Verification of Data-Value-Aware Processes
and a Case Study on Spectrum Auctions

Elaheh Ordoni*, Jutta Miille’, Klemens Bohm?
Institute for Program Structures and Data Organization
Karlsruhe Institute of Technology
76131 Karlsruhe, Germany
Email: {*elaheh.ordoni, Tjutta.muelle, iklemens.boehm}@kit.edu

Abstract—Verification techniques are fundamental to improve
the reliability of process designs in practice. In application
domains like auctions, the issue is extremely valuable; the
goal of auction designers is to prevent undesirable executions
and maximize certain outcome measures. Current verification
approaches tend to be confined to control flows, even though
data values play a significant role. We address this issue by
proposing a new data-value-aware verification approach: We
enhance process models with information on data values. Then
we transform the data-value-aware process models to Petri Nets,
respecting the semantics of data value usages. By employing an
off-the-shelf model checker and specifying data-value centered
properties, one can now verify data-value-aware process models.
A distinctive feature of our approach is the specification of data
values and of their modifications during the process. This enables
the verification of interesting properties in many domains. We
evaluate our approach against the use case of Simultaneous
Multi-Round (SMR) spectrum auctions. We verify SMR auction
models and compute extreme values of common auction measures
such as revenue.

I. INTRODUCTION

Industry takes great interest in verification techniques to
improve the reliability of process designs. To illustrate the
importance of reliable designs, think of spectrum auctions.
Spectrum auction revenue has been an important source of
governmental income. In Germany and the UK for instance, it
earned 50.8 and 37.5 billion Euros in 2000 [1]. Despite much
testing of various formats of spectrum auctions with human
subjects (“experiments” in what follows), auctions with embar-
rassing outputs have happened in the past. In the Dutch UMTS
Auction in 2000, the low revenue caused a fiasco in public
policy [2]. In another example [3], about fifty percent of the
items remained unsold. Clearly, discovering auction flaws by
means of evaluation methods, e.g., experiments is extremely
difficult, because this requires to check all possible courses of
the auction in question. For example, the experimental design
in [4] results in evaluating more than 13 million possible paths.
Obviously, this is beyond the capacity of any laboratory. So
those catastrophic results might be the consequence of possible
courses of auctions which remain uninspected in experiments.

To deal with this issue, verification methods have been
proposed to find undesirable system behavior in a precise and
unambiguous manner, see [5] for an overview. However, most
of these methods focus on workflows without the data aspect,
and, in particular, regardless of data values. A data value is a

specific characteristic of a data object in a process model, e.
g., $500 as the price of a product. In many settings, data values
can be modified during the process, and the behavior depends
on them. In principle, behavioral analysis enables verification
of data-value centered properties. For example, to arrive at
the lowest revenue in auctions, data values such as “bidder’s
budget”, “price of products”, etc., in the process model must be
known. However, current verification approaches do not suffi-
ciently support data-value-aware processes and modifications
of data values in particular, see Section VI.

To overcome this issue, we propose a new approach to rep-
resent and verify data-value-aware processes. We enhance the
process model to facilitate specifying the usage of data values
and their modifications during the process flow, using so-called
Data-Value Enhancement Functions (EF). Next, we propose
a new algorithm to transform this data-value-aware process
model to Petri Nets, a formal modeling language, for which
a comprehensive set of analysis tools is available [6]. This
way of generating a Petri-Net-based representation is generic,
i.e., does not take any application-specific characteristic into
account. Our approach is analogous to [7]. However, they only
address the optional and alternative usage of data objects by
activities as a whole and not at the level of data values. To
our knowledge, we are the first to consider data values and
their modifications in the transformation of process models to
Petri Nets. Based on the generated Petri Nets, one can specify
data-value centered properties of the process model as CTL
formulas [8]. By deploying an off-the-shelf model checker
[9], one is now able to find, say, undesirable outcomes. We
evaluate our approach against the use case of Simultaneous
Multi-Round (SMR) spectrum auctions. One can then show
the executions yielding undesirable outcomes to auctioneers
to let them improve the auction design. We summarize our
contributions as follows: (1) We propose an approach to
enrich process models with the usage of data values. (2) We
propose a general approach to verify data-value centered
properties of process models, supporting both constants and
value modifications in a process model. (3) We demonstrate
the usefulness of our approach by modeling SMR auctions in
BPMN 2.0 [10] including data values and implementing a tool
to detect undesired executions of SMR auctions.

Our evaluation shows that our approach allows to check
important data-value centered properties of SMR auctions. For

example, one can now find the worst possible values of three
relevant measures of auction designs [4]: auctioneer’s revenue,
i.e., the sum of the final price of products, bidder’s profit, i.e.,
the sum of the unused budgets of bidders who have won a
product, and auction’s efficiency, i.e., selling the products to
bidders with the highest budgets. Put differently, we cannot
only prove the presence of flaws, but also their absence.
Last but not least, when we detect an undesirable outcome,
we can provide a counterexample. On the downside, the
auctions whose verification has been possible without state-
space explosion are smaller than the ones having taken place
in reality. Thus, further work is required to control the state-
space explosion, for instance by reducing the Petri Nets via
domain knowledge. Having said this, our approach has been
useful from a practical perspective: Our verification of small
auctions has uncovered potential for improvement in existing
designs, as we will explain; auction designers may now invent
alternative formats and compare them to the settings analyzed
here in a rigorous manner.

Paper outline: Section II explains SMR spectrum auctions.
Section III provides definitions. Section IV features our ap-
proach, with spectrum auctions as illustration. Section V dis-
cusses its implementation and evaluation. Section VI and VII
discuss related work and conclude.

