanced not to favour abnormal behaviour and extensive
to assess privacy levels over long periods of time, where adverse

effects of habits/recurring behavioural patterns can be detected. It

might also be sensible to assess privacy levels with several different

data sets if these accurately depict different categories of users

or differently developed energy infrastructures. Such a range of

data sets would provide more accurate orientation to choose the

best algorithm in each specific situation. Note, however, that in

choosing an algorithm taylored to a specific situation, the choice

for this algorithm itself might disclose sensitive information.

Choice of Privacy Measure. Different storage characteristics and
different types of user loads are inherently present in the real world

and impact the level of privacy resulting from a BBLH algorithm. In

contrast, the choice of a privacy measure does not have any effect

on the actual privacy achieved by BBLH, only on its assessment.

Hence the challenge here is very different from those we still face

regarding different storage characteristics and testing data. The

goal is to arrive at a meaningful privacy measure which accurately

quantifies what is intuitively perceived as privacy. As of yet, BBLH

research largely seems to skip the vital step of assessing privacy

measures, comparing their theoretical properties and interpret the

real-world implications of their outputs for the BBLH scenario.

The first and already non-trivial step towards meaningful pri-

vacy measures is a rigorous definition of what privacy and private

information actually entails. Does the user want to hide specific

occurrences (like what they did on a specific Tuesday afternoon),

or ongoing lifestyle choices (e.g., never cooking at home), or both?

Some privacy measures, like Kullback-Leibler divergence or cluster

similarity, for example, do not depend on the joint distribution of

Figure 1: Privacy assessment considering reconstructability.

user and grid loads and are therefore clearly tailored towards hiding

lifestyle choices, habits and fixed characteristics of consumption

behavior. These measures will indicate no privacy at all if user and

grid load follow the same distribution, even if they are entirely

independent of one another, i.e., hide specific occurrences well.

Regardless of the definition of private information, there are

several properties a meaningful privacy measure should always

satisfy. Let us illustrate this with the example of reconstructability

or robustness to post-processing. Many privacy measures from Sec-

tion 2 assess a degree of dissimilarity between user and grid load,

without taking into account how reversible the BBLH algorithm is,

i.e., how well an adversary might be able to reconstruct the user

from the grid load. However, we stipulate that a meaningful privacy

measure should take reconstructability into account (cp. Figure 1).

This means that, if no additional information is needed to get from

the grid load to a reconstruction of the user load, a privacy measure

should not output a lower degree of privacy between reconstruc-

tion and user load than between the grid load and the user load.

For a more formal grasp on this property, see Appendix B. Recon-

structability, however, is only one property a meaningful privacy

measure should have to assess BBLH algorithms and smart me-

ter privacy in general. Identifying a sufficiently complete set of

required properties and developing privacy measures which sat-

isfy them is a challenging but ultimately necessary step towards

comparable and provable privacy in the context of smart metering.

8 CONCLUSIONS
Smart meters are considered essential in future energy grids. But

their frequent measurements pose significant risks to consumer

privacy. Battery-based load hiding (BBLH) can mask the actual

electricity demand, by charging and discharging an energy storage

system. Although a plethora of BBLH algorithms exists, it remains

unclear whether some of them are better than others. This is due

to a significant lack of understanding on how different factors –

(1) load profiles (2) storage characteristics and (3) choice of privacy

measure – affect the result of comparisons of BBLH algorithms.

In this paper, we contribute to closing this gap. Firstly, we sys-

tematically reviewed privacy measures proposed for BBLH as well

as currently available storage technologies. From this review we

already obtained valuable insights. For instance, there are several

approaches to calculate the same privacy measure which do not

agree with its accepted definition (e.g., coefficient of determination),

and lead-acid batteries are not well suited for BBLH. Next we con-

ducted an experimental study, evaluating several prominent BBLH

algorithms with a variety of load profiles and storage characteristics.

