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ABSTRACT Verification techniques play an essential role in detecting undesirable behaviors in many
applications like spectrum auctions. By verifying an auction design, one can detect the least favorable
outcomes, e.g., the lowest revenue of an auctioneer. However, verification may be infeasible in practice,
given the vast size of the state space on the one hand and the large number of properties to be verified on the
other hand. To overcome this challenge, we leverage machine-learning techniques. In particular, we create
a dataset by verifying properties of a spectrum auction first. Second, we use this dataset to analyze and
predict outcomes of the auction and characteristics of the verification procedure. To evaluate the usefulness
of machine learning in the given scenario, we consider prediction quality and feature importance. In our
experiments, we observe that prediction models can capture relationships in our dataset well, though one
needs to be careful to obtain a representative and sufficiently large training dataset. While the focus of this
article is on a specific verification scenario, our analysis approach is general and can be adapted to other
domains.

INDEX TERMS Formal verification, machine learning, model checking, spectrum auctions.

I. INTRODUCTION
A. MOTIVATION
Industry takes great interest in verification techniques to
detect undesirable behavior of processes before their execu-
tion. A very relevant domain for verification is auction design.
This current article focuses on spectrum auctions. Despite
their importance, embarrassing outputs have happened in the
past. A wrong policy to increase bid prices in the US mobile
market resulted in a loss of 70 billion dollars [1]. In another
case [2], about fifty percent of the products remained unsold
at the end of the auction. To alleviate such results, one can
apply methods from the fields of auction theory, verification,
and machine learning. We will discuss each of these points in
the following. Our article is located at the intersection of all
three fields.
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1) AUCTION THEORY
Literature features two alternatives to study auctions, namely
(a) experimental analyses with human subjects performed in
laboratories [3], or (b) theoretical analyses. However, find-
ing undesirable outcomes continues to be a challenge with
both categories: Regarding (a), laboratories tend to perform
only relatively few experiments to arrive at possible out-
comes. To check all possibilities of an experimental design
in [4] would require more than 13 million experiments,
to give an example. Such a setup is beyond the capacity
of any laboratory. Regarding (b), researchers use auction
theory to predict equilibrium results, based on assumptions
on bidding behavior [5]. A standard assumption is ratio-
nality of bidders [6]. However, this assumption does not
always hold [7], [8]. Even the development of frameworks
for truthful bidding under interference constraints [9] can-
not preclude irrational bidders. Overall, catastrophic out-
comes of auctions can result from design errors going
unnoticed.
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2) VERIFICATION
Verificationmethods have been developed to find undesirable
behavior in process models that work with data, so-called
data-aware process models. With such techniques applied to
auctions, one can detect the lowest possible revenue of an
auctioneer or the lowest efficiency of an auction design [10],
to give examples. However, respective techniques tend to be
computationally expensive: First, the state space grows expo-
nentially with the number of data objects. Exploring the state
space to verify properties is slow or even infeasible. Second,
the number of properties to be verified is vast. To illustrate,
think of the 4G German spectrum auction with six products,
each one associated with bids ranging from ≈ 104 to ≈ 109

euros [11]. The number of properties to detect the lowest
revenue of this auction grows exponentially with the number
of products. This amounts to the verification of millions of
properties to detect the lowest revenue of the 4G German
spectrum auction. As a result, verification techniques also
have problems detecting unexpected outcomes of spectrum
auctions.

3) MACHINE LEARNING
In the face of the previously described efficiency issues
of auction-theoretic approaches and verification methods,
machine learning might offer a way out. Predicting the
outcomes of auctions or verification results can be signif-
icantly faster than running the underlying methods them-
selves. Machine learning on auction data has focused on a
variety of auction designs [12]–[15], which are different from
the one used in this article, however. Literature on machine
learning in the field of verification is broad as well [16]. How-
ever, related work [17]–[19] focuses on other use cases than
our study. Thus, differences in the domain, formal languages,
and verified properties limit comparability to our work.

B. CONTRIBUTIONS
We leverage machine-learning techniques to predict verifi-
cation results for a specific data-aware process model, i.e.,
to detect undesirable outcomes of an auction. To this end,
we work with a dataset consisting of roughly 130,000 veri-
fication runs on a process model of the German 4G spectrum
auction to sell one of the most valuable bandwidths, the
800MHz band.

Our study consists of two parts. First, to explore the dataset,
we analyze the distribution of auction outcomes and charac-
teristics of the verification procedure, e.g., verification time.
Second, we make predictions for three prediction targets, i.e.,
revenue, verification result, and verification time. Revenue
is essential for the auctioneer, the verification results help
to determine revenue, and analyzing verification time might
help to improve the verification procedure. We study whether
one can predict these quantities only with features describing
the auction design and the properties to be verified, i.e., with-
out knowing the course of actual verification runs themselves.
As we still had to run verification when creating the dataset,

we can evaluate the performance of predictions against this
ground truth. We use random forests as prediction models,
which have high predictive power due to ensembling and can
capture non-linear dependencies in data. We also analyze the
importance of features for the prediction models.

Such predictions would save costly verification runs of
a vast number of properties and can give the auctioneer a
rough estimate of possible outcomes. In particular, verifica-
tion yields exactly which outcomes of auctions are possible,
but it is slow. In contrast, machine learning makes estimates
fast, but predictions might not be perfectly accurate. We also
analyze if one can train models with only a subset of products
and predict verification results for the other products. Such
an approach would allow estimating the output of auctions
with more products, even though verification of such auctions
is not feasible due to the state-space explosion. Efficiently
making such predictions is not possible for arbitrary process
models and properties due to the theoretical hardness of
model checking. However, it might still be possible in use
cases with a limited scope, as our auction scenario. We ana-
lyze howwell predictionmodels generalize for different ways
to split the data into training and test set.

C. RESULTS
Even for one auction design, the outcomes of the analyzed
auction, i.e., winners and prices of products, vary, and the
dataset reflects this. In particular, revenue is suboptimal in
most cases. Prediction models successfully capture these
variations in outcomes. They show close-to-optimal predic-
tion quality if evaluated with standard cross-validation, i.e.,
randomized splits. This observation applies to all prediction
targets, i.e., verification result, verification time, and revenue.
Additionally, training and making predictions is fast, taking
under a second for our dataset, which results from hours of
running verification.

However, predictionmodelsmight have problems to gener-
alize to other auction settings, even if they reproduce the given
scenario used for training. For example, prediction quality
drops if we train models only with some auction products
and make predictions for other products. In the worst case,
we observe predictions on the unseen test data that are not bet-
ter than randomguessing. Consequently, we see the collection
of a training dataset that is representative regarding process
models and properties as a crucial factor for any attempt to
use machine learning in the context of verification.

We observed a decrease in prediction performance with
reduced training set size for randomly sampling verification
runs into the training set. However, the decrease in predic-
tion performance was not proportional to dataset size, but
lower, which we find encouraging. Thus, one needs to find
an acceptable trade-off between cost in dataset collection and
prediction performance. This trade-off decision depends on
the specific scenario and user, e.g., auctioneer.

Being aware of these caveats, we see a combination of
machine learning and verification promising to fine-tune
auction designs. Such an approach might allow detecting
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and subsequently excluding designs with the least favorable
outcomes for the auctioneer.

We publish the dataset, experimental results, and the code
for all our analyses, c.f. Section V-D.

D. OUTLINE
Section II reviews related work. Section III describes simul-
taneous multi-round (SMR) auctions. Section IV explains
their verification, in general as well as specifically to create
our dataset. Section V describes our dataset and experimen-
tal design. Section VI evaluates the experimental results in
detail. Section VII summarizes and discusses the experimen-
tal results. Section VIII concludes.