II. SMR SPECTRUM AUCTIONS

Simultaneous Multi-Round (SMR) auctions have been the
standard format to allocate spectrum licenses to bidders for
more than two decades [11]. Such an auction consists of sev-
eral rounds to award the spectrum to bidders with the highest
bid. At the beginning of an auction, the auctioneer specifies
a reserve price for each license, i.e., its lowest acceptable
price. In each round, participants can bid on individual licenses
simultaneously. The highest bid for each license will be its
reserve price in the following round. The auction ends when
there is no new bid for any license. Then the bidder with the
highest bid for a product is its winner. In this auction type,
there are several so-called activity rules, which can impact
auction performance [12]:

o Capacity rule: Each bidder has a capacity point, the
maximum number of licenses he may win. This rule
prevents bidders from winning too many items.

o Eligibility rule: Before the auction starts, each bidder has
a certain eligibility point. It determines how many bids he
can make in each round. The eligibility point of a bidder
decreases if his number of bids in a round is lower than
his current eligibility point. A bidder cannot bid any more
if his eligibility point is zero.

Figure 1 represents the BPMN model of the SMR spectrum
auction. with capacity and eligibility rules. This model consists
of three subprocesses. The first one checks availability of
bidders, i.e., whether the bidder can afford a certain license
which has not won yet. The auction continues if there is at
least one qualified bidder to specify their bids in Subpro-
cess bidders offering bids. Activity record requested products
marks all requested licenses to consider them in the winner

determination phase. Subprocess winner specification outputs
the new reserve prices and the winners. Based on these results,
the auction process updates the bidders’ capacity points in two
activities: increase capacity and decrease capacity. These three
subprocesses are repeated until no bids remain.

III. DATA-VALUE SPECIFIC DEFINITIONS

To verify process models we rely on model checking of
Petri Nets [6]. To specify the properties, we use Computation
Tree Logic (CTL) [8]. See the conventional definitions in
Section III-A. Verifying data-value-aware processes requires
representations of process models from a specific domain. See
the new data-value specific definitions in Section III-B.

A. Conventional Definitions

Definition 1. (Petri Nets [6]) A Petri Net is a triple (S, T, W)
where:

o S is a finite set of places, represented by circles
o T is a finite set of transitions, represented by rectangles.
ST =
e W (SxT)u (T xS) is a set of directed arcs (flow
relation).
A marking of a Petri Net is a mapping: M : P — N which
assigns a non-negative number of tokens to each place. M
is the initial marking. For each transition there are directly
preceding places called input places: ot = {s € S | W(s,t) >
0} and subsequent places called output places: te = {s €
S|W(t,s) > 0}. A transition t can fire when all its input
places have enough tokens; firing leads to a new state M. M
results from M by t consuming a token from each of its input
places and producing a token in each of its output places. The
set of all states reachable from the initial state My is the state
space of the Petri Net.

It is possible to check whether a Petri Net fulfills a property
¢ defined on its state space, by completely exploring this
space. This method is known as model checking [9]. To
specify properties, some powerful formal languages such as
Computation Tree Logic are known.

Definition 2. (Computation Tree Logic — CTL) An atomic
proposition o is a CTL formula. If &1 and ®, are CTL
Sformulas then —®1, &1 APy, v Py, AXDy, EXPy, AGD,,
EF®q, A[®1 U @y, E[D1 U P2 are CTL formulas.

The operators always occur in pairs: a path operator (A or
E) and a state operator (X, G, F or U). A means the formula
holds in all subsequent execution paths, E means that at
least one execution path exists where the formula holds. X
means that the formula holds in the next state, G means that
the formula holds in all subsequent states, F' means that the
Sormula holds at least in one subsequent state, and [P, L D3]
means that ®1 holds until O is fulfilled.

B. Data-Value Specific Definitions

Definition 3 is the basis for both modeling and compli-
ance checking of data-value-aware processes. It extends the
definition in [13] with typed data objects. Supporting several

availability of bidders

availability of bidders for each product

bidder

[updated
availability]

bidder

is bidder the ™.,
current winner
of product?
[e]
bidder's budget.‘-.z
higher than

product's price?

update
bidder's
availability

=
bidder

=

product bid

start
() > initialize

auction —>\x/<_

bidder bid

[initialized] | [initialized]| |[initialized]
n n n

product

data objects of the same type, e.g., several bidders, bids and
products, requires type-specific keys for data objects.

Definition 3. (Process Domain) A Process Domain D is a
tuple D = (T, E, O, Or, A, D, dom, att, type) where:

o T is a set of activity types

o IE is a set of event types

o O is a universe of data objects
o O7 is a set of data-object types

o A is a set of attributes

o D is a set of discrete data domains

bidders offering bids
bidding for each product
is there
any available ;
prgduct? bidder product product
"y
2 Y (record
es offer
Ves Ves O—> X bid requested /V M
»(X <x>_> R product (X
2 : : .
: Is bidder O
: able to bid product
: bid for [updated
i a product? requests]
bidder's
capacity _ A
points >0? '\x>"o
n
Y n Y
end‘ N No
O—X= X
v Yes
winner specification !
remove is any new
price request
bidder for products?
7 “y
bid product product <+>—
bid updated
[updated] remove [Srice]
increase winner
capacity \'l'/—>
B
remove bid
product || product bid
bidder [updated
[updated winner]
capacity]
AN Yes
C R X decrease W winner
H . capacity determination|
........ sl o>
! | bidder's is any \r ¥ N
*-|capacity demand for O
points >0? a product? bidder bidder product product
[updated || [updated || [updated
capacity] winner] price]

Fig. 1. BPMN model for SMR auction

e dom : A — D is a function assigning a data domain to

each attribute

e att : O — A < A is a function assigning a set of
attributes to each data-object type.