We compared the achieved level of privacy with different measures.
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Our results suggest that all three factors have a crucial effect on

the relative performance of BBLH algorithms. Hence without an

agreement on the proper way to evaluate BBLH algorithms, their

further development may have limited usefulness. We made our

implementation of BBLH algorithms and privacy measures freely

available along with the code to reproduce our experiments. Finally,

we discussed other factors which must be taken into account when

evaluating BBLH algorithms and establishing a theoretical basis for

choosing a suitable privacy measure.
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A SPECIALIZED PRIVACY MEASURES
In constrast to the general privacy measures surveyed in Section 2,

specialized measures require a lot of additional information, e.g.,

an hypothesis that is being tested, a description of the probabilistic

battery charging strategy or the schedule of each individual ap-

pliance. An overview of all specialized privacy measures can be

found in Table 9. As with general privacy measures before, the table

distinguishes whether a paper applies the respective measure to

original load profiles (x,y) or their time differences (∆x,∆y). For
several measures this separation is not applicable or not meaningful,

in this case references are centered between the columns.

Measure (x,y) (∆x,∆y)

AMBR [9, 66]

Classification accuracy loss [62]

Conditional K-Divergence [52] [52]

Confusability [62]

Fisher information [36]

NILM-based [9, 32, 34, 36, 61, 67]

Re-identification [61, 62], [57]
a

Sum of distance [20]

Type II error probability [64], [65]
a

a
It is not clear from the description, whether time differences are taken.

Table 9: Overview of specialized privacy measures.

Accumulated (Discounted) Minimal Bayesian Risk. This measure

considers appliance vectors ht ∈ {0, 1}
n
. Each entry (ht )i = 1 with

i ∈ {1, . . . ,n} indicates that household appliance i is turned on at

time t . The users consumption behavior is given as a stochastic

process HT
of appliance vectors with probability mass function

PHT . This induces probability functions PHt for individual time

slots. An adversarial decision strategy δ outputs appliance vectors

h∗ ∈ {0, 1}n which indicate the adversary’s guess about the actual

consumption. The individual adversarial model determines the

input upon which this decision is reached. We denote the set of all

possible decision strategies by 𝒟 . A cost function ct : ({0, 1}n )2 →

R+ gives the cost ct (h
∗
t ,ht ) that incurs to the adversary if he guesses

h∗t while the true consumption behavior at time t was ht . We can

now calculate the minimal Bayesian risk at time t :

r∗t = min

δ ∈∆

∑
ht ,h∗t ∈{0,1}n

ct
(
h∗t ,ht

)
· P

[
h∗t ← δ

��ht ] · PHt

(
ht

)
.

The weighted sum of individual minimal Bayesian risks over all

times t results in the accumulated discounted minimal Bayesian risk:

V =
T∑
t=1

βt−1r∗t .

Theweight basis β is called discount factor. It models the assumption

that private information becomes less valuable as it gets older.

Although V is defined in terms of expected costs to an adversary,

it can be construed as a privacy measure: The higher the costs to

the adversary, the more privacy is retained. Note that although this

measure does not explicitly take any battery charging strategy as

input, user and grid load, battery in-/outputs and charging strategy

may all contribute to the inputs of the decision strategy δ . An
intuitive adversarial model would, e.g., have h∗t := δ (y1, . . . ,yt )
depending on the previous grid load—which in turn depends on

consumption and charging behavior.

In [66], Li et al. model user’s consumption as a first order Markov

process given by a (time invariant) probabilitymass function PH |BH =
PHt+1 |Ht , where B denotes the backshift operator. The stochastic

process XT
of the user load deterministically dependends on the

consumption behaviour HT
, but only aggregate consumption ΣXT

with (ΣX )t := X1 + · · · + Xt is considered. Similarly, grid load and

storage in-/outputs are accumulated time series ΣYT and ΣBT . The
user’s battery control strategy is again modeled as a stochastic

process given by a time invariant probability mass function

PΣB |B(ΣB),B(ΣX ) = P(ΣB)t+1 |(ΣB)t ,(ΣX )t

The grid load ΣYT is deterministically determined by the stochas-

tic processes of user load and battery charging. [66] uses a rather

extensive adversarial model, where decision strategies are defined

by a probability mass function PH ∗t |(ΣY )t that depends on accumu-

lated grid load as well as the adversary’s knowledge of PH |BH and

PΣB |B(ΣB),B(ΣX ). The cost functions ct are assumed to be simple:

ct (h
∗
t ,ht ) = 1 whenever h∗t , ht and ct (h

∗
t ,ht ) = 0 otherwise.

