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Abstract—Verification techniques detect undesirable behaviour
of process models before their execution. In many use cases, data-
value functions are essential. A data-value function modifies the
values of data objects in a process model, e.g., increases the price
of a product. Supporting such functions when verifying process
models is challenging. This is because data objects with large
domains often lead to state-space explosion. In this paper, to
address this issue, we propose a novel approach using a binary
encoding technique. We make use of Binary Decision Diagrams
(BDD) to map the semantics of data-value functions into a Petri
Net. This allows using the existing BDD reduction techniques to
reduce the number of edges and nodes in BDDs and, ultimately,
of places and transitions in Petri Nets. One can now map process
models with data-value functions into much smaller Petri Nets,
whose verification is feasible. We show that this is indeed the case,
by verifying properties of an important real-world application,
the German 4G spectrum auction.

I. INTRODUCTION

Motivation. Verification methods detect unexpected be-
haviour of business process models before their execution [1].
In many cases, verification hinges on data values associated
with a process. A data value is a value in a respective domain,
e.g., $1000 as the price of a product. To highlight the role
of data values in verification, think of spectrum auctions [2].
Data values, such as the price of a product or a bid, determine
the outcome of the auction and other properties of it, like the
revenue of the auctioneer or whether one bidder can obtain
all available goods (spectra in this case). Process elements
like activities can modify data values during execution of the
process. Modified values can influence the behaviour of the
process and, thus, the verification result.

Example 1. Figure 1 shows parts of a simplified auction
process model in BPMN notation. The gateway with condition
“bid > 57 determines the branch the process will follow. The
data value used in this condition, the value of “bid”, may be
modified by a preceding activity, in this case “place new bid”.
This modification may affect the decision of the gateway and.
thus, the execution of the process. In consequence, properties
of the process may change, like the final price of the good.

Challenges. Verification requires a so-called data-aware
process model. To verify such a model, the execution seman-
tics of data-value functions must be represented in the state
space of the process model. A data-value function is one that
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Fig. 1. Parts of an auction process modeled in BPMN

modifies the value of a data object during process execution,
e.g., increases the price of a product.

There exist techniques to verify so-called data-aware pro-
cess models [3], [4]. However, they suffer from state-space
explosion [5], i. e., the state space increases exponentially with
the number of data values modified during process execution.
Think of an auction with six products, each associated with a
price and three bids with a value ranging from 1 to 100. This
amounts to 100° (price) x 100" (bids) states. A verification
scheme that explores the entire state space is infeasible. Hence,
the question is how to reduce the state space of data-aware
process models when modification of data values takes place.

To solve this problem, (a) reduction techniques based on
relevance and (b) abstraction techniques to enable symbolic
execution have been proposed. Reduction techniques detect the
elements of the process model that influence the verification
of a certain property, so-called relevant element, and prune
the irrelevant ones [6], [7]. However, state-space explosion
prevails when a data object with a large domain is relevant
and is kept in the reduced model. Abstraction techniques in
turn represent the domain of a data object with a symbol,
instead of considering each possible data value separately [8].
Whenever a model checker reaches a point in the state space
where a data value is modified, the modification is applied
to the abstract symbol. However, the state space branches for
each data value used in a data-value function. So abstraction
techniques are ineffective when a function modifies the values
of a data object with a large domain.

Example 2. Consider the process model shown in Figure 1.



Assume that the domain of price ranges from 1 to 500,000.
Abstraction techniques require branching the state space for
each value of price to represent function price = price+ %10.
This amounts to 500,000 branches in the state space, each for
one value in the domain of price.

This current paper proposes a Petri-Net-based approach to
avoid the state-space explosion problem caused by data-value
functions which modify data objects with large domains. Our
approach starts by transforming the control flow of the data-
aware process model into Petri Nets using the rules in [9]. It
then maps each data-value function into Petri Nets — and this
mapping is the core contribution of our paper. We propose a
binary encoding, mapping each data object with n possible
values to at most 2 - (|log, 7| + 1) new places in the Petri net.
This is in strong contrast to approaches that represent each
value with a different place or token. Our binary encoding
brings two important advantages. First, it significantly reduces
the number of places in the Petri net, compared to existing
work [3], [10]. Second, it allows deploying the state-of-the-
art data structure Binary Decision Diagrams (BDD) to map
the semantics of data-value functions to a Petri net. Given the
mappings of functions in the form of BDD, we one can now
apply existing BDD reduction techniques to reduce the size of
mappings and, thus, the state space of the process models.

