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ABSTRACT
To ease the proliferation of big data, it frequently is transformed,
be it by compression, be it by anonymization. Such transforma-
tions however modify characteristics of the data, such as changes
in the case of time series. Changes however are important for sub-
sequent analyses. The impact of those modifications depends on
the application scenario, and quantifying it is far from trivial. This
is because a transformation can shift or modify existing changes or
introduce new ones. In this paper, we propose MILTON, a flexible
and robust Measure for quantifying the Impact of Lossy Transfor-
mations on subsequent change detectiON. MILTON is applicable
to any lossy transformation technique on time-series data and to
any general-purpose change-detection approach. We have evalu-
ated it with three real-world use cases. Our evaluation shows that
MILTON allows to quantify the impact of lossy transformations
and to choose the best one from a class of transformation tech-
niques for a given application scenario.

1. INTRODUCTION
Change detection on time series data is an important building

block of many real-world applications [28, 17]. It converts a time
series of measurements into one of events. Think of energy-
consumption data from a smart meter, which serves as our running
example. Change detection on such data allows to detect interest-
ing events (turning on/off of a device, abnormal device activity).
Such events are needed for demand side management, peak shift-
ing, peak shaping, etc. – all basic techniques to integrate renewable
energy sources into the Smart Grid. However, data transformation,
e.g., lossy compression or anonymization, can modify the data con-
siderably. This can significantly impact the subsequent detection of
those events.

EXAMPLE 1. An energy provider uses a lossy compression
technique for time series from a smart meter, to reduce the data
volume, before running a change-detection algorithm. Due to the
compression loss, (a) some changes might be detected at different
points in time, or (b) their significance might be altered, compared
to the original time series. Next, (c) changes might go undetected at
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all, or (d) the compression might result in new changes. Using his
domain knowledge, the provider can assess the importance of these
impacts. Based on his assessment, he wants to select a concrete
compression technique, together with a good parameter set.

Due to the volume of the data, the complex semantics of changes
to be detected and possible privacy violations [6], change detec-
tion on smart-meter data is a “Big Data” problem. Big data ap-
proaches like lossy compression [11], estimation [10] or pertur-
bation/anonymization [29] lossily transform the time series before
doing change detection: A lossy transformation can reduce the data
volume, generate an optimized data model or remove personal in-
formation from a dataset. However, existing similarity measures
for time series, applied to the original series and the compression
result, cannot meaningfully quantify the impact of a lossy transfor-
mation on the result of a change-detection approach [3, 34, 41, 22].
Such a quantification however is needed to identify and parametrize
a good compression algorithm or anonymization approach, given a
certain dataset and quality requirements on the change-detection re-
sult. This quantification is difficult due to several open challenges:
First, as shown in the example, the impact is manifold. One there-
fore needs to carve out possible effects of a lossy transformation
on changes. Second, the definition of a measure for this impact is
not obvious. It is necessary to thoroughly investigate application
scenarios where one is working on the transformed data, in order
to come up with respective requirements. Third, the measure envi-
sioned should be customizable to the concrete application scenario.
Think of the energy provider once again. For him, it will be more
detrimental if compression eliminates changes from the data, as op-
posed to the insertion of new ones. Fourth, identifying the specific
effect of a transformation on a change (e.g., shift in time vs. disap-
pearance) is an application-dependent procedure, which must take
all changes into account. This is because ascribing an effect to a
certain change may cascade and influence the ascription of effects
to other changes. Having defined a measure does not make finding
a good algorithm computing it obsolete.