Avula et al. [9] use a very similar approach, but with undis-

counted risk (β = 1).

Classification Accuracy Loss. Classification accuracy loss measures

how much worse a classification algorithm with a specific predic-

tion target performs on the modified grid load compared to the
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actual user load. Let S =
{(
xT ,yT

)
i
�� i ∈ I } be a set of pairs of user

and grid loads resulting from the application of a specific battery

algorithm. Let furthermore tg : I → im(tg) denote a prediction

target (e.g., employment/retirement status of household inhabi-

tants) on this set. LetCtg be a deterministic classification algorithm

which takes a time series zT of lengthT and outputs a classification

Ctg
(
zT

)
∈ im(tg). We can now define a baseline accuracy

acc
base
(tg, S) := max

τ ∈im(tg)

#{i ∈ I | tg(i) = τ }
#S

for the prediction target tg on S , and the accuracy of Ctg regarding

user and grid loads in S

acc
ul
(Ctg, S) :=

#

{
i ∈ I

��Ctg
(
xTi

)
= tg(i)

}
#S

acc
gl
(Ctg, S) :=

#

{
i ∈ I

��Ctg
(
yTi

)
= tg(i)

}
#S

.

The classification accuracy loss on S regarding Ctg is defined as

CALCtg (S) :=
acc

ul
(Ctg, S) − acc

gl
(Ctg, S)

acc
ul
(Ctg, S) − acc

base
(tg, S)

.

This measure is used by [62] for the prediction targets employment

status, number of devices, social class and retirement status.

Conditional K-Divergence. Kalogridis et.al. of [52] model load pro-

files as (first order) Markov chains and use conditional K-divergence

between user and grid load
6
:

Kωt |ωt−1
(X ∥Y ) =

∑
ωt−1∈Ω

PX (ωt−1)
∑
ωt ∈Ω

PXt |Xt−1
(ωt |ωt−1)·

· log

2PXt |Xt−1
(ωt |ωt−1)

PXt |Xt−1
(ωt |ωt−1) + PYt |Yt−1

(ωt |ωt−1)
.

Here PX is a steady-state probability distribution, with PX , PY esti-

mated from xT ,yT as well as ∆xT ,∆yT .

Confusability. In this case, the battery algorithm is again assumed

to be probabilistic and we look at the random grid load vectors YT

instead of sampled grid load instances yT ← YT . But in contrast to

most other measures, the adversary does not know the complete

grid load yT ← YT , but is restricted to the output q(YT ) ∈ im(q)
of only one query q. Comparability with other measures could

be achieved by using a query which samples the grid load and

outputs the resulting time series q(YT ) = yT with yT ← YT . For
this specific query we can define the pairwise confusability of

two random grid load vectors YT
1
,YT

2
via the probability density

functions fq
(
YT

1

)
and fq

(
YT

1

)
:

σ
(
YT

1
,YT

2

)
:=

∫
yT ∈im(q)

min

{
fq
(
YT

1

) (yT ), fq (YT
2

) (yT )} dyT .

As with classification accuracy loss, this measure needs a prediction

target tg on a specific user and grid load set S =
{(
xTi ,Y

T
i
) �� i ∈ I },

this time with random grid load vectors YTi instead of time series

yTi . Now form ∈ N and probability σ ∈ [0, 1] the query q is called

6
The publication [52] introducing conditional K-divergence applied to time series data

only provides the general formula, without specifying the meaning of the variables.

So this is our interpretation to some extent.