We evaluate our approach with a real-world process, the
German 4G spectrum auction. It has sold a very valuable
bandwidth, the 800 MHz band [11]. Our approach reduces the
number of places and transitions of the Petri Net by 80.3%
and 95%, respectively. Given the reduced Petri Net, one can
now generate the state space of this auction model with large
domains. This has been infeasible so far [3]. The reduced
state space allows deriving important values, like auctioneer’s
revenue, i.e., the sum of the final prices of the products [12],
in the worst case. Auctions such as the Dutch UMTS auction
have had disastrous outcomes for the auctioneers [13]. Being
able to detect such outcomes in advance is a significant
contribution to auction design.

a) Paper outline: Section II explains spectrum auctions.
Section III provides definitions. Section IV features our ap-
proach. Section V is our evaluation. Section VI covers related
work, and Section VII concludes.

II. SIMULTANEOUS MULTI-ROUND (SMR) AUCTION

Simultaneous Multi-Round (SMR) auctions have been the
standard format to allocate spectrum licenses to bidders for
more than two decades [14]. This auction type allows selling
several products, e.g., spectrum licenses, after several rounds
of bidding. At the beginning of an auction, the auctioneer
specifies a reserve price for each product, i.e., its lowest
acceptable price. In each round, each bidder may choose to
bid on zero, one, or multiple products simultaneously. In the
type of auction we analyse, each bidder has a budget for each
product. The budget reflects the valuation of the bidder for this
product. Bidders cannot use leftover budget from one product
for another product. In addition, bidders make separate bids

for each product, i.e., they cannot bid on bundles of products.
This is different from combinatorial auctions. Next, there is a
so-called capacity rule [15]: Each bidder has a capacity, the
maximum number of products he or she may win. This rule
prevents bidders from winning too many items. In spectrum
auctions, this guarantees a certain number of bidders awarded
and prevents bidders from forming a monopoly. After bidding
finishes in a certain round, the highest bid for each product
will be its reserve price in the following round. This bid is
announced to all bidders, while other bids are not disclosed.
Bidders also do not know the bids of their competitors from
the current round. The auction ends when there is no new bid
for any product in a certain round. For each product, the bidder
with the highest standing bid is the winner. The BPMN model
of the SMR auction is represented in Appendix A.

III. PRELIMINARIES

This section introduces the notation used in this paper. We
define data-aware process models supporting modification of
data values, cf. Definition 3, and use Petri Nets as a language
for verification, cf. Definition 4.

Definition 1 (Process Domain [16]). A Process Domain D is
a tuple D = (A, E,0,D, dom) where

o A is a set of activity types,

o IE is a set of event types,

o O is a set of data objects,

o DD is the set of data domains, and

e dom : O — D is a function assigning a data domain to

each data object.

We also define that a data value is a value in the domain of
a data object.

Definition 2 (Data-Value Function). Let D be a process do-
main. A Data-Value Function is a function with data domains
of D as input and output parameters. We define DF' as the
set of all data-value functions over elements of D, i.e.:

DF: X! D; — X;nzl Dj, where D;, D; € D.

Definition 3 (Process Graph [16]). Let D be a pro-
cess domain. Then a process graph is a tuple P =
(N, F,0,I,type, EnhancementA, Aenp) where

e« N = Ap U Ep u Gp is a finite set of nodes that is
partitioned into the set of activities Ap, the set of events
Ep and the set of gateways Gp.

o 'S N x N is the sequence flow relation between nodes.

e O < O is a finite set of data objects.

e I € Ox NuUN x O is the data flow relation between
nodes and data objects.

o type : Ap U Ep — A U E is a function assigning an
activity type to each activity in P and an event type to
each event in P such that a € Ap = type(a) € A and
e € Ep = type(e) € E.

e EnhancementA : Tp u Ep — DV Funcs is a function
assigning a data-value function f : I — O to an
Activity/Event t, where I is the domains of the data
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Fig. 2. An example of activity enhanced with EnhancementA

objects in InputSet(t) and O is the domains of the data
objects in OutputSet(t).

o Acnpn is the set of activities and events in P enhanced
with EnhancementA.