II. RELATED WORK
In this section, we review related work from different areas
that are relevant for this article: spectrum auctions, verifica-
tion of process models, and machine learning.

A. SPECTRUM AUCTIONS
Spectrum auctions have been studied for a long time.
[20] has a look at the simultaneous ascending auction from
an auction-theoretic point of view. [21] shows the limita-
tions of theoretical findings on Simultaneous Multi-Round
(SMR) auctions. [22] looks at the 3G auction design in
the UK and Germany and compares them experimentally.
[23] conducts an auction-theoretic analysis of the 3G auc-
tion. [11] analyzes the 4G auction auction-theoretically. They
conclude that although the auction ended efficiently, implicit
collusion to achieve low prices would have been possible.
[24] provides a secure solution for truthful spectrum auctions.
[25] designs a spectrum-auction mechanism that creates an
efficient outcome in polynomial time. Still, an underlying
assumption of the proposed mechanisms and frameworks is
rationality.

B. VERIFICATION OF PROCESS MODELS
Many approaches exist for the verification of process models.
In the following, we only mention works that are relevant for
this article.

Authors in [10] studied the verification of data-aware pro-
cess models that support modification of data values. How-
ever, their approach only allows verifying spectrum auctions
with at most three bidders and products. In another recent
approach, authors verify data-aware process models using
colored Petri Nets [26]. They model the complete domain
of data objects: To represent a data object with n distinct
values, i.e., colors, they generate n new states. Consequently,
the number of states becomes too large, and the verification
procedure is computationally expensive.

A range of abstraction techniques has been developed,
aiming to reduce the size of the process models and, thus, the
state space [27], [28]. Here, the idea is to determine the values
of data objects necessary for verification and combine all
the unnecessary values into an abstracted one. The problem
is that such techniques might yield an incorrect result [10].

This outcome may happen when process elements such as
activities modify the value of data objects, e.g., an activity
that increases the price of a product. In another approach [29],
authors first abstract the process model and then evaluate all
data objects of each abstracted process fragment for three
sets of rules. Each rule keeps or deletes a data object in
a process model. As a downside, the rules in [29] do not
preserve the verification result when data values aremodified.
The approach in [30] uses symbolic abstraction and supports
data modifications based on decision tables. A decision table
comprises a set of rules that consist of conditions for the
inputs and expressions. The abstraction technique proposed
in [30] is not effective when an activity modifies the value
of a data object with a large domain. Besides this, when
they detect an undesirable outcome, they cannot provide a
counterexample.

As another approach, reduction techniques based on rele-
vance are proposed [31], [32]. The idea here is to detect the
process elements that are necessary to verify a given prop-
erty, so-called relevant elements. The irrelevant elements are
candidates for reduction. This technique works quite well, but
the number of properties to be verified stays the same or even
becomes larger. [33] also reduces data objects and attributes
used in a process model by abstraction. Their reduction aims
to simplify the visualization of process models, and there
is no guarantee that the abstracted data elements preserve a
verification result.

C. MACHINE LEARNING WITH VERIFICATION DATA
[16] provides a survey of how machine learning helps in
various verification approaches: SAT/SMT solving, theorem
proving, model checking, and static analysis. The authors
state that the choice of features is critical for such scenarios.
In addition, they note that interpretabilitymight become prob-
lematic for powerful machine-learning models. Regarding
model checking, they review approaches for finding coun-
terexamples and for finding frequent paths, which are differ-
ent from the aspects of model checking we analyze here.

In the following, we present several studies that use
machine learning to predict the outcome of verification or
to predict characteristics of the verification process, like ver-
ification time. Our study focuses on one specific use case.
Thus, predictions performances from other domains, model
types, and properties might not be comparable, so we refrain
from reporting concrete results here. [17] uses regression
models to predict hardware-verification time with a dataset of
10,000 hardware designs. [34] conducts a case study
to predict two verification metrics in hardware design.
[35] applies classification models to recommend model
checkers for hardware-verification instances, using a dataset
of 16,500 hardware designs. [36] uses classifiers to recom-
mend model checkers based on characteristics of the mod-
els. They study the Model Checking Contest 2017, which
featured 10 model checkers and 77 models from differ-
ent categories. [18] addresses the problem of state-space
explosion in verification. They train classifiers to detect
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deadlocks on small models and then apply them to large
models, using three different scenarios for evaluation. [19]
predicts whether Kripke structures satisfy LTL formulas,
randomly generating 50 Kripke structures and 200 LTL
formulas. [37] predicts whether workflow nets are sound
or not, generating 2209 workflows nets with different
characteristics.

Finally, while we apply machine learning to a verification
scenario, there also is work in the other direction, i.e., verify-
ing machine learning-approaches [38], [39].

D. MACHINE LEARNING WITH AUCTION DATA
Machine learning has been applied to various types of auc-
tions, for which we can only give some examples. Note that
the auction design is different from ours in all these cases.
[12] uses machine learning to efficiently determine alloca-
tions for combinatorial auctions, where bidders can place
bids on bundles of products. They evaluate their approach
with three different models of spectrum auctions from the
Spectrum Auction Test Suite [40]. [15] uses regressions mod-
els to find a schedule of products in sequential auctions by
predicting the revenue. [13] trains a recommender to find
suitable bidders in procurement auctions. [14] uses models to
determine a revenue-optimal reserve price for second-price
auctions.

III. SIMULTANEOUS MULTI-ROUND (SMR) AUCTIONS
Simultaneous Multi-Round (SMR) auctions have been the
standard format to allocate spectrum licenses to bidders for
more than two decades [41]. This auction type allows selling
several products, e.g., spectrum licenses, after several bidding
rounds.

At the beginning of an auction, the auctioneer specifies
a reserve price for each product, i.e., its lowest acceptable
price. Each bidder may choose to bid on zero, one, or multiple
products simultaneously in each round. In the type of auction
we analyze, each bidder has an individual budget for each
product. In this case, the budget closely reflects a bidder’s
valuation for this individual product. Thus, bidders cannot use
the leftover budget from one product to acquire a different
product. In addition, bidders make separate bids for each
product, i.e., they cannot bid on bundles of products, different
from combinatorial auctions. Additionally, there is a so-called
capacity rule [42]: Each bidder has a capacity, the maximum
number of products they may win. This rule prevents bidders
from winning too many items. In spectrum auctions, this
guarantees a certain number of awarded bidders and prevents
bidders from forming a monopoly. After bidding finishes in a
round, the highest bid for each product will be its reserve price
in the following round. This bid is announced to all bidders,
while other bids are not disclosed. In addition, bidders do
not know their competitors’ bids from the currently ongoing
bidding round. The auction ends when there is no new bid for
any product in a bidding round. The bidder with the highest
standing bid for each product is its winner.

IV. VERIFICATION OF SMR AUCTIONS –DATASET
CREATION
This paper presents an approach to analyze and predict verifi-
cation results in a data-driven manner. To this end, we create
a dataset by verifying properties of an SMR auction model.
Fig. 1 provides an overview of our verification approach.
From a high-level perspective, the approach is generalizable
and can also accommodate other scenarios than SMR auc-
tions. In this section, we will describe the general steps and
their customization to our specific dataset.

First, wemodel the SMR auction in BPMN (Activitymodel
in BPMN, Section IV-A). However, verifying the resulting
BPMN model is not feasible due to state-space explosion.
Thus, we use approaches from related work to reduce the
state space on the level of process models (Activity reduce
process, Section IV-B). Then, we map the reduced BPMN
model to Petri Nets [43] (Activity transform to Petri Nets,
Section IV-C). Given the final Petri Nets and properties in
form of CTL formulas [44], we employ an off-the-shelf
model checker to verify properties (Activity model checking,
Section IV-D).