(σ ,m)-confusable regarding S , if and only if for every i ∈ I there
are distinct j1, . . . , jm ∈ I such that

tg
(
xTi

)
, tg

(
xTjk

)
and σ

(
YTi ,Y

T
jk
)
≥ σ

for every k ∈ {1, . . . ,m}. In the above scenario this means the

probability to confuse the grid load of household i with that of a

different household j is at least σ for at leastm households with

different target label tg
(
xTj

)
.

Confusability as a measure for BBLH algorithms was introduced

and estimated in [62].

Differential Privacy. Differential privacy is not inherently a mea-

sure, rather a parameterized privacy property which some BBLH

algorithms satisfy, but most do not. Differential privacy ensures

that a single person’s sensitive data is protected while accurate

general information (e.g. statistics about the whole population) can

be accessed. Hence application of differential privacy to the BBLH

scenario is not straight foreward and requires some explanations.

We first give the general definition before we discuss the special

BBLH setting.

Differential privacy was first introduced by Dwork et al. in

[28]
7
, with the slightly weaker and more commonly used notion of

(ε, δ )-differential privacy introduced in [27]. Both are properties of

randomized functions on datasets. Formally, a function 𝒦 gives

(ε, δ )-differential privacy, if for all neighboring datasets D1, D2 and

S ⊆ Range(𝒦 ) the inequality

P[𝒦 (D1) ∈ S] ≤ exp(ε) · P[𝒦 (D2) ∈ S] + δ

holds. Datasets usually contain one entry per person and are neigh-

boring if they differ in exactly one entry. While the output of 𝒦 is

to be released, the input dataset is kept secret. The parameter δ is

used as the “probability of exception”, where ε-differential privacy
can not be guaranteed. I.e. unless an improbable event (with proba-

bility at most δ ) occurs, the data of one individual may only increase

the probability of any output of 𝒦 by a small factor exp(ε). But if
changing the data pertaining to one person can only marginally

influence the output of 𝒦 , then releasing this output will not affect

any single person’s privacy too much.

Differential privacy is commonly achieved by adding noise (e.g.

from a suitably parameterized Laplace distribution) to the output

one is actually interested in. This noise can be provided by a battery.

In our BBLH scenario, each user’s/household’s data is considered

individually and not mixed with other household’s consumption

profiles. In this case, each database entry corresponds to the con-

sumption of one application within the household and 𝒦 outputs

the modified version yt of the sum xt of all database entries. Dif-
ferential privacy was applied to the BBLH setting in this manner

by [11, 62, 102]. Since no storage systems can provide unlimited

capacity, it is not possible to achieve ε-differential privacy in this

way, only (ε, δ )-differential privacy. The exception probability δ
is required for cases where the storage system would have to be

charged although it is already full (or discharged although it is

empty) to provide adequate privacy protection.

7
This is the revised version of the original paper from 2006.
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Fisher Information. Again we look at time series xT of user load

and the probabilistic outcome YT of a BBLH algorithm. With the

probability density function fYT of this random grid load vector, we

can calculate the Fisher information matrix I
(
xT ,YT

)
. Its entries

are defined as

FI
(
xT ,YT

)
i , j =

∫
yT

fYT
(
yT ) ·

∂

∂xi
log

(
fYT

(
yT

) )
·
∂

∂x j
log

(
fYT

(
yT

) )
dyT

for all i, j ∈ {1, . . . ,T }. The trace

Tr

(
FI
(
xT ,YT

)−1

)
can be used as an estimate of the privacy retained via the BBLH

algorithm. This is justified by the fact that for any unbiased user

load estimator (x∗)T this trace gives a lower bound on the expected

L2-norm error

E

[


xT − (x∗)T (
yT

)


2

2

����yT ← YT
]
≥ Tr

(
FI
(
xT ,YT

)−1

)
,

as long as mild regularity conditions are satisfied.

Farokhi and Sandberg [36] first proposed to apply this measure to

the context of BBLH algorithms, but use it to construct an algorithm

rather than to evaluate the result. Calculating this measure for

empirical data requires estimation of the function log

(
fYT

)
and its

T partial derivatives. As this is impossible without any additional

assumptions from a single sample, using this measure for privacy

evaluation from empirical data is problematic.