Example 3. Figure 2 shows the enhancement of Activity
“decrease price” to reduce the price of a product. The activity
reads the price, reduces its value by one, and writes the
modified value to the same data object.

Definition 4. (Petri Nets [17]) A Petri Net is a triple (S, T, W)
where:
o S is a finite set of places, represented as circles
o T is a finite set of transitions, represented as rectangles.
ST =
e W (SxT)u (T xS) is a set of directed arcs (flow
relation).
A marking of a Petri Net is a mapping: M : P — N which
assigns a non-negative number of tokens to each place. M
is the initial marking. For each transition there are directly
preceding places called input places: ot = {s € S| W (s,t) >
0} and subsequent places called output places: te = {s €
S|W(t,s) > 0}. A transition t can fire when all its input
places have enough tokens, firing leads to a new state M. M
results from M by t consuming a token from each of its input
places and producing a token in each of its output places. The
set of all states reachable from the initial state My is the state
space of the Petri Net.

IV. OUR APPROACH

This paper proposes an efficient verification scheme for
data-aware process models supporting data-value functions.
We start to map the control flow of a process model to Petri
Nets using the rules in [9]. However, this mapping only covers
the “control flow”. Thus, our approach extends this mapping
with the semantics of data-value functions, a core contribution
of this paper, as follows:

1) We map each data object to a set of places. Any
distribution of tokens in these places represents a data
value (Section IV-A).

2) Given these places, we map each data-value function to
a Petri Net. Each of these mappings represents how a
data-value function modifies values of a data object in
the Petri Net (Section IV-B).

3) We merge the “control flow” Petri Net and the mappings
of data-value functions (Section IV-C). The result is the

transformation of a data-aware process model to a Petri
Net that includes the semantics of modifications of data
values.

4) We define properties referring to data values that will be
verified against the resulting Petri Net (Section IV-D).

Given the properties and the final Petri Net, an off-the-shelf
model checker, e.g., Lola [18], can then verify properties of
the data-aware process model. We use plain Petri Nets as a
target for the mapping because of the availability of respective
efficient verification techniques [17].

A. Mapping of Data Objects to Petri Nets

In any state, a data object takes one value from its domain,
but not more. So one can represent different values using the
same places in a Petri Net. We map a data object to a set of
places. These places receive a token according to the binary
encoding of the respective value, i. e., its binary representation.
In the following, we describe how to map a bit into a Petri
Net. Then we explain the mapping of other values.

Mapping of a bit b;. We represent a bit b; in a Petri Net with
two places p.b; and p.b;. Place p.b; (p.b;) takes a token when
b; =1 (b; = 0). We call these places b;-places.

Mapping of Data Object d. Suppose that Data Object d has
domain [0..n — 1], i.e., n values. We generate |logyn| + 1
times b;-places where 0 < i < |logy n|. The distribution of
tokens in b;-places represents the value of d in a certain state.

Example 4. Consider Data Object price with domain
[0..500, 000]. We create |log, 500,000] + 1 = 19 b;-places,
where 0 < © < 19, as follows. The highlighted places take a
token iff price = 262,144 = 218,

cen, p.53, p.gz, P-El, p.l_)(),
p-bs, p.ba, p.bi,  p.bo]

[ p.bis, Pp.biz, Pp.bie,
p.big, p.bir, pbis ..

B. Mapping of Data-Value Functions to Petri Nets

To verify a data-aware process model, it is essential to
include the semantics of data-value functions in the Petri Net,
i.e., capturing it in the state space of the process model.
Consider Data-Value Function f : D — D’ where D is
domain [0 .. n — 1] and D’ is domain [0 .. m — 1]. To map
f to a Petri Net, one possibility is to create a new transition
for each value in the domain of D and add the incoming
places and outgoing places to the transitions according to the
function [3], [10]. This results in n new transitions to map
Data-Value Function f into a Petri Net. But our intention is
to reduce the number of transitions required.

a) Data-Value Functions to Truth Tables.: The first step
to map a data-value function into Petri Nets is to build its truth
table, i.e., a table that assigns each input value of the function
to its corresponding output value.