A. PROCESS MODEL IN BPMN
We use BPMN to model the design of the German 4G spec-
trum auction to sell 800MHz band [11]. The auction has four
bidders and six products. We assign a random budget from
the range [1, 100] to each bidder for each product, similarly to
the auction experiments in [4]. We also define a reserve price
of 3 for all products. Further, each bidder has an individual
capacity. Table 1 shows the budgets and capacities of the
bidders.

TABLE 1. Design of the SMR auction.

Fig. 2 shows a simplified version of this auction in BPMN
notation. This model consists of three subprocesses: avail-
ability of bidders, bidding of each bidder, and winner deter-
mination. The first subprocess checks whether bidders can
afford additional products that they have not won yet (avail-
ability of bidders). The auction continues if there is at least
one qualified bidder who can place a bid in Subprocess bid-
ding of each bidder. Activity place bid issues a random bid
between the current price of the product and the budget
of the qualified bidder. In our process model, bidders will
always bid if they have both budget and capacity left to
acquire a product. Activity decrease capacity decreases the
capacity of the bidder who just won a product. If a bidder
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FIGURE 1. Verification overview.

has no capacity left, Activity remove bid removes their bids.
Subprocess winner determination outputs the new reserve
prices and the winners based on the existing bids. These three
subprocesses are repeated until no more bids are placed. The
resulting BPMNmodel to represent the German 4G spectrum
auction consists of 423 control-flow elements and 150 data
objects.

B. REDUCTION OF PROCESS MODEL BASED ON
PROPERTIES
To verify a given SMR auction, one could map the pro-
cess model directly to a Petri Net. Then, by employing an
off-the-shelf model checker, one could verify properties in
the Petri Net. However, to verify our SMR auction design,
directly using existing verification techniques is infeasible.
This infeasibility results from state-space explosion [45], i.e.,
the state space increases exponentially with the number of
data objects and values. To overcome this problem, we use
a reduction algorithm analogous to [32] to reduce the size
of the process model. This reduction algorithm makes use
of the properties to be verified. In particular, the algorithm
detects the elements of the process model that are necessary
to verify the property, so-called relevant elements. All the
irrelevant elements are pruned, resulting in a much smaller
process model and thus a smaller state space. To illustrate,
the following property checks whether Product 1 can be sold
for the price of 2 at the end of the process:

Property (I) : EF(product.1.price.2 ∧ e.end).

We detect the relevant process elements and reduce the
process model accordingly to verify this property. However,
a property to verify a price of Product 1 results in a set
of relevant elements different from that of Product 2. With
n products, this calls for n different reductions of the process
model. In our study, we reduce our process model six times,
one time for each product.

C. TRANSFORMATION OF PROCESS MODELS
TO PETRI NETS
Given the reduced process models, we transform them to
Petri Nets with the rules from [10]. We use plain Petri Nets
as a target for the mapping because of the availability of
efficient analysis techniques [46]. Note that each reduced
process model results in a different Petri Net. Thus, we get

six Petri Nets, each to verify a specific product. Each Petri
Net consists of 562 places, 568 transitions, and more than
three million states on average.

D. VERIFICATION OF PROPERTIES
Our overall goal for verification is to detect the auctioneer’s
revenue, which is the sum of the final prices. In particular,
as differences in bidding behavior may result in different out-
comes, we are interested in the minimum possible revenue,
which the auctioneer wants to maximize. This maximin-
principle [47] is used in many applications of auction and
decision theory [48]–[50], though calculating solutions is
time- and resource-consuming. We do not assume specific
bidding behavior, but test all possible behaviors to derive
auction results with the lowest possible prices. Therefore, our
results are more robust in a real-world application than if we
assumed a particular bidding behavior, including rationality
of bidders.

Given the reduced state space described before, we verify
the lowest final price of each product individually, analogous
to Property (I). However, due to the capacity rule, the order of
products for verifying the final prices matters. For example,
if the price of a product is verified after all products, it might
be lower than usual. A cause for this is that the bidders
with high budgets for that product might have already won
other products and thus have no capacity left, so a bidder
with a lower budget wins this product. Thus, we have to
check all the possible permutations of products. Note that
combining results from these permutations allows simulating
the simultaneous bidding behavior from real-world auctions.

Because of the previously discussed points, our verification
procedure is iterative. As we have six products, there are 6! =
720 permutations. For each permutation, we run verification
for the products in the permutation order, i.e., we simulate
auctioning products off sequentially. We verify the final price
first and potential winners second for each product. For the
final price, we start with a price one unit lower than the
lowest budget for that product and increase the price until
verification turns out true. To determine potential winners,
we check for all bidders with remaining capacity if they
can afford the product to that price. Having found a winner,
we decrease their capacity and verify the following product
in the permutation. If multiple bidders might win the product,
we need to consider all these cases for the subsequent product
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FIGURE 2. Simplified process model of an SMR auction in BPMN notation.

because these cases differ in the remaining capacities of the
bidders and might yield different outcomes.

V. EXPERIMENTAL DESIGN
In this section, we start by introducing the dataset in
Section V-A and the goals of the experiments
in Section V-B. Next, we present the experimental approach
in Section V-C. We finish with a few hints on the implemen-
tation in Section V-D.

A. DATASET
From the results of the iterative verification procedure,
we create a dataset for further analyses. The dataset consists
of 130,292 rows and 30 columns (features). Each row corre-
sponds to verifying one property against the underlying Petri
Net. The features fall into five different categories:

• id: Identifiers for rows, related to the iterative verifica-
tion procedure.

• process: These features are data values in the underlying
process model. In our case, budgets and initial capacities
of bidders are fixed, as displayed in Table 1. However,
due to the iterative verification procedure, capacities
decrease once a product has a price and a winner. Thus,
we include the bidders’ current capacities in the dataset.

• property: These features represent the property to be
verified, i.e., the CTL formula. In particular, we have
properties to verify the price of a product and its winner.

• verification: These features characterize the verification
procedure, e.g., the verification time and the binary ver-
ification result.

• allocation: The final allocation consists of the final low-
est prices and winners of each product, plus the resulting
revenue.

Appendix VIII-D provides a detailed list of all features.
Note that we will use subsets of this full dataset for predic-
tions, as explained in Section V-C.

B. GOALS
The overall goal of this article is to analyze verification
of data-aware process models that represent a simultaneous
multi-round auction. In particular, we consider the follow-
ing research questions to guide our analysis of the dataset
described before:
(Q1) Which final allocations, i.e., prices and assignments of

products to bidders, are possible?
(Q2) How are revenue, verification result, and verification

time related to each other and other features?
(Q3) How well can we predict revenue, verification result,

and verification time from other features?
(Q4) Which features of the auction and the verification pro-

cedure are most important in the predictions?
(Q5) Howwell do the prediction models generalize, i.e., how

much does their performance depend on the data split?
(Q6) How well do prediction models of different complexity

perform?
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Our analyses focus on the revenue, verification result, and
verification time. If we use the term revenue with regard to
our experiments, we refer to the lowest possible revenue for a
given auction design and verification order of products. Find-
ing the lowest possible revenue is the goal from the domain
perspective. The verification result tells us which prices and
winners of products are possible, thereby determining the
revenue. By predicting the verification result, we want to
avoid running the model checker many times to verify all the
properties. Verification time is interesting from the perspec-
tive of both processmodeling and verification. Understanding
which factors determine verification time might help to make
modeling and verification more efficient.

One can answer (Q1) and (Q2) by exploring the dataset,
while the remaining research questions call for the training
of prediction models. While (Q3) purely looks at prediction
quality, the questions after that target at a better understanding
of the factors that influence prediction quality.

C. APPROACH
1) EXPLORATION
For exploratory analysis regarding (Q1) and (Q2), we create
plots and compute statistics, focusing on the full dataset with
all 130,292 rows. In particular, we analyze the distributions of
individual features as well as dependencies between features.