Example 1. Consider Process SMR auction. There, the pro-
cess domain may be:
D= (T,E,0O,Or,A,D,dom, att, type) with:

o type :

O — O is a function assigning a data-object
type to each data object.

We further define:

o Each data object has a key that is confined to its type.
A key is a set of attributes that uniquely identifies a data
object in the set of objects of its type. Elements of the
key are underlined. In the following, we refer to a data
object o as type(o).key. Elements of key are separated
by dots.

e A data value (dv) is a single value in the domain of an
attribute.

= { decrease eligibility, update price, ..}

= { start, end, .. }

= { bidder.1, .., product.1, .., bid.2.1, ... }

o O := { bidder, product, bid,.. }

o A := { bidderID, capacity, productID, winner, price, ...}

e D:={{0 1,2}, {12} [1; 10, N={1, 2 ..}, .. }

o dom(bidderID) := dom(productID) := {1, 2};
dom(winner) := {1, 2} ; dom(capacity) := {0, 1, 2};
dom(price) := [1; 10]; ...

o att(product):={productID, winner,..};
att(bidder):={bidderID, capaciry,..};
att(bid) := {bidderID, productID, price ...} ; ...

o type(bidder.1) := type(bidder.2) := bidder,
type(product.2) := product; ...

T:
QEZ
O :

To illustrate further, we refer to an object of type bid with
bidderID = 1 and productID = 2 as bid.1.2.

A process graph commonly represents a process model.
This formalism allows to be independent from a specific high-
level process-modeling language. We now provide a general
definition of process graphs in Definition 4. We follow the
graphical notation of BPMN.

Definition 4. (Process Graph) Let D = (T, E, O, Op, A, D,
dom, att,type) be a process domain. A Process Graph is a
tuple P = (N, F, O, I, atype, etype) where:

e N =Tp u Ep uGp is a finite set of nodes that is
partitioned into the set of activities Tp, the set of events
Ep, and the set of gateways G p.

o 'S N xN represents the sequence flow relation between
nodes.

e O < O is a finite set of data objects.

e I € Ox NuUN x O is a finite set of arcs connecting
data objects to nodes, so-called data associations.

o atype : Tp — T is a function assigning an activity type
to an activity in P.

o etype : Ep — IE is a function assigning an event type to
an event in P.

Moreover, we use the following notation:

o InputSet(n) is the set of data objects having an arc to
node n € N,

o OutputSet(n) is the set of data objects having an arc from
node neTp U Ep.

IV. OUR VERIFICATION APPROACH

Figure 2 is an overview of our approach. The gray boxes
indicate the contributions of this paper. Task enhance process
model enriches the designed process model by specifying
the usage of data values and their modifications. To this
end, a specification will make use of our new Data-Value
Enhancement Functions (EF), see Section IV-A. Task data-
value-aware transformation transforms the enhanced process
model to a Petri Net. To do so, our approach generates subnets
reflecting the semantics of both the preconditions and the
effects on data values, see Section IV-B. Task specify data-
value centered properties specifies properties as CTL formulas

on the resulting Petri Net, Section IV-C. In the last step, Task
model checking checks the properties with an off-the-shelf
model checker.

A. Process Enhancement with Data Values

Data values used in a process influence the process execu-
tion. In particular, the conditions of gateways determine the
branch the process will follow. These conditions use the values
of data objects which preceding activities have assigned.

Example 2. In the SMR auction process model, a gateway
with condition bidder’s capacity points > 0 checks the capac-
ity rule of the SMR auction. The gateway takes the decision
based on the value of bidder’s capacity points. However,
Activity decrease capacity can modify this value during the
process. This modification may affect the execution of the
process.

To take the usage of data values into account, we allow
to specify data values as preconditions as well as effects of
a process element, as follows. We refer to the preconditions
as data-value conditions. We deal with the effects of process
elements on data values with so-called data-value functions.

Definition 5 (Data-Value Condition). Let P be a process
graph from Data Domain D. A Data-Value Condition is an
expression of the form (a ® dv) where a is an attribute in
P, dv is a value in the domain of Attribute a, and ® :=
{=,#,<,>,<,...}. We define DVConds as the set of all
data-value conditions with the elements of Process Graph P.

Definition 6 (Data-Value Function). Let P be a process graph
from Data Domain D. A Data-Value Function is a function
with attributes of P as input and output parameters. The
types of the parameters are from a domain in D. We define
DV Funcs as the set of all data-value functions with elements
of P, ie.:

DV Funcs : X, D; — X;.n=1 Dj, where D;, D; € D.

Example 3. Consider Process Model P in Example 1. There,
we have the following data-value conditions and data-value

functions:
DVConds := {(capacity > 1),..}, DVFuncs :=
dv—1 dv=>=1
fildv) = 0 dv<1'"

Suppose that data value dv in function f1 belongs to Attribute
price of Data object product.l. Then function f1 reduces the
price of this product by 1.

So far, process models do not allow to specify conditions on
data values or modifications. So we propose so-called Data-
Value Enhancement Functions (EF) to annotate process graph
elements of P with the usage of data values.