Example 5. Consider Data-Value Function f(dv) : D — D',

where D has Domain [0 .. 3], D' has Domain [0 .. 1], and
0 dv <0

f(d”)={1 dv>0 "

One needs two bits (by and by) to represent the input values



TABLE I
TRUTH TABLE OF DATA-VALUE FUNCTION f(dv)

input  output
b1 bo q0
0: 0 0 0
1: 0 1 1
221 0 1
31 1 1

and one bit (qo) to represent the output values. Table I is the
truth table of Function f.

b) Truth Tables to Ordered Decision Diagrams: Given
the truth table of a data-value function, we derive its Binary
Decision Diagram (BDD) [19]. A Binary decision diagram is
a data structure representing a truth table as a directed acyclic
graph, a compressed form of a decision tree. The occurrences
of decision variables in the graph fulfill an ordering constraint,
yielding an Ordered Binary Decision Diagram (OBDD). The
reason behind transforming a truth table to its OBDD is
that: (1) OBDDs are a good basis for effective symbolic
model checking, and (2) one can apply an existing reduction
algorithm [20] to reduce any OBDD. The reduced OBDD
allows reducing the Petri Net and the state space of the process
models, as we will explain.

Suppose f : D — D’ is a data-value function, where D
and D’ have Domain [0 .. n] and [0 .. m], respectively. The
truth table of f contains bits b;, where 0 < ¢ < logyn, to
represent the input values and bits ¢;, where 0 < j < log, m,
to represent the output values. For each ¢;, we generate a
single OBDD with the height of log, n. Each path through
the OBDD corresponds to exactly one row in the truth table.

Example 6. Let f : D — D’ be a data-value function as
in Example 5 and its truth table. The input of f has Domain
[0 .. 3], which is represented by by and by. Figure 3 shows
the OBDD of f. The dashed edges represent zero values of
the truth table.

/7 /7
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Fig. 3. Example of an OBDD

¢) Reduction of Ordered Binary Decision Diagrams:
To reduce the ordered binary decision diagrams, we use
Algorithm 1 provided by [20]. The algorithm takes two steps:
(1) It eliminates all duplicate leafs, i.e., for a duplicate zero-
leaf (or one-leaf), redirects all incoming edges to only one of
them. (2) It eliminates isomorphic subtrees. Two subtrees are
isomorphic when they are connected in the same way, i.e., they

have the same nodes and edges. When v # w are roots of two
isomorphic subtrees, the algorithm removes w and redirects
all incoming edges to w to v.

Algorithm 1 OBDD reduction
1: procedure OBDD REDUCTION(OBDD)
2: for node in OBDD do
if node has other isomorphic node(s) then
eliminate and re-direct all isomorphic node(s).
if OBDD contains double edges then
eliminate and re-direct all nodes w/ double edges.

> 0 kW

Example 7. Figure 4 illustrates the steps of Algorithm 1 to
reduce the OBDD obtained from Example 6. The unreduced
OBDD consists of one zero-leaf and four one-leaf nodes,
Figure 4 (a). In such a case, the algorithm eliminates two of
the one-leaf nodes while keeping only one. Then it redirects
the edges from by to this remaining one-leaf node. See Figure 4
(b). The gray node here has a double edge. This means that
whether the value of by is one or zero, the output is the same.
So the algorithm eliminates this node and redirects the edges
accordingly. See Figure 4 (c).

d) Reduced Ordered Binary Decision Diagrams to Petri
Nets: The transformation of reduced OBDD into Petri Nets
is straightforward. For each inner node b; in the OBDD, we
create two transitions ¢.b; and t.b; connected to Place p.b;
and p.b;, respectively. Note that we have already created these
places with our binary encoding, see Section 4. Each transition
fires if the corresponding place is marked, i.e., transition ¢.b;
(t.b;) fires when b; = 1 (b; = 1). In the end, both transitions are
connected with a single place. We use this place to connect
the mappings of different inner nodes together. Figure 5(a)
shows the transformation of an OBDD inner node to a Petri
Net. The transformation of a leaf node is the same as the one
of an inner node, but Transitions ¢.b; and ¢.b; are connected to
the b;-places, according to the truth table. Figure 5(b) shows
the transformation of a leaf node of a reduced OBDD.

C. Merge Mappings of Data Functions and Control Flow

This step connects the ‘“control flow” Petri Net and the
mappings of data-value functions. The “control flow” Petri Net
has a single transition ¢ for each activity/event of the process
model [9]. If the activity/event is assigned to a Data-Value
Function f, Transition ¢ fires only after f has been applied
to data values. To modify data values according to f in the
Petri Net, we connect Place p.end from the mapping of f to
Transition ¢. Thus, the token of Place p. f is a precondition for
the execution of ¢, i.e., ¢t can fire only when f has modified
the data values.