In this paper, we design and evaluate MILTON, a practical and
flexible Measure which quantifies the Impact of various Lossy
Transformation methods for time series on subsequent change de-
tectiON. This measure is applicable to any use case where one
wants to know how much a certain transformation approach for
time series reduces the result quality of a change-detection tech-
nique, as compared to change detection on the original data. This
lets an operator decide how much he can compress the data with-
out affecting change detection considerably, or if the anonymiza-
tion technique he intends to deploy does indeed conceal certain
changes, as he had planned. To ensure flexibility, we do not im-
pose restrictions on the change detection or the transformation ap-



proach used, and we allow to flexibly weight effects on changes.
We have carried out extensive experiments, which have revealed
interesting insights on the relationship between the transformation
technique in use and change-detection quality. For instance, dif-
ferent anonymization techniques may have a significantly different
impact on changes, although they protect privacy equally well.

At first sight, an alternative to MILTON would have been to de-
rive a model of the loss of data quality due to a transformation. It
is however very demanding to build such a model that is generally
applicable. The main reason is that it is difficult to impossible to
integrate each of the many existing lossy transformation techniques
and change-detection approaches into one model.

In this article, we now make the following contributions:
• We investigate application scenarios in detail that do change

detection on lossily transformed time-series data.
• We propose a measure of the impact of time-series transfor-

mation methods on subsequent change detection.
• We carry out an evaluation of our measure using three dif-

ferent use cases, namely data compression in the Smart Grid,
data-center energy management and data privacy in the Smart
Grid.

MILTON is suitable with any general-purpose lossy transforma-
tion and change-detection approaches. In addition, its design en-
ables a flexible parametrization. Finally, it is applicable in many
application areas in a straightforward manner.
Paper structure: Section 2 describes three application scenarios
for our measure. Section 3 introduces and explains MILTON,
which Section 4 evaluates. Section 5 reviews related work, and
Section 6 concludes.

2. APPLICATION SCENARIOS
In this section, we describe three scenarios which motivate our

measure and derive the requirements on it. We have consciously
decided to describe these scenarios in much detail, in order to reveal
the subtle differences between them, which then give way to the
requirements.

2.1 Data Compression in the Smart Grid

2.1.1 Description
The Smart Grid gives way to the collection of ever-increasing

volumes of time-series data [12]. This data is useful for analysis
purposes such as energy-consumption forecasts [33] or energy dis-
aggregation [21]. To store this data, recent research has produced
numerous model-based lossy compression techniques [11, 18, 23,
13]. In contrast to lossless ones, they can obtain significantly higher
compression ratios. These methods typically make use of correla-
tions in the time series and produce a piecewise approximation of
the original data within an error threshold ε. Thus, they not only
modify the original data, but also the changes present in it. The
effects of such approximations on the changes have not been inves-
tigated yet.

An energy provider intending to use the compressed data for an-
alytics needs to take these effects into account. For instance, by
detecting changes in data streams and integrating them in the learn-
ing model, he can improve forecasting [35] or enhance stream min-
ing [40]. We refer to this scenario as the “compression scenario”.

2.1.2 Problem Domain
The result of lossy compression methods depends on the models

they use (e.g., constants, straight lines, polynomials) and how they
use them. To evaluate their impact on changes in the data, one thus
needs to consider different classes of models. Another important

parameter here is the error threshold ε. Compression results, and
consequently their impact on changes, strongly depend on this pa-
rameter. One therefore needs to evaluate the impact of compression
methods for different values of ε.

2.1.3 Setting
The energy provider employs a forecasting application that uses

the compressed time series to predict the energy consumption. De-
tecting a change in the time series triggers an update of the under-
lying model of the forecasting algorithm, to improve predictions.
In such a case, it makes sense to penalize changes which disappear
(“missed”) more than those which emerge (“false positives”) as a
result of the transformation. This is because a missed change pre-
vents the forecasting algorithm from updating its model when nec-
essary. This may impact its accuracy significantly. A false-positive
change in turn will trigger an unnecessary update of the model,
which may cause additional effort, but should not affect forecast-
ing accuracy considerably. Regarding shifts of changes in time,
the provider deems them important for forecasting, as they will de-
lay or vice-versa advance the update of the underlying model. On
the other hand, modifications of the importance of changes are not
crucial in this case, so he chooses to ignore them altogether. This
makes sense here, because, once a change is detected, the model is
updated regardless of that importance.