Definition 7. (Data-Value Enhancement Functions) Let
P be a process graph from Data Domain D. Data-Value
Enhancement Functions are a set of functions to enhance
process graph elements of P as follows:

process Enhancement e enhanced
model Functions process
(EF) model
A
: . e D Petri Net .
& design i >{@enhance data-value- model verified
process process | | gata-value aware reflecting not-voerrified
model model centered transformation| |data values
.
+ properties . A
() > | .
(8, specify iNCTL feeeenendfeeees :
data-value [./ R model |
| centered checking O
properties

Fig. 2. Overview of our approach on verification of data-value-aware process models

EnhancementO : O — (A, pk) is a function to enhance a
data object o € InputSet(t) v OutputSet(t) u InputSet(g),
where t € Tp U Ep, g € Gp with attributes A < att(o) < A.
In this, pk is the key value of Data object o. It allows to deal
with several data objects from the same type. Og¢py, is the set
of data objects in P enhanced with EnhancementO.

EnhancementA : Tp U Ep — DV Funcs is a function
to enrich activities and events in P. It assigns a data-
value function f : I — O to an Activity/Event t with
InputSet(t) S Oenp and OutputSet(t) S Oepp. I is the
domains of the enhanced data objects in InputSet(t) and O
is the domains of the enhanced data objects in OutputSet(t).
Activity/Event t reads InputSet(t) and applies Function f. It
writes the output parameters of Function [to OutputSet(t).
Acnn Is the set of activities and events in P enhanced with
EnhancementA.

EnhancementG Gp — DVConds is a function
which assigns a data-value condition € DV Conds to a
gateway g with InputSet(g) < Oenp. The data-value
condition specifies a decision formula based on the attributes
belonging to an enhanced data object in InputSet(g). Genn
is the set of gateways in P enhanced with EnhancementG.

Example 4. Figure 3(a) shows the enhancement of Data
object product with EnhancementO. The enhancement spec-
ifies Attributes price and winner of Data object product.l.
Figure 3(b) shows the enhancement of Activity decrease to
reduce the price of product.1. Activity decrease reads the price
of product.1 and writes the modified value to the same data
object. Figure 3(c) illustrates an enhanced gateway to check
if the capacity of bidder.1 is greater than zero.

Process-graph elements form the core of many process
specification languages such as BPMN or BPEL. As we only
enhance the process-graph elements, one has to add a certain
number of workflow elements to the process graph in order
to model iterative or multi-instance subprocesses of high-level
process modeling languages. To illustrate, all bidders in an
SMR auction have the same bidding subprocess, consisting
of process-graph elements. To model this subprocess without

iterative subprocesses, one needs to add the subprocess sepa-
rately for each single bidder into the process model. This leads
to more BPMN elements. For a discussion of the number of
additional elements see Section V.

B. Transformation of Data-Value-Aware Processes to Petri
Nets

To facilitate rigorous analyses, various approaches transform
process models to Petri Nets. [14] is a survey of transforma-
tions from process models to Petri Nets. However, all these
approaches do not transform data-value-aware processes, let
alone ones that modify data values. So we propose a new
approach to transform a data-value-aware process to a Petri
Net, see Algorithm 1.

First we transform the control flow, regardless of the data
objects, with the rules in [15] (Line 2). However, the resulting
“control flow” Petri Net does not reflect the semantics of the
data value usages. To overcome this problem, our algorithm
now works in two parts. The first part, the so-called mapping,
generates new places corresponding to data values used in the
process (Lines 3, 4). The second part creates subnets for the
process elements which use data values that extend the already
generated Petri Net. This is called unfolding (Lines 5, 6).

Algorithm 1 Transformation: From a Data-Value-Aware Pro-
cess to a Petri Net
1: procedure PROCESSMODELPETRINET(P)

2 Petri Net pn « transform control flow of P

3 for all data value dv in P do

4 pn.place «— new place p.dv > Mapping
5: for each element € {Acpp U Genp} do

6 subnet «— CREATESUBNET(element, pn)

7 extend pn with subnet = Unfolding
8 return pn

1. Mapping. The mapping generates a new place for each
data value which belongs to a data object in Process Graph P
(Lines 3, 4). The number of data objects for each data-object
type in P depends on the domain of keys. For example, if
the key of Data-object type bidder has a domain of {1, 2}, it
generates two sets of places, one set for bidder.1, another

pI'ICG wmner

‘| product
: decrease [pnce

roductiD=1,
(p "'> product E

(a) EnhancementO

productiD=1,
price)

prlce1 price>= 1

(b) EnhancementA

_ | (bidderlD=1, -
bidder Capacity)

Yes

price<1 - ""A.Eapacity >0]-

(c) EnhancementG

Fig. 3. Example of enhanced process graph elements

set for bidder.2. These new places are called data-value
places. A data-value place has a name with the following
structure: p.[object].pk.[attribute].dv. Here, [object]/[attribute]
is the name of the data-object type/attribute the data value
belongs to. pk is the key value of the data object, and dv is its
data value. The naming allows to identify places relevant for
the definition of properties.

Example 5. Suppose that data-object type bidder has At-
tributes capacity with domain {0,1,2} and bidderID as the
key with domain {1,2}. The mapping generates 6 places:

{p.bidder.1.capacity.0, p.bidder.1.capacity.l,
p.bidder. 1.capacity.2, p.bidder.2.capacity.0,
p.bidder.2.capacity.1, p.bidder.2.capacity.2}.