2) PREDICTION
To answer research questions (Q3) to (Q6), we build a predic-
tion pipeline. We define three different prediction scenarios
on the dataset (Section V-C2.a). For each of them, we train
multiple prediction models (Section V-C2.b). To evaluate
prediction quality, we choose an appropriate evaluation met-
ric, depending on the prediction scenario (Section V-C2.c).
To analyze generalization performance, we combine
this evaluation with different methods to split the data
(Section V-C2.d).

a: PREDICTION SCENARIOS
To answer (Q3), we analyze three prediction scenarios,
as listed in Table 2. The verification result is a binary vari-
able and, therefore, suitable for classification. Verification
time and revenue are continuous variables and, therefore,
suitable for regression. As we created the dataset from actual
verification runs, we know the ground-truth values of all
target variables, so we can use them to evaluate predictions.
Note that we only use subsets of the data for predictions,
i.e., we create separate prediction datasets, as described in
the following. We only use those features whose values are
known before running verification. Otherwise, the prediction
models would be descriptive at best but could not forecast the
verification procedure.

For verification result and verification time as targets,
predictive features are the capacities of the bidders and the
property that is currently verified. Further, we reduce the
number of rows in the dataset since the iterative verification

procedure described in Section IV-D contains redundancies.
In particular, it might repeatedly verify the same property for
the same process model. In fact, the full dataset only contains
2043 unique combinations of the feature values we use to
predict verification result and verification time. If using the
full dataset for predictions, onemight overestimate prediction
performance due to these duplicate rows, as we found out
in preliminary experiments. Thus, we reduce the dataset to
these 2043 feature-value combinations for predictions. Each
combination is associated with just one verification result in
any case, but verification time might vary. Thus, for verifica-
tion time, we take the mean per feature-value combination as
prediction target.

For revenue as prediction target, we need to re-shape
the full dataset differently. In particular, we cannot use the
same features as we use for predicting verification result
and verification time. This is because values for revenue do
not result from verifying a single property, but they are a
consequence of all verification runs for a product permu-
tation. In addition, verification for each permutation starts
with the same capacities, so capacities are not meaningful as
features here. Thus, the only features we use to predict rev-
enue are the positions of the six products in the permutation.
We get a dataset with one row per product permutation, i.e.,
720 rows overall. As multiple revenues might be associated
with each permutation, we take the minimum revenue per
permutation as the target, which is most interesting for the
auctioneer.

b: PREDICTION MODELS
As prediction models for all prediction scenarios, we use ran-
dom forests [51], which performed well in preliminary exper-
iments. They can solve classification as well as regression
problems. In addition, they allowmodeling non-linear depen-
dencies between features and target variable, whichwe expect
to exist in our dataset. To vary the model complexity for (Q6),
we train models with 1, 10, and 100 trees. To answer (Q4)
regarding feature importance, we use a built-in impor-
tance measure, which describes how much each feature
improved the objective value when training the random
forest.

c: EVALUATION METRICS
To evaluate prediction quality, we use Matthews Correlation
Coefficient (MCC) [52] for classification and R2 [53] for
regression. Both metrics are normalized such that a perfect
prediction has a score of one and naive baselines have a
score of zero. For classification, such baselines with a score
of zero are randomly guessing class labels and constantly
guessing the most common class. For regression, one gets
a score of zero by always predicting the mean of the target
variable. We focus on test-set performance for both metrics
in our evaluation, as random forests can easily overfit the
training set, reaching a perfect or close-to-perfect prediction
performance there.
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TABLE 2. Overview of prediction scenarios.

TABLE 3. Overview of splitting methods.

d: EVALUATION SPLITS
To analyze generalization performance for (Q5), we use
five different splitting methods to evaluate prediction quality.
Some methods split the dataset randomly, other methods
split along feature values. As the features differ between the
prediction scenarios, some splitting methods only apply to
some prediction targets. Table 3 provides an overview.
10-fold cross-validation is a standard method in machine

learning. It splits the dataset randomly into ten equally sized
parts.Models train on nine folds, while the remaining test fold
allows assessing generalization performance. This procedure
is repeated ten times. In our case study, training on 90% of
the data means we could only save 10% of the verification
runs. Thus, we also try to train models on 10% of the data
and evaluate the models with the remaining 90%.We call this
reverse 10-fold cross-validation.

The remaining three splitting methods observe feature val-
ues. For example, in the capacity split, all rows belonging
to the same combination of bidders’ capacities go either into
training or testing. This allows analyzing how well predic-
tions generalize over capacity settings, i.e., different auction
designs. The same goes for the other two feature-based splits.

D. IMPLEMENTATION
We implement our analyses in Python and make the code
available online.1 For predictions, we use the package scikit-
learn [54]. We publish all experimental data, including the
full dataset and results.2 Additionally, we contribute a subset
of the data, equal to the prediction scenarios for verification
result and verification time, under the name ‘Auction Verifi-
cation’ to the UCI Machine Learning Repository.

VI. EVALUATION
First, we address (Q1) and (Q2) by exploring the dataset in
Section VI-A. Second, we address (Q3) to (Q6) by training
and evaluating prediction models in Section VI-B.

1https://github.com/Jakob-Bach/Analyzing-Auction-Verification
2https://doi.org/10.5445/IR/1000142949

A. EXPLORING THE DATA
1) ALLOCATIONS
Overall, the full dataset contains 2404 outcomes of the auc-
tion. These outcomes include duplicates, i.e., the same final
prices and winner assignments can occur in multiple out-
comes. In particular, only 36 different combinations of final
prices and 31 different combinations of winners occur in the
full dataset.

As Table 4a shows, two or three different final prices
occur for each product. The distribution of final prices varies
strongly between products. E.g., Product 3 and Product 6 both
have two possible final prices with similar frequency, while
Product 2 and Product 4 show slight variation in their final
price. For all products, the final price can be as low as the
minimum budget for that product, c.f. Table 1. In contrast,
without a capacity rule, one would expect the final price of
each product to rise to the second-highest budget for that
particular product, as marked in bold in Table 4a. Since
this is not always the case in our dataset, we conclude that
suboptimal outcomes occur, at least compared to a scenario
without a capacity rule. Even considering the capacity rule,
most outcomes are not optimal for the auctioneer, as we will
see later when analyzing the revenue.

As Table 4b shows, two to four different bidders can occur
as the winner for each product. Similar to the prices, the
distribution of winning bidders per product varies, e.g., it can
be relatively balanced or somewhat skewed. In addition, the
bidders with the highest budget for a product do not nec-
essarily win that product due to capacity restrictions. The
number of wins per bidder varies between allocations as
well, as Table 4c shows: While Bidder 1 always acquires
two products, maxing out their capacity, all the other bidders
have two different possible numbers of products they acquire.
In particular, Bidder 3 never reaches their maximal capacity
of two, having comparatively low budgets.

Note that all previously described variations in outcomes
base upon the same starting capacities and budgets. However,
the order in which the products are assigned to bidders varies.
Thus, we conclude that the course of events during the auction
significantly impacts the outcome, especially if bidders can
run out of capacity.

2) REVENUE
Due to the variation of final prices, different revenues are
possible, as Table 4d shows. In the full dataset, revenue ranges
from 430 to 490, with a median of 460. Note that the optimal
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TABLE 4. Frequency of outcomes. Optimal outcomes on a per-products basis, i.e., disregarding the capacity rule, marked in bold.

revenue in a setting without capacity rule is 490, i.e., it can
even be reached in our capacity-restricted setting. However,
it occurs in just 144 out of 2404 outcomes of the full dataset.
This observation again highlights that suboptimal results can
occur. In the revenue-prediction dataset, taking the minimum
revenue for each permutation of products in verification,
revenues vary as well, as Table 4d shows.