2.2 Data-Center Energy Management

2.2.1 Description
The share of computer-energy consumption has been estimated

at 7.15% of the total electricity consumption and will increase to
14.6% by 2020 [42]. Quantifying this type of consumption reliably
is thus important for many business cases. Deploying a smart me-
ter for each computer system to measure the energy consumption
directly is however expensive. Instead of measuring it, some recent
approaches estimate the consumption of computers [10], based on,
say, specific information on the hardware [31] or based on a profile
of the computer power usage [19]. This is another lossy transfor-
mation technique, which we refer to as estimation.

Estimates of computer-energy consumption are useful in many
use cases. For instance, a data-center manager can use such data
in the design phase of the data center or to keep track of the en-
ergy consumption of the IT infrastructure when operating the cen-
ter [10]. He can additionally use the data for other use cases which
employ change-detection methods including consumption-event
characterization or detection of abnormal consumption. As with
compression, estimates are an approximation of the real consump-
tion data. A data-center manager thus needs to quantify the ef-
fect of estimation methods on changes and to choose an estimation
method appropriate for subsequent change detection. We refer to
this scenario as the “estimation scenario”.

2.2.2 Problem Domain
Estimation methods function differently in order to obtain ap-

proximations. We are aware of several classes: A first class per-
forms a sophisticated calibration process [14], while another one
relies on specific models of components [27]. They thus obtain
estimates of different accuracy. In an evaluation, it would be in-
teresting to study the impact of estimation methods from different
classes on the changes. Another parameter here is the time granu-
larity of the estimates. There is a trade-off between this granularity
and accuracy [10]. We therefore need to evaluate estimation meth-
ods with different values for that parameter.



2.2.3 Setting
Here, the data-center manager will use estimates to balance en-

ergy demand and supply with the following application: A signifi-
cant change in consumption will trigger an alarm, so that the energy
supply adjusts to the new level. This means that shifts and modifi-
cations of the importance of changes are critical to the subsequent
application. Regarding missed and false-positive changes, the man-
ager uses a similar logic as in the previous scenario. A missed
change is critical here because it prevents from balancing energy
consumption and supply. A false positive however only implies an
unnecessary readjustment. Even though this indicates additional
costs, it is not critical to the subsequent application.

2.3 Data Privacy in the Smart Grid

2.3.1 Description
Smart meters can accurately and frequently measure and com-

municate the energy consumption of households. While these mea-
surements are useful for analytical purposes, they unintentionally
allow to infer personal information, such as the daily routine of
residents [6, 26]. The pseudonymization of the data is not suffi-
cient. This is because an easy re-identification of consumers us-
ing simple statistical measures is possible [6]. Adding noise (e.g.,
white noise) to the data does not enhance privacy either, as one can
easily filter it out [29]. One way to prevent filtering out noise is
to first transform the data to another basis (e.g., apply a Wavelet
transform), then to add noise to the data in that basis, and finally
to re-transform the data to the original basis [29]. Although they
do not guarantee anonymization, such methods give way to some
extent of anonymization in many cases. We refer to these methods
as anonymization methods in the following.

Energy providers can apply such methods to protect user pri-
vacy. However, using them has a significant impact on different
use cases, as the functioning of local energy markets may have
additional costs [7]. The impact of anonymization on changes in
the data is not yet known. A provider intending to anonymize the
energy consumption of users nevertheless needs to quantify this ef-
fect. This is because the data should remain useful for subsequent
analyses. We refer to this scenario as the “anonymization scenario”.

2.3.2 Problem Domain
The result of anonymization using the above-mentioned meth-

ods [29] depends on the basis chosen for the transformation of the
data (e.g., Fourier or Wavelet). We thus need to determine how the
choice of the basis affects the changes in the data. The other impor-
tant parameter in this case is the magnitude of the noise σ added to
the original data. We conjecture that, the larger the noise added to
the data, the larger is the potential impact on the changes.