Example 8. Figure 6 shows the mapping of the reduced
OBDD in Example 7 into Petri Nets. The OBDD has two
inner nodes, by and by. For Node by, we create two transitions
t.by and t.by, each one connected to the corresponding place.
Transition t.by fires only when p.by is marked, i.e., by = 1. Us-
ing our binary-encoding technique, model checking becomes
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Fig. 5. Transformation of OBDD nodes to Petri Nets

practical. If t.by fires, the model checker does not explore
other states resulting from the highlighted part in Figure 6.
This is because the output is already determined, and there
is no need to investigate the other states. When t.by fires, the
model checker needs to explore bit by to determine the correct
output. The grey places and transitions belong to the control-
flow Petri Net.

D. Specification of Properties

The result of the transformation is a Petri Net of the process
model representing the semantics of data-value functions.
For the verification envisioned, one must specify data-value
centered properties in a formal language such as Computation
Tree Logic (CTL) [21]. In the following, we show how such
properties can look like in CTL.

Definition 5. (Data Property). Let P be a process graph. A
Data Property ¢ is a CTL formula in which an atomic formula
refers to either

e anodein Ap u Ep, or
o a data value of P.

Example 9. The data property for the question: “Can pro-
duct.1 have a price of 10 at the end of the auction?” is:

EF(product.1.price.10 A e.end)

In this formula, “product.1.price.10” is the “price” of 10
of “product.1”. The atomic formula “e.end” is an end event,
i.e., represents the end of the process.

We use properties analogous to Example 9 to detect the
lowest final price of each product, and thus, the lowest revenue
of the auctioneer. However, due to the capacity rule, the
order of products in which one verifies the lowest final prices

matters. This is because when a bidder wins a product at its
lowest final price, their capacity point drops, which reduces
the possibility to bid for and win the other products.

Example 10. 7o detect the lowest revenue, we verify the lowest
final prices of “product.1”, “product.2”, and “product.3”,
respectively. However, “product.1” might have a lower final
price if we verify its final price after verifying the final price
of the other products, i. e., a bidder with a lower budget might
win this product. This is because the bidders with higher
budgets might have already won other products and have no
capacity points left for “product.1”.

Each product’s final price depends on the order in which the
final prices of the other products are verified. Thus, we have
to check the lowest revenue for all the possible combinations
of products in order to detect the final lowest revenue, i.e., we
have calculated the lowest auctioneer’s revenue in 6! = 720
combinations.

V. EVALUATION

Our evaluation studies how our approach affects the size
of Petri Nets resulting from process models with different
data-value functions. We also study the real-world impact of
our approach. So our evaluation consists of two parts: First,
we compute the number of places and transitions required
to map different data-value functions with different domain
sizes. Second, we study whether our approach facilitates
the verification of a real-world application, the 4G German
spectrum auction of the 800 MHz band [11].

A. Comparison of Data-Value Functions

We use four data-value functions for our evaluation and
calculate the number of places and transitions in the Petri net.
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Fig. 6. Example of OBDD into Petri Nets

These four functions are: f(x) = =z + 2, f(z,y) = = + ¥,
f(z) = © x 1.2, and f(x,y) = maz(x,y). To study the
scalability of our approach, we vary the size of the input
domain of each function from [0 .. 2!°] to [0 .. 22°]. Table V-A
shows how many places and transitions are needed to trans-
form each function to a Petri net with varying domain sizes.
Multiplication is more expensive than the other functions, i.e.,
it requires more places and transitions. In general, the number
of places and transitions grows logarithmically with the size
of the data domain. This is a significant improvement over
existing work [3], where these numbers grow linearly with
the size of the domain. For example, 220 places and transitions
are needed to transform Data-Value Function y = x + 2 when
domain(x) = [0 .. 22°] using the existing approaches.