NILM-based Measures. There are multiple non-intrusive load moni-

toring (NILM) techniques [76] which process the load profiles to

extract the schedule of individual appliances. One may argue, that

much of sensitive private information can be inferred from such

decomposition. Thus, the drop of performance of a NILM technique

when the user load xT is replaced with a grid load yT can serve

as a privacy measure. This performance can be quantified for in-

stance, via accuracy [61, 67], F-score [9, 32, 36], AUC [34] or other

statistics [76].

To apply NILM technique’s performance drop tomeasure privacy,

one needs to decide which decomposition task to consider. For

instance Erdogdu and others [34] assume that the adversary tries to

distinguish between on/of states of the microwave, in [9, 32, 36, 61]

different appliances are considered. One also needs to choose a

specific NILM technique and decide on the data used to train it.

Re-identification. For re-identification the adversary has a database

of N records of grid loads yTi , i = 1, . . . ,N with personal identifier

removed. For each household there are values of several statistics,

called queries, as external knowledge. Examples of features are

energy consumption between 4 and 8 a.m. or the average bedtime.

For each i the adversary computes the values of these features for

yTi and compares the results to the external knowledge. A result of

such comparison is a score. A household j is re-identified if its grid

load yTj is within n grid loads with lowest scores. The final value

of this privacy measure is affected by database, selected features,

matching algorithm calculating the score and the value of n.
Re-identification is used by [57, 61, 62]. Evenwithout any privacy

algorithm re-identification is usually not perfect. Hence, to asses a

BBLH algorithm, comparison of re-identification accuracy before

and after modification is necessary. This is done either visually [62]

or via the ratio Axx − Axy/Axx [57, 61], where Axx , Ayy is the

accuracy of re-identification without and with load modification

respectively.

Sum of Distance. This metric was proposed in [20]. It takes into

account both temporal and spatial distances among the appliances:

SOD(xT ,yT ) =
∑
a

√√√ T∑
t=1

(ya,t − x̄a )2 +
T∑
t=1

√∑
a
(ya,t − xt )2.

Here ya,t is the measured electricity consumption of appliance

a at time t , x̄a is the average power consumption of this appli-

ance throughout the period T . Smaller values of SOD(xT ,yT ) are
supposed to reflect better privacy protection.

Type II Error Probability. The measure was proposed in [64, 65].

It estimates privacy against testing of some binary hypothesis

ℋ = {h0,h1}. Under several assumptions on the nature of load

profile time series (i.i.d., as required by Chernoff-Stein Lemma), the

behavior of adversary and the information available to them, esti-

mation of minimal type II error probability reduces to calculation

D(Y |h0 | |Y |h1),

where D(·| |·) is the Kullback-Leibler divergence. Application of this

measure in reality for privacy evaluation requires specifying the

hypothesis being tested. This can be, for instance, the model of a

dishwasher, as in [65]. The limitations of this use case is application

to a single load – the dishwasher. That is, the other appliances

should not interfere the consumption and the observation time

should be limited to the period when the appliance is on. The

possibility to extend this measure to more general case and how a

hypothesis could look like then is not obvious.

B RECONSTRUCTABILITY
Let 𝒵 be the set of all possible random processes of loads, and

let 𝒳 ⊆ 𝒵 be a (benchmark) family of random processes of user

loads. For any (not necessarily deterministic) privacy algorithm

PA, which takes the realisation xT ← XT
of some XT ∈ 𝒳 and

outputs a grid load yT ← PA(xT ), we can derive a deterministic

privacy algorithm PA𝒳 : 𝒳 → 𝒵 where XT ∈ 𝒳 maps to the

random grid load process YT := PA𝒳 (X
T ) which results from

taking the randomness in the steps xT ← XT
and yT ← PA(xT )

into account.