2. Unfolding. For every enhanced element of the control
flow, i.e., the elements of A.,; U Genpn, WE create a new
subnet, to reflect the semantics of the use of data values
(Lines 5-7 of Algorithm 1). To do so, we propose Algorithm 2
described next. It creates different subnets depending on
whether the enhanced element is an activity/event or a
gateway.

a) Creating a subnet for an enhanced activity/event element:
Observe that the element is associated with a data-value
function. The algorithm creates a new transition for every
combination of data values belonging to the enhanced
data objects of InputSet(element) (Lines 4-6). Each of
these transitions has the corresponding data-value places as
input places (Line 7). The algorithm computes the output
parameters of the data-value function (Line 8). The transition
created has the data-value places of the output parameters as
its output places (Line 9). All transitions have an outgoing
arc to Place p.end (Line 10).

Example 6. Fig. 4(a) shows the subnet created for the
enhanced activity of Fig. 3(b). The activity decreases the price
of product.1 by 1. The gray places and transitions already
exist as a result of the transformation of the control flow
(without data aspect) into a Petri Net. The algorithm creates
a separate transition for each data value dv in the domain of
Attribute price of Data object product.1, [1;10] nIN. Each of
these transitions gets the corresponding data-value places as
input places, for instance p.product.l.price.10. The transitions

also get the data-value places of the output parameter of
Function f as output places, e. g., p.product.l.price.9. In the
subnet generated, we handle all places representing the input
parameter values (possible values are 1 to 10) by a transition
and yield a resulting value decreased by 1.

b) Creating a subnet for an enhanced gateway element:
Observe that the element is associated with a data-value
condition. We create a single transition for each data value
specified in a data-value condition for an enhanced data object
in the InputSet(element) (Lines 11, 13). Each of these
transitions has the corresponding data-value places as its input
place (Line 14). Since the result of the data-value condition
is either True or False, we create two new places for the
result: p.True and p.False. Depending on whether the data
value represented by the input place of a transition satisfies
the data-value condition, the output place of the transition is
Place p.True or p.False (Lines 15, 16).

Example 7. Fig. 4(b) shows the subnet created for the
enhanced gateway in Fig. 3(c). For all data values of Attribute
capacity of Data object bidder.1, the algorithm creates a new
transition t. Each data-value place is at the same time an input
and output place of transition t, because it has to keep its data
value.

C. Specification of Properties

The result of the transformation is a Petri Net of the process
reflecting the semantics of the use of data values. To verify
the Petri Net created, one must specify data-value centered
properties in a formal language such as CTL. In the following,
we say how properties referring to data values can be defined
in CTL.

Definition 8. (Data-Value Centered Property) Let P be a
process graph. A Flow Condition FCy is a set of Activities or
Events in P. A Data Condition DCy is a set of data values in
P. A Data-Value Centered Property is a CTL formula whose
atomic formulas each refer to the marking of a corresponding
place of an element in FCy or DCy.

Example 8. Consider the following question: “Can bidder.1
win product.2 at a price of 8 at the end of the auction?” —
The respective data-value property is:

EF(p.product.2.price.8 A p.product.2.winner.l A e.end)

p.product.l.price.10

g L >
\p.product.1.price.9

p.product.1.price.0

a) created subnet for an enhanced activity

Ol

p.bidder.1.capacity.

b) created subnet for an enhanced gateway

Fig. 4. Example of created subnets

Algorithm 2 Create Subnet

1. procedure CREATESUBNET(element, pn)

2: create Petri Net subnet

3 if element € A.,, then

4 domElement «— dom(InputSet(element))

5 for all combination of dv € domFElement do
6: subnet.transition <« new transition t
7
8
9

t.input Place = pn.getPlace(d?))
d?}result — element.dvFunction(d_{J)
: t.output Place = pn.getPlace(d_q')Tesult),
10: subnet.get Place(p.end)

11: else element € G,

12: for all dv € dom(InputSet(element)) do
13: subnet.transition «<— new transition ¢
14: t.input Place = pn.get Place(dv)

15: element.dvCondition(dv) == true ?
16: t.output Place = p.True : p.False

17: return subnet

In this formula, p.product.2.winner.1 € DCy shows bidder.1
wins product.2. p.product.2.price.8 € DCy shows the price
of 8 for product.2 and e.end € FCy is the result of the
transformation of an end event, i. e., it represents the end of
the process.

Example 9. “Can all bidders win at least one product?”
translates to:

EFAG((p.product.l.winner.l v p.product.2.winner.1) A
(p-product.l.winner.2 v p.product.2.winner.2))

Example 10. “Can product.1 be sold for the price of 2?”
translates to:

EF(p.product.1.price.2 A e.end)

Verifying the property of Example 10 allows to find the
lowest revenue of the auctioneer (Rj,est). To do so, we first
find the lowest final price of products, starting with the reserve
prices as in Example 10. In case the property is not satisfied,
we now verify a property with an increased price, until there

is a state that fulfills the property. In the next step, we find the
lowest combination of prices in a similar way, starting with the
lowest final price of products. Suppose that the lowest price
for product.1 and product.2 is 4 and 6, respectively. Then the
first step is to verify:

EF(p.product.1.price.4 A p.product.2.price.6 A e.end)

If this verification fails, we perform the verification for other
combinations of increased prices. For this, we do not have to
look at all prices in combination, but only at those between a
maximum and a minimum possible price. The maximum price
is known by the maximum budget of a bidder for a certain
product, and the minimum is the result of a verification as
explained in Example 10. More sophisticated search strategies
can restrict combinations to be verified further. This is future
work. By verifying the combination of prices, we find the
lowest auctioneer revenue possible.