Revenue can vary in several ways, fostered by the capac-
ity rule. First, assume a fixed order in which products are
assigned. Multiple revenues can still occur if there are mul-
tiple potential winners for a product, as winner assignment
for one product influences the assignment of the following
products. Second, assume a fixed assignment of products to
bidders. Multiple revenues can still occur because the prices
these bidders pay depend on the order of winner assignment.
Both these cases occur in our dataset.

A look at the correlation of final prices to revenue also
shows interactions between products: As revenue is the sum
of all final prices, increasing a price should increase revenue
linearly, at least without capacity considerations. However,
Pearson correlations of individual final prices to revenue
are only low to moderate in our dataset, having the range
[0.11, 0.58]. For comparison, a perfect positive linear depen-
dency would result in a Pearson correlation of 1, while a
non-existing linear dependency would result in a Pearson
correlation of 0. The highest correlations are for Product 1 and
Product 6, which both often have final prices that are clearly
below the maximum, c.f. Table 4a, and thus can impact
revenue stronger than other products.

3) VERIFICATION RESULT
Verification results are imbalanced in the dataset: Only 14%
of verification runs turn out true in the full dataset and

13% in the prediction dataset. This observation makes sense,
considering that the iterative verification procedure checks
increasing prices until one price is satisfiable, obtaining neg-
ative verification results for all lower prices. The fraction of
positive verification runs varies between products, bidders,
and prices. For the products, different budgets cause different
distributions of possible prices and the number of potential
winners. Also, bidders with higher budgets can be positively
verified as winners more often. For example, Bidder 1, who
has the highest average budget, is a potential winner of a prod-
uct in 86% of the cases in the full dataset, while Bidder 3 only
is a potential winner in 14% of the cases. Finally, regarding
the prices, higher prices have a higher probability of being
verified positively. This finding is a direct consequence of
increasing prices until they are satisfiable in the verification
procedure – eventually, some valid price must be reached, and
then verification of the price for that product stops.

4) VERIFICATION TIME
Verification time shows an asymmetric distribution in
the dataset. In the full dataset, it falls in the interval
[0.06 s, 47.75 s], with a mean of 6.31 s and amedian of 1.22 s.
Values are similar in the prediction dataset, with a range of
[0.08 s, 44.13 s], a mean of 7.34 s and a median of 1.32 s.
These figures indicate a long tail to the right, i.e., while
most verification runs finish in under 2 s, there are also some
significantly longer ones. On average, verification time gets
lower for products that are verified later in the current product
order of the permutation. In particular, average verification
time decreases if capacities of bidders are reduced, as visible
in Fig. 3. This phenomenon might occur because the model
checker needs to check fewer markings in the Petri Nets once
some products are assigned, and less capacity is available.
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FIGURE 3. Distribution of verification time (excluding outlier points) for different capacities of individual bidders.

Verification time also depends on the property to be ver-
ified, i.e., the product, price, and potential winner. Further,
there is a negative relationship between verification result
and verification time. I.e., a positive verification result takes
shorter to obtain on average than a negative one. However,
the Pearson correlation, which quantifies linear dependen-
cies, between these two variables is relatively weak, with a
value of −0.22 in the full dataset. The Spearman correlation,
which captures monotonic relationships, is moderate at best,
with a value of −0.45 in the full dataset. Correlations in the
prediction dataset are similar.

Finally, the dataset shows a nearly perfect correlation
between verification time and two other features measuring
the effort of the model checker: the number of markings
generated as well as the number of transitions fired when
verifying a property against a Petri Net, c.f. Appendix. How-
ever, as both these features are only known after running
verification, i.e., when verification time is known in any
case, we exclude these two features when training prediction
models.

B. PREDICTING THE DATA
1) VERIFICATION RESULT
Fig. 4a shows how prediction models perform for the verifi-
cation result as target variable. Prediction performance varies
significantly between different splitting methods. In partic-
ular, the product-based split entails a comparatively low
prediction performance with large variance, i.e., prediction
models do not generalize well over products. This obser-
vation makes sense, as there are different budgets for each
product, and thus the validity of prices and winners depends
on the product. In contrast, prediction performance with
capacity-based splits is higher on average. As Fig. 4b shows,
capacity-based features are less important for predictions
than features describing the property to be verified, i.e., the
product, price, and winner. There still is one outlier fold

with an MCC of just 0.25 for the capacity-based split, even
if random forests with 100 trees are used. This observation
indicates that prediction models might have difficulties to
generalize to new capacity settings as well.

For a standard 10-fold random split, prediction perfor-
mance is consistently good and improves with the number
of trees in the random forest. This result is particularly
encouraging when considering runtime: Even with 100 trees,
training and prediction took less than a second on one split
of the prediction dataset. For comparison, running verifica-
tion to obtain this dataset took a few hours. This raises the
question of how good prediction performance is with a small
training dataset. For reverse 10-fold cross-validation, which
only trains on 10% of the data instead of 90%, results are
significantlyworse than for standard 10-fold cross-validation,
as Fig. 4a shows. However, at least the decrease in prediction
quality is better than proportional, i.e., prediction quality does
not drop to a ninth of its original value.

2) REVENUE
If one knows the verification result for all combinations of
products, prices, and winners, one can also compute the rev-
enue. However, as described in Section V-C, we take a differ-
ent approach here, predicting the minimum revenue directly
for each permutation of products in the iterative verification
procedure. Similar to predicting verification result, prediction
performance in standard 10-fold cross-validation is good,
as Fig. 5a shows, using R2 as quality metric. Again, predic-
tion performance is significantly lower if one trains prediction
models with just 10% of the data, but still considerably better
than random guessing.

Fig. 5b displays feature importance for predicting revenue.
The importance of the product position in the permutation
significantly varies between products, but it is greater than
zero for all products. This observation also explains why pre-
diction performance with a split based on product positions is
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FIGURE 4. Prediction results for verification result as target variable.

FIGURE 5. Prediction results for revenue as target variable.

lower than for a 10-fold random split, c.f. Fig. 5a. The posi-
tion of Product 4 shows the lowest importance. This finding
makes sense, as Product 4 only varies little in final prices and
winner assignment, cf. Table 4, thus having a low influence on
revenue. The position of Product 2 has the highest importance
in predictions, which is surprising, given the low variation of
the final price of this product. However, three bidders may
win the product with roughly equal frequency. This situation
might affect revenue indirectly because winner assignment
reduces the capacities of the bidders and thus influences the
prices of subsequently assigned products.

3) VERIFICATION TIME
As for the other prediction targets, prediction performance for
verification time strongly depends on the splitting method.
As Fig. 6a shows, the standard 10-fold random split yields

stable and excellent prediction performance. Reverse 10-fold
splitting yields worse and more fluctuating performance, but
the drop compared to standard 10-fold is lower than for
predicting verification result or revenue. The capacity-based
split is good on average as well, but it has strong outliers,
which are not visible in the plot. In particular, there are
outliers with negative R2, i.e., worse than the baseline strat-
egy of constantly predicting the mean of the test data. For
a product-based split, even the median R2 is negative, and
results do not appear in the plot. Thus, the trained models
do not have any predictive power with that splitting method.
As for verification result, this indicates that predictionmodels
might have difficulties to generalize over different auction
designs.

Fig. 6b display feature importance for predicting verifi-
cation time. The product to be verified is most important,
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FIGURE 6. Prediction results for verification time as target variable.

while the other parts of the property to be verified,
i.e., price and winner, are less important. In addition, the
capacity of Bidder 1 plays an important role, clearly more
than all other capacities. As already seen in Fig. 3, this bidder
has the highest variation in median verification time between
capacity levels. In particular, it makes a big difference for
verification time if this bidder still has capacity left or if their
capacity already is at zero.