Proposition (Reconstructability). No privacymeasure (w.l.o.g.)
PM : 𝒳 ×𝒵 7→ [0, 1] (where 0 indicates no and 1 indicates perfect
privacy) can be “sufficiently good” to assess privacy algorithms if
there is a privacy algorithm PA𝒳 and a reconstruction algorithm
RA : 𝒵 → 𝒵 such that

Pr

[
PM

(
XT , RA

(
PA𝒳

(
XT ) )) < PM

(
XT , PA𝒳

(
XT ) ) ��� XT ←𝒳

]
is non-negligible.
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Storage Technology Energy
Density

Power
Density

Number
of Cycles

Round-trip
Efficiency Degradation Costs Applicable

Lead-Acid Battery − ++ −− ++ −− + + + No

Lithium-ion Batteries + + + + + + + + + ++ − ++ Yes

Vanadium Redox Flow Battery (VRB) − −− + + + − + ++ Yes

Zinc Bromium (ZnBr) Batteries + + + + + − + ++ Yes

Polysulphide Bromide Battery (PSB) −− −− + − + + No

Metal-Air Batteries + + ++ + + + − − −− − − − − − −− + + + No

Supercapacitors −− + + ++ + + ++ + + + −− − No

Superconducting Magnetic Energy Storage − − −− + + + + + ++ + + + + + + − − −− No

Flywheel Energy Storage Systems − + + + + + ++ + + + + + ++ − − −− No

Compressed Air Energy Storage Systems − − − − − −− ++ − − −− ++ + + + No

Thermal Energy Storage Systems ++ ++ + + ++ − − − + + + + + ++ Yes

Table 10: Comparison of storage technologies considering characteristics required for privacy protection.

C OTHER STORAGE TECHNOLOGIES
There are many energy storage technologies not mentioned in Sec-

tion 3.2 because we deem them unsuitable for privacy protection.

We now briefly explain this.

The lifetime of Metal-Air batteries is limited to only 100–300 cy-

cles [6]. For the other type of flow batteries, Polysulphide Bromide

Batteries (PSB), literature has so far only reported on showcases

for this technology, mostly for grid-scale applications [19]. Super-

capacitors and superconducting magnetic energy storage systems

cannot provide the capacity (few kWh) required for households in

a reasonable space.

Next, there are two types of mechanical energy storage systems

which have reached the capacity and power required for households

in the last decades. One is compressed air energy-storage systems,

which now can provide a power output around 3 kW [77]. But they

are still highly inefficient with a round trip efficiency of only 50%

[49]. The low energy density of this technology also mandates a

large tank to be installed, an issue for many household. The sec-

ond type of mechanical energy storage system are the high-speed

flywheel energy storage systems. With advances in high-speed

electrical machines, magnetic bearings, and composite materials,

flywheel energy storage systems can now reach few kWh of ca-

pacity [55]. However, such flywheels continue much more costly,

compare to batteries.

One attractive alternative for privacy protection could be ther-

mal energy storage systems, but only if their source of energy is

electricity. Obviously, When gas or other sources of energy provide

the demand for thermal energy, we cannot alter the load profile

using such thermal energy storage systems. In Germany, electric

water heaters take up to 1100 kWh per year [17], more than 25% of

the annual electricity consumption. However, thermal energy stor-

age systems are often equipped with separate meters and controlled

remotely by the grid operator. An example is the so-called night

heating storage system or storage heater found in some households

in the UK, Austria and Germany [88]. Grid operators can often

control these devices remotely with signals sent using power-line

communication carriers. So the grid operator can observe whether

the device is being operated or not.

A more comprehensive review of all storage technologies and

their applicability for the application of privacy protection in house-

holds is given in Table 10. This table also shows the incompatible

technologies, as compared to table 3.

D LOAD PROFILE CHARACTERISTICS
Tables 11 and 12 summarize lengths and sampling rates of user load

profiles used in the literature evaluating BBLH algorithms. Both

the lengths and sampling rates vary a lot, with the range of possible

values differing by two and three orders of magnitude.

Length (days) References
1–13 [21, 50, 53, 54, 98, 101]

24–36 [51, 52, 72, 85, 99, 100, 104]

61–530 [22, 57, 61, 62, 72, 100]

Table 11: Lengths of load profiles used in the other papers.