Next, one can find the minimum profit of the bidder
(Pjowest) associated with Rjopese- We check if bidders with
the lowest budget can be winners. Suppose that bidder.1 and
bidder.2 have the lowest budget for product.l and product.2,
respectively. The first formula to check is:

EF((p.product.1.price.4 A p.product.2.price.6) A
(p.product.l.winner.l A p.product.2.winner.2) A e.end)

If the model checker cannot find a state, i. e., an execution path
fulfilling the property, we change the winners. This results in
new formulas to be checked. This is done until the formula is
satisfied.

One can also find the lowest market efficiency (Fiowest)
while the auctioneer’s revenue is minimal. To define efficiency,
we use a measure described in [4]. It quantifies how the surplus
resulting from the worst allocation (Sj,est) can deviate from
the surplus with a random allocation S;4ndom:

Slowest - Srandom

Eipwest = x 100 percent

Soptimu,l - Srandom
Here, the surplus resulting from an optimal allocation
(Soptimai) is computed by giving the products to bidders with
the highest budget. Sjowest 1S the sum of the lowest revenue
and profit.

V. IMPLEMENTATION AND EVALUATION

We have implemented a framework to verify data-value
centered properties in SMR auctions. Its input of our
framework is a process model in BPMN format. To transform
the process model into a Petri Net, we have implemented
Algorithm 1. The generated Petri Net is verified against
properties specified as CTL formulas. To do this, we use the
state-space generation and model checking algorithm of the
LoLA framework [16].

Evaluation setting. To evaluate our framework, we first
model and enhance the SMR auction process including eligi-
bility and capacity rules. We compute the auction measures
for three different settings.

o Process 1. Three bidders compete to win two products.

o Process 2: Two bidders compete to win three products.

o Process 3: Four bidders compete to win six products —
the size of the German 4G spectrum auction in 2010 [17].

In all settings, we have assigned a random budget to each
bidder for a certain product in the range of [2 — 10],
similarly to [4]. We also have defined a reserve price of 1
for all products, so all bidders can afford all products at the
beginning of the auction. All bidders have a capacity point
and an eligibility point of 2. In this evaluation, we first detect
the lowest revenue, bidder’s profit and efficiency of auction.
Then we analyze the run time of the verification process.

Enhancement of SMR process model. We have modeled
and enhanced the three processes with BPMN. Note that the
BPMN activities (without subprocesses), events and gateways
directly refer to the process graph representation. Table I
lists the numbers of BPMN elements after the enhancement.
As explained, we have to add a certain number of BPMN
elements when increasing the number of bidders or of
products. For example, to model the bidding subprocess
not as a multi-instance subprocess, one must add the same
subprocess for each single bidder separately. This leads to
more BPMN elements of the model, by a constant factor.
To illustrate, adding a new bidder increases the number of
activities and gateways of the BPMN model by 15 and 27,
respectively.

Transformation of SMR process model into Petri Net.
We have used the enhanced SMR BPMN models with the
characteristics listed in Table I as input to our transformation
into Petri Nets. With this transformation, a new bidder
increases the number of bidder objects by 1, and the possible
values for bids and winners increase as well. So the result
of the transformation is a larger Petri Net because of the
unfolding of subnets due to the usage of data values. This can
lead to higher verification times and state-space explosion.
We will observe the limits of our current approach due to
this effect with Process 3.

Verification of SMR process model. We have verified
the data-value centered properties to compute the auction
measures. This has been possible for Processes 1 and 2,
but not for Process 3, because of (the expected) state-space
explosion, so the remaining discussion focuses on those two
processes. To detect the lowest possible revenue, one must
verify all possible combinations of product prices. product.l
and product.2 have 8 respectively 9 different possible prices,
based on the budgets of the bidders. This requires to check
8 x 9 properties in Process 1. Using the same procedure for
Process 2 requires to check 432 properties. However, if we
limit the range of product prices by a minimum and maximum
value (see Section IV-C), the number of combinations of
prices/properties is restricted to only 4 x 5and 4 x 6 x 1 for
Processes 1 and 2 respectively. See Table III. Our verification
of Process 1 reveals that the auctioneer’s revenue is minimal
when assigning product.l and product.2 to bidder.1 for the
price of 5. In this case, the efficiency of the auction and
bidder’s profit are 100% and 7, respectively. In Process 2,
product.] has been sold to bidder.2 for the price of 5,
although both bidders would have had more budget. Here,
the auctioneer’s revenue is 15. So the efficiency is 82.60%.
This is interesting: Even for small auctions, the conventional
SMR design has inefficiencies, and our approach can reveal
them. So an auction designer can now take this format as a
starting point for improvement, by also applying our method
to new designs and compare results. Put differently, there is
a value in verifying small auctions.

Performance of verification. We have studied the run time
of verifying properties and the ones of transforming enhanced
process models into Petri Nets. We have verified 24 respec-
tively 20 properties — the combinations of possible prices
limited by a minimum and maximum value, for Processes 1
and 2, respectively. Verification of a single property takes less
than 4 minutes in Processes 1 and 2, using a computer with
16 GB main memory and 2 Intel 3 GHz CPUs. Transformation
of Processes 1 and 2 into Petri Nets has been within less than
1 second, see Table II. However, our evaluation attempts of
Process 3 have revealed the limitations of a generic approach
to Petri Nets transformation. This calls for further work, which
is beyond the scope of this current paper, see Section VII.