VII. SUMMARY AND DISCUSSION
A. EXPLORATION (Q1), (Q2)
An exploratory analysis of the dataset showed that there is
not a unique outcome, but many different outcomes could
occur in the auction, cf. Table 4. In particular, each product
had multiple potential winners and prices. Most importantly
for the auctioneer, revenue varied between the outcomes and
turned out to be suboptimal in the majority of the cases. A key
factor for this variation was a capacity limit on the num-
ber of products each bidder can acquire. Thus, auctioneers
should thoroughly analyze potential outcomes when intro-
ducing such capacity limits.

B. PREDICTION QUALITY (Q3) AND MODEL
COMPLEXITY (Q6)
For a standard k-fold dataset split, we were able to predict the
verification result, revenue, and verification time with high
fidelity, c.f. Fig. 4a, 5a, and 6a. Unsurprisingly, more complex
prediction models often performed better than less complex
ones, though not for all prediction scenarios and splitting
methods. Generally, as random forests captured the complex,
non-linear dependencies in our dataset well, we would rec-
ommend them for further studies with auction data. If there
are no hardware limitations, a high number of trees should be
used.

C. GENERALIZATION (Q5)
From the domain perspective, a high prediction performance
implies that one could replace costly verification runs with
predictions, which were considerably faster. In particular,
training and prediction of one model for one dataset split
took less than one second, while obtaining the verification
runs to build the dataset took a few hours. For the auction
use case, this means the auctioneer could efficiently predict
the least favorable outcomes and adapt the auction design
accordingly.

However, prediction quality strongly depended on the split-
ting method in our study. This finding illustrates that the
prediction models are rather dataset-specific. The currently
trained models might show poor performance if the auction
design changes, e.g., new capacity settings or new budgets
are introduced. For example, the given dataset has constant
budgets, and the prediction models thus can only learn which
prices are valid for these budgets. This caveat highlights that
one needs to carefully choose a representative training set
when predicting verification results. For auctions, one should
focus analysis on one auction design and systematically vary
specific aspects of that design, e.g., capacities.

One way to obtain a dataset, if one cannot evaluate all
combinations of auction-design aspects, is random sampling.
To that end, we trained prediction models on only 10% of
the dataset. Compared to 10-fold cross-validation, the drop
in prediction performance depended on the prediction target.
For random forests with 100 trees, the drop in prediction per-
formance was 47% for verification result, 33% for revenue,
and 7% for verification time. Depending on the use case, one
needs to decide which prediction performance still is accept-
able. We recommend starting predictions with a small set
of verification runs and increasing dataset size as necessary.
Besides random sampling, one could also use active learning
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techniques [55] to decide which verification runs to execute
next when building the dataset.

D. FEATURE IMPORTANCE (Q4)
Interestingly, the influence of the bidders’ capacities on the
prediction of verification result and verification time strongly
varied between bidders, i.e., some bidders hadmore influence
than others, c.f. Fig. 4b and 6b. Similarly, the importance
of individual products on prediction of the revenue varied,
c.f. Fig. 5b. Given the asymmetric distribution of budgets
and capacities over products and bidders, this observation
makes sense. For further studies, a broader analysis withmore
auction designs would be beneficial so that one could draw
more general conclusions. For example, if certain bidders or
products have a low influence in a scenario, this knowledge
might help to optimize the process model or the verification
procedure.

VIII. CONCLUSION AND FUTURE WORK
A. PROBLEM AND APPROACH
Verification can help to analyze outcomes of complex
real-world processes like spectrum auctions. However, verifi-
cation of properties in large processmodels is costly. To speed
this up, one may create a dataset from prior verification runs
and analyze this data. In particular, prediction models might
allow efficiently estimating verification results or high-level
properties of the process model. To that end, we conducted
a case study on a large dataset from verifying the outcomes
of a spectrum auction. The auction design was similar to the
German 4G auction.

B. RESULTS
Our study first explored the dataset and found many differ-
ent outcomes occurring, most of them suboptimal. Second,
we trained prediction models for three targets, i.e., revenue,
verification result, and verification time. We saw high pre-
diction performance for evaluation with random splits of
the dataset. However, we observed that prediction models
generalized less if the splits excluded certain aspects of the
auction design, e.g., capacities or products, from the training
data. Thus, we advise making the training set of verification
runs as representative as possible regarding future input data
for predictions.

C. FUTURE WORK IN VERIFICATION
Our case study focused on a specific verification scenario,
but the analysis approach is general. For any verification of
data-aware processes, one can build a similar dataset by sys-
tematically running verification with many different process
models and properties. As in our case, valuable features for
predictions might originate from data values in the process
models, the properties to be verified, and data from the veri-
fication process. Additionally, if one verifies properties for a
large amount of Petri Nets, extracting features from the graph
structure of the Petri Nets might be promising as well.

D. FUTURE WORK IN AUCTION THEORY
In the field of auction theory, our approach seems promis-
ing for industrial sales and procurement auctions, e.g., the
auction for renewable energy support. In particular, wind
offshore auctions are similar in complexity and design to
the already analyzed German spectrum auction. In 2020,
the United Kingdom (UK) auctioned at least 7GW of wind
offshore, divided into four bidding areas [56]. A capacity
rule was included as well [56]. Although high prices were
achieved [57], an improvement of the auction design might
have led to even higher revenue.

APPENDIX
DATASET FEATURES
In the following, we provide a short description of each of
the 30 columns (features) in the full dataset. As described
in Section V-C, we only use subsets of these features for
predictions.

• id.product_permutation: An integer in [1, 720], identi-
fying which of the 6! = 720 product orders is currently
verified.

• id.iteration: A positive integer, denoting the itera-
tion number within the current id.product_permutation.
id.product_permutation and id.iteration in combination
uniquely identify rows in the dataset.

• id.product_position: An integer in [1, 6], denoting
the position of the currently verified product (prop-
erty.product) in the product order of the current
id.product_permutation.

• id.product_case: A positive integer, distinguishing
repeated verification runs, all starting from the same
lowest price, for the same property.product in the cur-
rent id.product_permutation. This happens if there were
multiple potential winners for the previously verified
product – the iterative verification procedure checks the
consequences of all these assignments in a breadth-first
search, c.f. Section IV-D.

• process.b[1-4].capacity: An integer in [0, 3], denoting
the current capacities of the bidders. These are the
only features in the dataset that represent data val-
ues from the process model. At the beginning of each
id.product_permutation, capacities are the same, but
once a winner for a product is known, the capacity of
this bidder is reduced as soon as verification moves on
to the next product.

• property.formula: A string representation of the prop-
erty to be verified. We have extracted several numeric
features to ease use for analysis and predictions, which
we will describe next. In the formula itself, numerical
values for prices and winners have a binary encoding,
i.e., even if the formulas seem to contain multiple prices
and winners at first glance, they refer to just one price
and at most one winner at once.

• property.product: An integer in [1, 6], denoting the cur-
rently verified product.
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• property.price: An integer in [59, 90], denoting the price
that is currently verified for the property.product.

• property.winner: An integer in [1, 4], denoting the bid-
der that is currently verified as winner for the prop-
erty.product with the property.price. This feature is
empty for iterations where the price is not clear yet.

• verification.is_final: A boolean, denotingwhether prices
and winners for all six products are found. In these rows,
all allocation. features have a value; else, they are all
empty.

• verification.result: A boolean, denoting if the current
property.formula is satisfied in the underlying Petri Net
or not.

• verification.time: A positive integer, denoting the time
(in ms) for verifying the current property.formula
against the underlying Petri Net. In the prediction
dataset, this is a real number due to the creation proce-
dure of that dataset, c.f. Section V-C2.a.