B. Simultaneous Multi-Round Auction

We have chosen spectrum auctions as the use case for our
evaluation for three reasons: (1) Spectrum auctions have a
significant impact on the economy. They earned 50.8 billion
Euros in Germany in 2000 [22]. (2) Verification of auctions
allows detecting undesirable outcomes upfront. For instance,
one can detect the lowest possible revenue of an auction or its
lowest efficiency. However, existing verification techniques are
unable to verify spectrum auctions with domains larger than
[0 .. 10], due to state-space explosion [3]. (3) Modification
of data values, e.g., increasing the price of bids, are essential
to verify properties of auction models. In our evaluation, we
focus the lowest possible revenue for the auctioneer. We also
study the run time of the verification process.

a) Evaluation Setting: We model the SMR auction in
BPMN. Table III shows the number of BPMN elements of
the SMR auction model. The process model consists of four
bidders who compete to win six products — this has been
exactly the size of the German 4G spectrum auction to sell the
800 MHz band [11]. Similarly to [12], we assign a random
budget to each bidder for a certain product in the range
[2;100]. We also have defined a reserve price of 1 for all
products, so all bidders can afford all products at the beginning
of the auction. Bidders 1 and 3 have a capacity point of 2,
Bidders 2 and 4 have capacity points of 3 and 1, respectively.

This assignment of capacity points is according to the given
assignment at the 4G German spectrum auction.

b) Transformation of SMR Process Model to Petri Nets:
We have implemented a framework to verify process models
of SMR auctions with our binary approach. The input of
our framework is a data property and a process model in
BPMN format. The SMR process model in the form of BPMN
consists of data-value functions such as get maximum price,
place bids, and decrease capacity. Our framework takes this
process model and transforms it to a Petri Net. Table IV shows
the size of mappings created to transform a single data-value
function into Petri Nets. Table V lists the number of places
and transitions with our approach and compares this with the
naive transformation [3]. The table reveals that our approach
transforms the SMR process model to a much smaller Petri
Net and state space than the naive approach. We are able to
generate a Petri Net including the semantics of modifications
of data values with only 576 places and 786 transitions, while
these numbers originally are 2912 and 15421, respectively.

c) Verification of SMR Process Models: Given the re-
duced state space, it is now possible to verify properties of
SMR auctions with reasonably large domains. We detect the
lowest possible revenue of the auctioneer. To do this, we have
to verify the lowest final price of each product, i.e., to check
whether the price of a product can take a certain value when
the process ends, analogous to Example 9.

If the property is not satisfied, we verify a new one
with an increased price, until there is a state that fulfills
the property. The sum of the lowest prices found for each
product is the lowest auctioneer’s revenue. As discussed in
Section IV-D, we have to calculate the lowest revenue in 720
different combinations of products. The lowest revenue among
all combinations is the lowest final auctioneer’s revenue. To
achieve the lowest final revenue, we have verified 130,292
properties using the model checking algorithm of LoLA [18].
The average time for this verification has been less than 7
seconds, while this simply has not been possible before. Our
verification also reveals 13 different assignment of products to
bidders which lead to the lowest final revenue. Table VI shows
some of these assignments. An auction designer can now take
this as a starting point for improvement. For instance, one can



TABLE II
NUMBER OF PLACES AND TRANSITIONS FOR DIFFERENT FUNCTIONS

domain sizeofnet | y=2+4+2 z=z+4+y y=xzx12 2z=mazx(z,vy)