Sampling rate (s) References
1–30 [34, 50–52, 67, 72, 100]

60–300 [11, 20, 53, 54, 85, 98, 99]

900–3600 [22, 57, 61, 62, 104]

Table 12: Sampling rates of load profiles used in the other
papers.
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E COMPLETE EXPERIMENTAL RESULTS

Measure ∆ BE1 BE2 LC LS1 LS2 NILL RC
H y 4 3 6 2 1 7 5

H n 7 6 4 2 3 5 1

CS y 5 7 4 2 1 6 3

CS n 4 6 2 5 3 7 1

R2

2
y 2 3 7 4 5 6 1

R2

p n 1 3 5 6 7 2 4

R2

2
n 5 7 2 3 6 4 1

ERnz y 7 5 3 1 2 4 6

ERz y 5 1 6 2 3 4 7

FMed y 2 4 6 5 3 7 1

FM y 2 1 6 4 5 3 7

FMr y 7 6 4 1 2 3 5

K n 6 7 1 2 3 5 4

KL y 1 6 4.5 2 4.5 7 3

KL n 3 6 1.5 4 1.5 7 5

LV n 3 2 6 4 7 1 5

MIb y 2 1 7 6 5 4 3

MIi y 4 3 6 2 1 7 5

MIs y 5 3 6 1 2 4 7

MIi n 7 6 4 2 3 5 1

MIm n 7 6 4 2 3 5 1

MIs n 7 5 3 1 2 4 6

RU r
n 2 1 6 4 5 3 7

RU w
n 1.5 3 6 4 5 1.5 7

TVD n 6 7 1 2 3 4 5

min rank 1 1 1 1 1 1 1

max rank 7 7 7 6 7 7 7

Table 13: Average algorithm ranking with respect to privacy
measures.

Load profile BE1 BE2 LC LS1 LS2 NILL RC
ECO1 6 5 3 1 2 4 7

ECO2 4 3 6 1 2 5 7

ECO3 4 1 5 2 3 7 6

ECO4 5 1 7 4 3 2 6

ECO5 5 2 3 4 6 1 7

ECO6 7 5.5 4 2 3 5.5 1

ECO7 6 4 5 1 3 2 7

ECO8 6 3 4 1 2 5 7

ECO9 5 1 4 2 3 6 7

ECO10 4 3 6 1 5 2 7

ECO11 7 6 4 3 2 1 5

ECO12 7 6 5 1 2 4 3

ECO13 6 5 4 1 2 3 7

ECO14 6 4 5 2 1 3 7

ECO15 7 5 2 3.5 3.5 1 6

ECO16 2 5 4 1 3 6 7

ECO17 6 5 4 1 2 3 7

ECO18 5 7 3 1 2 6 4

ECO19 5 2 6 3 4 1 7

ECO20 7 5 4 2 1 3 6

ECO21 7 5 1 3 2 4 6

ECO22 6 1 2 5 4 3 7

ECO23 7 6 4 2 3 1 5

ECO24 6 4 5 1 2 7 3

REDD1 5 4 6 2 3 1 7

REDD2 2 5 6 4 3 1 7

REDD3 6 2 1 4 5 3 7

REDD4 2 4 7 5 3 1 6

REDD5 6 5 3 2 4 1 7

SmartB1 4 3 6 1 2 7 5

SmartB2 4 2 6 1 3 7 5

CER1 4 5 6 3 2 7 1

CER2 5 6 4 2 3 7 1

CER3 4 6.5 5 2 3 6.5 1

CER4 4 6 5 1 2 7 3

CER5 3 5 6 4 2 7 1

CER6 4 6 5 2 1 7 3

min rank 2 1 1 1 1 1 1

max rank 7 7 7 5 6 7 7

Table 14: Average algorithm ranking with respect to load
profiles.
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F LOAD PROFILES USED IN EXPERIMENTS

Table 15 summarizes all load profiles we have used in our experi-

ments. We formed the name of each load profile from the name of

the respective dataset (cf. Table 5) plus a number. The sampling rate

is the periodicity of measurements given in seconds. This sampling

rate does not, in general, coincide with the sampling rate of the

respective dataset from Table 5, as we have already explained in

Section 5. “# Res.” indicates the number of residents in a household

and “Household” specifies the household identifier for which we

use the data. This table uniquely identifies the data we use and can

be used for reproducing our results.