• verification.markings: A positive integer, denoting the
number of markings generated when verifying the cur-
rent property.formula against the underlying Petri Net.

• verification.edges: A positive integer, denoting the num-
ber of transitions fired when verifying the current prop-
erty.formula against the underlying Petri Net.

• allocation.revenue: A positive integer in [430, 490],
denoting the sum of final prices over all products.

• allocation.p[1-6].price: An integer in [60, 90], denoting
the final price of the corresponding product.

• allocation.p[1-6].winner: An integer in [1, 4], denoting
the bidder winning the corresponding product.

Additionally, for revenue prediction, we extract the fea-
tures order.p[1-6].pos. These are integers in [1, 6], denoting
the positions of Product 1 to Product 6 within the current
id.product_permutation.

ACKNOWLEDGMENT
(Elaheh Ordoni and Jakob Bach contributed equally to the
work).

REFERENCES
[1] T. W. Hazlett, R. E. Mu noz, and D. B. Avanzini, ‘‘What really

matters in spectrum allocation design,’’ Nw. J. Tech. Intell.
Prop., vol. 10, no. 3, pp. 93–123, 2012. [Online]. Available:
https://scholarlycommons.law.northwestern.edu/njtip/vol10/iss3/2

[2] L. M. Ausubel, P. Cramton, and P. R. Milgrom, ‘‘The clock-proxy auc-
tion: A practical combinatorial auction design,’’ in Handbook of Spectrum
Auction Design. Cambridge, U.K.: Cambridge Univ. Press, 2017, ch. 6,
pp. 120–140.

[3] J. H. Kagel and D. Levin, ‘‘Behavior in multi-unit demand auctions: Exper-
iments with uniform price and dynamic vickrey auctions,’’ Econometrica,
vol. 69, no. 2, pp. 413–454, Mar. 2001.

[4] C. Brunner, J. K. Goeree, C. A. Holt, and J. O. Ledyard, ‘‘An experimental
test of flexible combinatorial spectrum auction formats,’’ Amer. Econ.
J., Microecon., vol. 2, no. 1, pp. 39–57, Feb. 2010.

[5] W. Vickrey, ‘‘Counterspeculation, auctions, and competitive sealed ten-
ders,’’ J. Finance, vol. 16, no. 1, pp. 8–37, 1961.

[6] V. Krishna, Auction Theory. New York, NY, USA: Academic, 2009.
[7] C. W. Smith, ‘‘Auctions: From Walras to the real world,’’ in Explorations

in Economic Sociology. New York, NY, USA: Russell Sage Foundation,
1993, ch. 7, pp. 176–192.

[8] O. Kirchkamp and J. P. Reiss, ‘‘Heterogeneous bids in auctions with ratio-
nal and markdown bidders—Theory and experiment,’’ Friedrich Schiller
Univ. Jena Max Planck Inst. Econ., Jena, Germany, Tech. Rep. 2008,066,
2008. [Online]. Available: http://hdl.handle.net/10419/31716

[9] S. Gandhi, C. Buragohain, L. Cao, H. Zheng, and S. Suri, ‘‘A general
framework for wireless spectrum auctions,’’ in Proc. 2nd IEEE Int. Symp.
New Frontiers Dyn. Spectr. Access Netw., Apr. 2007, pp. 22–33.

[10] E. Ordoni, J. Mülle, and K. Böhm, ‘‘Verification of data-value-aware
processes and a case study on spectrum auctions,’’ in Proc. CBI, 2020,
pp. 181–190.

[11] P. Cramton and A. Ockenfels, ‘‘The German 4G spectrum auction: Design
and behaviour,’’ Econ. J., vol. 127, no. 605, pp. F305–F324, Oct. 2017.

[12] G. Brero, B. Lubin, and S. Seuken, ‘‘Combinatorial auctions via
machine learning-based preference elicitation,’’ in Proc. 27th Int.
Joint Conf. Artif. Intell., Jul. 2018, pp. 128–136. [Online]. Available:
https://www.ijcai.org/proceedings/2018/0018.pdf

[13] M. J. García Rodríguez, V. RodríguezMontequín, F. Ortega Fernández, and
J. M. Villanueva Balsera, ‘‘Bidders recommender for public procurement
auctions using machine learning: Data analysis, algorithm, and case study
with tenders from Spain,’’ Complexity, vol. 2020, pp. 1–20, Nov. 2020.

[14] M. Mohri and A. M. Medina, ‘‘Learning theory and algorithms
for revenue optimization in second-price auctions with reserve,’’
in Proc. ICML, 2014, pp. 262–270. [Online]. Available:
http://proceedings.mlr.press/v32/mohri14.pdf

[15] S. Verwer, Y. Zhang, and Q. C. Ye, ‘‘Auction optimization using regression
trees and linear models as integer programs,’’ Artif. Intell., vol. 244,
pp. 368–395, Mar. 2017.

[16] M. Amrani, L. Lúcio, and A. Bibal, ‘‘ML+FV = ♥? a survey on
the application of machine learning to formal verification,’’ 2018,
arXiv:1806.03600.

[17] E. E. Mandouh and A. G. Wassal, ‘‘Estimation of formal verification cost
using regression machine learning,’’ in Proc. IEEE Int. High Level Design
Validation Test Workshop (HLDVT), Oct. 2016, pp. 121–127.

[18] M. Yasrebi, V. Rafe, H. Parvin, and S. Nejatian, ‘‘An efficient approach to
state space management in model checking of complex software systems
using machine learning techniques,’’ J. Intell. Fuzzy Syst., vol. 38, no. 2,
pp. 1761–1773, Feb. 2020.

[19] W. Zhu, H. Wu, and M. Deng, ‘‘LTL model checking based on binary clas-
sification of machine learning,’’ IEEE Access, vol. 7, pp. 135703–135719,
2019.

[20] P. Milgrom, ‘‘Putting auction theory to work: The simultaneous ascending
auction,’’ J. Political Economy, vol. 108, no. 2, pp. 245–272, Apr. 2000.

[21] F. Gul and E. Stacchetti, ‘‘Walrasian equilibrium with gross substitutes,’’
J. Econ. Theory, vol. 87, no. 1, pp. 95–124, Jul. 1999.

[22] S. Seifert and K.-M. Ehrhart, ‘‘Design of the 3G spectrum auctions in the
U.K. and germany: An experimental investigation,’’ German Econ. Rev.,
vol. 6, no. 2, pp. 229–248, May 2005.

[23] M. Bichler, V. Gretschko, and M. Janssen, ‘‘Bargaining in spectrum auc-
tions: A review of the German auction in 2015,’’ Telecommun. Policy,
vol. 41, nos. 5–6, pp. 325–340, Jun. 2017.

[24] Z. Chen, L. Huang, L. Li, W. Yang, H. Miao, M. Tian, and F. Wang, ‘‘PS-
TRUST: Provably secure solution for truthful double spectrum auctions,’’
in Proc. INFOCOM, vol. 2014, pp. 1249–1257.

[25] M. Al-Ayyoub and H. Gupta, ‘‘Truthful spectrum auctions with approxi-
mate revenue,’’ in Proc. INFOCOM, Apr. 2011, pp. 2813–2821.

[26] S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin, ‘‘Petri nets with
parameterised data: Modelling and verification (extended version),’’ 2020,
arXiv:2006.06630.

[27] D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, and P. Dadam, ‘‘On
enabling data-aware compliance checking of business process models,’’ in
Proc. ER, 2010, pp. 332–346.

[28] H. Groefsema, N. R. T. P. van Beest, and A. Armas-Cervantes, ‘‘Efficient
conditional compliance checking of business process models,’’ Comput.
Ind., vol. 115, Feb. 2020, Art. no. 103181.

[29] A. Meyer and M. Weske, ‘‘Data support in process model abstraction,’’ in
Proc. ER, vol. 2012, pp. 292–306.