[0..210] places 77 158 676 141

transitions 65 147 987 151

[0..212] places 91 188 806 167

transitions 7 175 1183 179

[0..214] places 105 218 936 193

transitions 89 203 1379 207

[0..216] pla.Cfes 119 248 1066 219

transitions 101 231 1575 235

[0..218] plaf:.es 133 278 1196 245

transitions 113 259 1771 263

[0..220] places 147 308 1326 271

transitions 125 287 1967 291
TABLE III properties is not a topic there. A recent method [26] pro-
THE NUMBER OF BPMN ELE"/’LEE;?O'S BPMN MODEL OF THE SMR vides a parameterized verification of data-aware BPMN called
DAB. There, the process affects data in three possible ways:
activities | gateways | annotations | data objects | data association Insert&Set, Delete&Set and Conditional update. By encoding
73 303 319 66 128 DABEs in an “array-based artifact system framework”, as called
by the inventors, SMT-based model checking of array-based
TABLE IV systems [27] can be used to verify safety properties of DABs.
THE NUMBER OF PLACES iﬁﬁgﬁgizmom REQUIRED TO MAP However, this approach can only specify updates of single
data values possibly under conditions, by so-called conditional
type of function places | transitions update specifications. An example of a conditional update is
get maximum price 157 285 to update the price of a product to 6 if its current price is
place bids 104 188 5. In [28], the authors present an approach to apply data-
decrease capacity 10 15 centric verification to activity-centric processes. The focus
there is on reachability analysis, and there is no checking of
TABLE V arbitrary logic formulas as in our approach. A so-called artifact
THE RESULTS OF TRANSFORMATION OF SMR AUCTION MODELS system [29] features a restricted class of artifact systems
approach places | transitions | transformation time | state space and LTL-FO properties to make the satisfaction decidable.
our approach | 576 786 < 1sec 324,647 There, artifacts carry values of an attribute which external
naive approach | 2912 | 15421 <lsec not possible services can update. These services work with an underlying

detect the lowest possible revenue for an auction with different
capacity points of bidders and apply our method to alternative
designs and compare the results.

VI. RELATED WORK

There is a growing body of research addressing the data
perspective of workflow verification, see [23] for an overview.
In the following, we only refer to work that deals with
modification of data values.

[8] enables verification of process models supporting mod-
ification of data values. They model the modification using
decision tables and then transform the decision-aware pro-
cesses to colored Petri Nets and use temporal logic model
checking to verify properties. This approach is not effective
when the decision tables are big, i.e., same as the size of
input variables. [24] and [25] also provide an approach to
verify decision-aware process models. However, they only
verify structural properties, i.e., verification of behavioural

database. They do not support arithmetic operations, which
play a significant role in applications such as auctions.

Various reduction techniques on the level of (1) state space
or (2) process models have been proposed to deal with state-
space explosion. Approaches like [30], [31] fall into the first
category. However, when activities modify values of a data
object with a large domain, the state space cannot even be
generated. Such reductions might work here — in combination
with our approach, but not in isolation. Regarding the second
category, there are approaches to detect the relevant data
objects used in a process model and remove the irrelevant
ones [32], [33]. But their definition of relevance is not valid
when control-flow elements manipulate data objects during
process execution. Besides this, they do not address state-space
explosion when a data object with a large domain is relevant.
The authors in [34] transform a data-aware process model into
a Petri Net with Data. Then they decompose the Petri Net into
smaller nets that can be verified more efficiently. However,
the state-space explosion can still occur if the subnets contain



TABLE VI
VERIFICATION RESULT

product 1 | product 2 | product 3 | product 4 | product 5 | product 6
final price 70 80 70 60 70
winner bidder 2 | bidder 1 bidder 1 bidder 2 | bidder 2 | bidder 4
final price 60 80 70 90 60
winner bidder 3 | bidder 1 | bidder 2 | bidder 2 | bidder 1 | bidder 2
final price 70 60 70 90 60
winner bidder 2 | bidder 3 | bidder 1 | bidder 2 | bidder 1 | bidder 2
final price 70 80 70 70 60
winner bidder 2 | bidder 1 | bidder 1 | bidder 2 | bidder 4 | bidder 2
final price 70 60 70 90 60
winner bidder 2 | bidder 3 | bidder 1 | bidder 2 | bidder 1 | bidder 2
final price 70 80 70 70 60
winner bidder 2 | bidder 1 bidder 1 | bidder 2 | bidder 4 | bidder 2
final price 60 80 70 90 60
winner bidder 3 | bidder 1 | bidder 2 | bidder 2 | bidder 1 | bidder 2
activities that modify the values of data objects with large REFERENCES

domains. [16] features abstractions from the data domain in
the form of intervals. They handle data conditions of XOR
gateways in the process model. But they do not consider
modifications of data objects used in these conditions.

VII. CONCLUSIONS

Verification of process models with modifications of data
with large domains is crucial in many settings. Existing
techniques often suffer from state-space explosion. In this
paper, we have introduced a novel approach to overcome
this challenge. We represent data-value functions as Ordered
Binary Decision Diagrams (OBDDs). This allows to apply
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APPENDIX

Figure 7 shows a simplified SMR auction in BPMN notation
according to [35]. There are three subprocesses in this model.
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the new prices and the winners. A repeat of each of these three
subprocesses occurs until no more bids are placed.
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Fig. 7. Simplified Process Model of Simultaneous Multi-Round Auction in BPMN notation
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