Name Sample rate # Res. Location Season Day Employed Units Start date End date Household

ECO1 30 4 EU Summer Weekend y W 15.07.12 15.07.12 household 1

ECO2 30 4 EU Summer Weekday y W 16.07.12 16.07.12 household 1

ECO3 60 4 EU Summer Weekday y W 17.07.12 17.07.12 household 1

ECO4 60 4 EU Summer Weekend y W 22.07.12 22.07.12 household 1

ECO5 900 4 EU Summer 1 week y W 23.07.12 29.07.12 household 1

ECO6 1800 4 EU Summer 2 weeks y W 30.07.12 12.08.12 household 1

ECO7 30 4 EU Winter Weekend y W 25.11.12 25.11.12 household 1

ECO8 30 4 EU Winter Weekday y W 03.12.12 03.12.12 household 1

ECO9 60 4 EU Winter Weekday y W 03.12.12 03.12.12 household 1

ECO10 60 4 EU Winter Weekend y W 09.12.12 09.12.12 household 1

ECO11 900 4 EU Winter 1 week y W 10.12.12 16.12.12 household 1

ECO12 1800 4 EU Winter 2 weeks y W 17.12.12 30.12.12 household 1

ECO13 30 2 EU Summer Weekend y W 15.07.12 15.07.12 household 2

ECO14 30 2 EU Summer Weekday y W 16.07.12 16.07.12 household 2

ECO15 60 2 EU Summer Weekday y W 17.07.12 17.07.12 household 2

ECO16 60 2 EU Summer Weekend y W 22.07.12 22.07.12 household 2

ECO17 900 2 EU Summer 1 week y W 23.07.12 29.07.12 household 2

ECO18 1800 2 EU Summer 2 weeks y W 30.07.12 12.08.12 household 2

ECO19 30 2 EU Winter Weekend y W 09.12.12 09.12.12 household 2

ECO20 30 2 EU Winter Weekday y W 10.12.12 10.12.12 household 2

ECO21 60 2 EU Winter Weekday y W 10.12.12 10.12.12 household 2

ECO22 60 2 EU Winter Weekend y W 16.12.12 16.12.12 household 2

ECO23 900 2 EU Winter 1 week y W 10.12.12 16.12.12 household 2

ECO24 1800 2 EU Winter 2 weeks y W 17.12.12 30.12.12 household 2

REDD1 30 na US Spring Weekday na W 26.04.11 26.04.11 house 1

REDD2 30 na US Spring Weekend na W 07.05.11 07.05.11 house 1

REDD3 60 na US Spring Weekend na W 01.05.11 01.05.11 house 1

REDD4 60 na US Spring Weekday na W 27.04.11 27.04.11 house 1

REDD5 900 na US Spring 1 week na W 26.04.11 02.05.11 house 2

SmartB1 30 4 US Spring Weekend y W 10.06.12 10.06.12 home B

SmartB2 30 4 US Spring Weekday y W 11.06.12 11.06.12 home B

CER1 1800 2 EU Summer 2 weeks n kWh 14.07.09 28.07.09 house1015

CER2 1800 2 EU Winter 2 weeks n kWh 01.12.09 15.12.09 house1022

CER3 1800 6 EU Summer 2 weeks n kWh 14.07.09 28.07.09 house1045

CER4 1800 6 EU Winter 2 weeks n kWh 01.12.09 15.12.09 house1097

CER5 1800 6 EU Summer 2 weeks y kWh 14.07.09 28.07.09 house1096

CER6 1800 6 EU Winter 2 weeks y kWh 01.12.09 15.12.09 house1096

Table 15: Load profiles used in experiments.