[30] S. Haarmann, K. Batoulis, and M. Weske, ‘‘Compliance checking for
decision-aware process models,’’ in Proc. BPM, 2018, pp. 494–506.

[31] R. Mrasek, J. Mülle, and K. Böhm, ‘‘A new verification technique for
large processes based on identification of relevant tasks,’’ Inf. Syst., vol. 47,
pp. 82–97, Jan. 2015.

[32] J. Mülle, C. Tex, and K. Böhm, ‘‘A practical data-flow verification scheme
for business processes,’’ Inf. Syst., vol. 81, pp. 136–151, Mar. 2019.

31712 VOLUME 10, 2022



E. Ordoni et al.: Analyzing and Predicting Verification of Data-Aware Process Models

[33] R. Bobrik, M. Reichert, and T. Bauer, ‘‘View-based process visualization,’’
in Proc. BPM, 2007, pp. 88–95.

[34] X. Lai, A. Balakrishnan, T. Lange, M. Jenihhin, T. Ghasempouri, J. Raik,
and D. Alexandrescu, ‘‘Understanding multidimensional verification:
Where functional meets non-functional,’’ Microprocessors Microsyst.,
vol. 71, Nov. 2019, Art. no. 102867.

[35] E. M. Elmandouh and A. G. Wassal, ‘‘Guiding formal verification orches-
tration using machine learning methods,’’ ACM Trans. Design Autom.
Electron. Syst., vol. 23, no. 5, pp. 1–33, Oct. 2018.

[36] D. Buchs, S. Klikovits, A. Linard, R. Mencattini, and D. Racordon,
‘‘A model checker collection for the model checking contest using Docker
and machine learning,’’ in Proc. Petri Nets, 2018, pp. 385–395.

[37] S. Matsubara, S. Yamaguchi, and M. A. Bin Ahmadon, ‘‘Generating and
analyzing data set of workflow-nets,’’ in Proc. 8th Int. Symp. Comput.
Netw. Workshops (CANDARW), Nov. 2020, pp. 471–473.

[38] K. Pei, Y. Cao, J. Yang, and S. Jana, ‘‘Towards practical verifica-
tion of machine learning: The case of computer vision systems,’’ 2017,
arXiv:1712.01785.

[39] W. Xiang, P. Musau, A. A. Wild, D. Manzanas Lopez, N. Hamilton,
X. Yang, J. Rosenfeld, and T. T. Johnson, ‘‘Verification for machine learn-
ing, autonomy, and neural networks survey,’’ 2018, arXiv:1810.01989.

[40] M. Weiss, B. Lubin, and S. Seuken, ‘‘SATS: A universal spectrum auc-
tion test suite,’’ in Proc. AAMAS, 2017, pp. 51–59. [Online]. Available:
https://www.ifaamas.org/Proceedings/aamas2017/pdfs/p51.pdf

[41] P.Milgrom, Putting Auction Theory toWork. Cambridge, U.K.: Cambridge
Univ. Press, 2004.

[42] A. M. Kwasnica and K. Sherstyuk, ‘‘Multiunit auctions,’’ J. Econ. Surv.,
vol. 27, no. 3, pp. 461–490, Jul. 2013.

[43] M. P. Van der Aalst, ‘‘The application of Petri nets to workflow manage-
ment,’’ J. Circuits Syst. Comput., vol. 8, no. 1, pp. 21–66, Feb. 1998.

[44] E. M. Clarke, E. A. Emerson, and A. P. Sistla, ‘‘Automatic verification of
finite-state concurrent systems using temporal logic specifications,’’ ACM
Trans. Program. Lang. Syst., vol. 8, no. 2, pp. 244–263, 1986.

[45] E. M. Clarke,Model Checking. Cambridge, MA, USA: MIT Press, 2018.
[46] N. Lohmann, E. Verbeek, and R. Dijkman, ‘‘Petri net transformations for

business processes—A survey,’’ in Transactions on Petri Nets and Other
Models of Concurrency II. Berlin, Germany: Springer, 2009, pp. 46–63.

[47] A. Wald, ‘‘Contributions to the theory of statistical estimation and testing
hypotheses,’’ Ann. Math. Stat., vol. 10, no. 4, pp. 299–326, 1939. [Online].
Available: https://www.jstor.org/stable/2235609

[48] J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior. Princeton, NJ, USA: Princeton Univ. Press, 1944.

[49] M. D. Resnik, Choices: An Introduction to Decision Theory. Minneapolis,
MI, USA: Univ. Minnesota Press, 1987.

[50] M. Sniedovich, ‘‘Wald’s maximin model: A treasure in disguise!’’ J. Risk
Finance, vol. 9, no. 3, pp. 287–291, May 2008.

[51] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[52] B. W. Matthews, ‘‘Comparison of the predicted and observed secondary
structure of t4 phage lysozyme,’’Biochimica Biophys. Acta-Protein Struct.,
vol. 405, no. 2, pp. 442–451, 2016, doi: 10.1016/0005-2795(75)90109-9.

[53] G. James, D. Witten, T. Hastie, and R. Tibshirani, ‘‘Linear regression,’’ in
An Introduction to Statistical Learning: With Applications in R. New York,
NY, USA: Springer, 2013, ch. 3, pp. 59–126.

[54] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, and P. Prettenhofer, ‘‘Scikit-learn: Machine learning in
Python,’’ J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. [Online].
Available: http://jmlr.org/papers/v12/pedregosa11a.html

[55] B. Settles, ‘‘Active learning literature survey,’’ Dept. Comput. Sci., Univ.
Wisconsin-Madison, Madison,WI, USA, Tech. Rep. 1648, 2009. [Online].
Available: http://digital.library.wisc.edu/1793/60660

[56] The Crown Estate. (2019) Information Memorandum: Introducing
Offshore Wind Leasing Round 4. Accessed: Jul. 29, 2021. [Online].
Available: https://www.thecrownestate.co.U.K./media/3321/tce-r4-
information-memorandum.pdf

[57] S. Twidale. (2021). RWE, Total, BP Among Winners in UK Offshore
Wind Farm Auction. Accessed: Jul. 29, 2021. [Online]. Available:
https://www.reuters.com/article/us-britain-windpower-auction-
idUSKBN2A80RN

ELAHEH ORDONI received the M.Sc. degree in
algorithms and computations from the University
of Tehran, Tehran, Iran, in 2017. She is currently
pursuing the Ph.D. degree with the Karlsruhe Insti-
tute of Technology (KIT), Karlsruhe, Germany.
Her research interest includes supporting data in
workflows to guarantee the correctness of business
process models.

JAKOB BACH received the B.Sc. degree in indus-
trial engineering and management and the M.Sc.
degree in informatics from the Karlsruhe Insti-
tute of Technology (KIT), Karlsruhe, Germany,
in 2015 and 2017, respectively, where he is cur-
rently pursuing the Ph.D. degree in informatics.
His research interests include data science and
feature selection.

ANN-KATRIN FLECK received the degree in
mathematics from the Karlsruhe Institute of Tech-
nology (KIT), Karlsruhe, Germany. She is cur-
rently pursuing the Ph.D. degree (since 2018)
and analyzes measures to reduce uncertainties in
procurement auctions, especially for renewable
energy. She is a consultant with Takon GmbH
with a counseling focus on strategic decisions.
Her work includes consulting the German Fed-
eral Ministry of Economic Affairs and Energy to

design auctions for renewable energy support and companies in industrial
procurement auctions. She is part of the consortium of the EU grant Hori-
zon2020 project AURES II where she game-theoretically and experimentally
analyzes auctions for renewable energy support.

VOLUME 10, 2022 31713

http://dx.doi.org/10.1016/0005-2795(75)90109-9