VI. RELATED WORK

There is a growing body of research addressing the data
perspective of workflow verification, see [18] for an overview.
[19] is one of the first approaches based on Petri Nets
to detect and resolve modeling errors which occur in the
presence of data. They transform BPMN 1.2 to Petri Nets
by mapping options for data objects. This approach only
considers data flow anomalies of whole objects but do not
allow for verifying arbitrary properties, which are based on
values of the data objects in the process. [7] features another
approach to detect data anomalies based on Petri Nets. They
unfold the execution semantics of BPMN process models
regarding data and formalized data-flow errors in a set of

TABLE I
NUMBER OF ENRICHED BPMN ELEMENTS FOR SMR AUCTIONS WITH DIFFERENT SIZE

Process Activities | Gateways | Annotations | Data associations
2 bidders & 2 products 50 55 145 94
3 bidders & 2 products 65 82 189 105
2 bidders & 3 products 69 81 206 119
4 bidders & 6 products 156 213 744 216
TABLE II
THE RESULTS OF TRANSFORMATION AND VERIFICATION OF DIFFERENT SMR AUCTION SIZES
Process Places | Transitions | Transformation | No. Properties | Verification(longest)
Process 1 589 715 0.3 sec 20 2 min and 09 sec
Process 2 869 1123 0.4 sec 24 3 min and 20 sec
Process 3 4979 4876 1.6 sec - -
TABLE III
VERIFICATION OF PROPERTIES IN PROCESSES 1 AND 2
Process Product Winner | Price | Revenue | Profit | Efficiency
product.l | bidder.1 5
Process 11 broduct2 | bidderl | 5 10 ! 100%
product.l | bidder.1 5
Process 2 product.2 | bidder.2 4 15 4 82.60%
product.3 | bidder.1 6

anti-patterns. They only consider the data-flow errors and do
not verify data-value centered properties. [20] formalizes data-
aware compliance rules by Linear Temporal Logic with Past
Operators and employs a model checker to verify properties.
When detecting an error, they apply Temporal Logic Querying
(TLQ) to explain the violation. However, they cannot support
conditions based on numeric data states in their process
model. Then, verification of properties based on data values
is not possible. Another approach to deal with conditions on
numeric data is [21]. They verify temporal properties of a
business process by employing bounded model checking in
answer set programming. The article addresses the verification
of properties with data values. However, the challenge of
modifications of data values remains.

The authors of [22] propose a methodology to verify the
manipulation of data objects. They define a domain specific
language (DSL) to describe the manipulation of attributes of
data objects. To this end, they annotate the process model and
check whether the possible evolution of a data object during
the process may create or update an object erroneously. In
particular, they verify completeness and consistency of data
objects. However, manipulation of data values by functions is
not covered. Next, they can verify consistency of only one data
object, i.e., verification of properties defined on a combination
of states of different objects is not possible. In [23] the
authors combine a declarative specification of the process
model with a specification of a (relational) data scheme as well
as with a communication perspective. They propose an Object-
Centric behavioral Constraint modeling language and apply it
to process mining — but not to verification. Our approach for
modelling the data of the process is similar, but we extend it
with the enhancement functions and conditions to prepare it
for verification.

In [13] the authors provide an abstraction technique of the

data domains that finds intervals utilizing the conditions of
gateways. They do not specify modifications of data values. In
particular, they specify conditions of XOR gateways based on
data states, but they do not specify how the process modifies
the data values yielding the data states. So this information
gets lost. Hence, they can only verify properties in process
models which modify data values on that coarse, abstracted
data state.

Model checking with data has some tradition in the data-
centric community. In [24] they present an approach to apply
data-centric verification to activity-centric processes. However,
they focus on reachability analysis, and do not support check-
ing of arbitrary logic formulas as in our approach. Other data-
centric approaches like Active XML [25] and DCDS [26]
also handle verification of business processes. However, they
lack an intuitive control-flow perspective. A so-called artifact
system [27] features a restricted class of artifact systems and
LTL-FO properties to make the satisfaction decidable. There,
artifacts carry values of an attribute which external services
can update. These services work with an underlying database.
However, their approach does not work in the presence of
data dependency (integrity constraints on the database). They
do not support arithmetic operations, which play a significant
role in applications such as spectrum auctions. [28] alleviates
these problems by extending the artifact model. However, they
impose syntactic restrictions on process models and properties
which limit applicability.

A recent method [29] provides a parameterized verification
of data-aware BPMN called DAB. There, the process affects
data in three possible ways: Insert&Set, Delete&Set and Con-
ditional update. By encoding DABs in an array-based artifact
system framework, SMT-based model checking of array-based
systems [30] can be used to verify safety properties of DABs.
However, this approach can only specify updating single

data values possibly under conditions by so-called conditional
update specifications. Functions that modify data values, e.g.,
increase price in our use case, cannot be expressed in a DAB.
While the verification is decidable by imposing restrictions on
the size of arrays, it also cannot provide counterexamples.

VII. CONCLUSIONS

This article has featured a new generic method to ver-
ify data-value-aware processes. — as is the case with SMR
spectrum auctions and with other settings. We have proposed
so-called enhancement functions, to formulate annotations
specifying the usage of data values. To leverage existing model
checking approaches and tools, we then have transformed
the enhanced process model into Petri Nets. To this end,
we have proposed a new algorithm considering data values
and their modifications. So one can freely define data-value
centered properties as CTL formulas for verification. Our
verification efforts for various settings of SMR auctions have
been successful. They have pointed to inefficiencies of existing
auction designs. This holds even though we have only been
able to verify slightly smaller settings than ones having taken
place in reality. The restriction just mentioned is due to a well-
known severe limitation of any verification approach based on
model checking, namely state-space explosion. This calls for
research on reducing Petri Nets, using domain knowledge of
data-value centered processes. As future work, we target at
such a reduction, taking inspiration from [31]. The reduction
proposed in [31] is however confined to data flows of objects
in processes and not on data values, i.e., it does not solve
this current problem. All in all, our research not only is an
advancement in the field of process verification, but also a
valuable contribution on auction research.

REFERENCES

[1] Engelmann, D., Grimm, V.: Bidding behaviour in multi-unit auctions—an
experimental investigation. The Economic Journal 119(537), pp. 855-
882 (2009)

[2] Wolfstetter, E.: The Swiss UMTS spectrum auction flop: Bad luck or bad
design. No. 534. Available at SSRN: https://ssrn.com/abstract=279683
(2011)

[3] Ausubel, LM., Cramton, P., et al. The clock-proxy auction: A practical
combinatorial auction design. Handbook of Spectrum Auction Design,
pp. 120-140. (2006)

[4] Brunner, C., Goeree, J. K., et al.. An experimental test of flexible
combinatorial spectrum auction formats. Microeconomics 2(1), pp. 39—
57 (2010)

[5] Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent
systems: Specification. Springer Science and Business Media (2012)

[6] Van der Aalst, W. M. A.: The application of Petri nets to workflow
management. Journal of circuits, systems, and computers 8(01), pp. 21—
66 (1998)

[7]1 Von Stackelberg, S., et al.: Detecting data-flow errors in BPMN 2.0.
Open Journal of Information Systems (OJIS) 1(2), pp. 1-19 (2014)

[8] Clarke, E. M., Emerson, E. A., Sistla, A. P.. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems 8 (TOPLAS)
8(2), pp. 244-263 (1986)

[9] Clarke, E. M., et al.: Model Checking. MIT Press, Cambridge, USA,

(1999)

Business Process Model and

http://www.omg.org/spec/BPMN/2.0/PDF. Last accessed 2019

Milgrom, P, et al.: Putting auction theory to work. Cambridge University

(2004)

[10] Notation,

(11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

(28]

[29]

(30]

[31]

Kwasnica, A., Sherstyuk, K.: Multiunit auctions. Journal of Economic
Surveys. 27(3), 461-490 (2013)

Knuplesch, D., et al.: On enabling data-aware compliance checking of
business process models. Springer, Berlin, pp. 332-346 (2010)
Lohmann, N., et al.: Petri net transformations for business processes -— a
survey. In Transactions on Petri Nets and other Models of Concurrency
II, Springer, Berlin, Heidelberg, pp. 46-63 (2009)

Dijkman, R. M., et al.: Semantics and analysis of business process
models in BPMN. Information and Software Technology 50(12), pp.
1281-1294 (2008)

Schmidt, K.: LoLA a low level analyser. Intl. Conf. on Application and
Theory of Petri Nets, Springer, Berlin, Heidelberg, pp. 465-474 (2000)
Cramton, P., Ockenfels, A.: The German 4G spectrum auction: Design
and behaviour. The Economic Journal. Vol. 127, Issue 605, F305-F324
(2017)

Dell’ Aversana, R.: Verification of data aware business process models:
A Methodological Survey of Research Results and Challenges. 12th Intl.
Conf. Distributed Computing and Artificial Intelligence, Springer, Cham,
pp. 393-397 (2015)

Awad, A., et al.: Diagnosing and repairing data anomalies in process
models. Intl. Conf. Business Process Management, Springer, Berlin,
Heidelberg, pp. 5-16 (2009)

Awad, A., et al.: Specification, verification and explanation of violation
for data aware compliance rules. Service-oriented Computing, Springer,
Berlin, Heidelberg, pp. 500-515 (2009)

Giordano, L., et al.: Business process verification with constraint tempo-
ral answer set programming.Theory and Practice of Logic Programming
13(4-5), pp. 641-655 (2013)

Pérez—Alvarez, J. M., Gémez-Lépez, M. T., Eshuis, R., Montali, M.,
Gasca, R. M. (2020). Verifying the manipulation of data objects accord-
ing to business process and data models. Knowledge and Information
Systems. https://doi.org/10.1007/s10115-019-01431-5

Li, G., Medeiros de Carvalho, R., van der Aalst, W. M. P. (2019). Object-
Centric Behavioral Constraint Models: A Hybrid Model for Behavioral
and Data Perspectives. Proc. SAC’19, April, ACM, pp. 48-56 (2019)
De Masellis, R., et al.: Add data into business process verification:
Bridging the gap between theory and practice. Proc. Artificial Intelli-
gence. pp. 1091-1099 (2017)

Abiteboul, S., et al.: Modeling and verifying active XML artifacts. IEEE
Data Eng. Bull., IEEE (2009)

Bagheri, B., et al.: Verification of relational data-centric dynamic
systems with external services. Proc. ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, Proc. ER, LNCS 6412,
Springer, Berlin, pp. 163-174 (2013)

Deutsch, A., et al.: Automatic verification of data-centric business
processes. Proc. BPM, LNCS 6896, Springer, Berlin, pp. 252-267
(2009)

Damaggio, E., Deutsch, A., Vianu, V.. Artifact systems with data
dependencies and arithmetic. ACM Transactions on Database Systems
(TODS) 37(3), No. 22 (2012)

Calvanese, Diego et al. (2019). Formal modeling and SMT-based param-
eterized verification of data-aware BPMN. Proc. BPM, Springer, LNCS
11675, pp. 157-175 (2019)

Ghilardi, S., Ranise, S.: Backward reachability of array-based systems
by SMT solving: termination and invariant synthesis. Log. Methods
Comput. Sci. 6(4), 1-48 (2010)

Miille, J., Tex, Ch., Bohm, K.: A practical data-flow verification scheme
for business processes. Information Systems 81(March), pp. 136-151
(2019)