2.3.3 Setting
Here, the provider considers the general case of data publishing,

implying that he has little or no information on the subsequent use
of the data. He does not differentiate between a shift in time or
importance of changes. He does the same for missed and false-
positive changes.

2.4 Measure Requirements
Based on these application scenarios, we have compiled the fol-

lowing requirements for our measure:
R1: Generalizability The measure should be independent of the

change-detection algorithm and should provide meaningful
results for any combination of general-purpose change-
detection approach and lossy transformation.

R2: Flexibility The user should be able to configure the measure
to distinguish and weight four cases according to the subse-
quent application: shifts of changes in time, modifications of
their importance, disappearance of changes and emergence
of new ones.

R3: Robustness The measure should be robust. Here, robustness
means that computation should return meaningful results for
any parametrization of the measure.

3. MILTON
We first describe the basic functioning of MILTON. We then

present MILTON and say how we have parameterized it.

3.1 Problem Definition
A change-detection algorithm CD transforms a time series of

measurements X into one of events (changes) CD(X) = {(t1, s1),
(t2, s2), . . . , (tm, sm)}. Here, ti with i = 1, . . . ,m denotes the
time the change occurred at, while si denotes its score. Many state-
of-the-art change-detection approaches associate with each change
a score [25], which characterizes its significance. Without loss of
generality, we assume that a change has a score of 1 if a change-
detection approach does not provide scores. A lossy transforma-
tion T on X produces a modified time series of measurements
T(X). Applying CD on T(X) thus produces a time series of events
CD(T(X)), which is possibly different from CD(X). Table 1 sums
up our notation introduced so far.

Symbol Definition
X original time series
T lossy transformation
CD change detection algorithm
CD(X) time series of changes

Table 1: Notation Summary
When comparing the changes in CD(X) and CD(T(X)), we can

assign each change to one of the following sets:
PC = pairing(CD(X),CD(T(X)): As a result of the lossy

transformation of X , changes of CD(X) might have been
shifted in time or have their score altered. The set PC
(“paired changes”) contains pairs of changes of the form
(x ∈ CD(X), y ∈ CD(T(X))). Here, x is a change of CD(X),
and y is its corresponding change in CD(T(X)), eventually
shifted or of altered score. The pairing function identifies
and pairs such changes from CD(X) and CD(T(X)).

MISS = CD(X)−PC: As a result of the transformation, some
changes of CD(X) might not have a match in CD(T(X)). The
set MISS contains such changes, which we call “misses”.

FP = CD(T(X))−PC: In contrast, new changes might ap-
pear in CD(T(X)), which do not have any match in CD(X).
We refer to such changes as “false positives”, which we add
to the set FP.

From requirement R2 (cf. Subsection 2.4), it follows that MIL-
TON must consider each set defined above differently. In particu-
lar, we must determine the changes the transformation has affected
in a minor way (minor = shift in time or modification of score; PC),
how many have disappeared (MISS), and how many have emerged
as a result of the transformation (FP). Second, we should allow
setting application-dependent weights on the impact of changes in
each set. For example, if missed changes are critical to the subse-
quent application, our measure must attribute larger weights to such
cases than to false positives or vice-versa. To evaluate the impact
of a lossy transformation on subsequent change detection, MIL-
TON quantifies how similar CD(X) and CD(T(X)) are, i.e., we sum



the weighted differences between the changes CD(X) and CD(T(X))
assigned to PC, and the weights of the changes in MISS and FP.

3.2 Calculating PC, MISS and FP
We first explain how the function pairing() can be implemented

to obtain the set PC. Obtaining sets FP and MISS follows in a
straightforward manner.

Finding the optimal matching between changes from CD(X) and
CD(T(X)) is not trivial. One reason is that matching two changes
can affect the matching of other changes. As an example, suppose
that we match two changes x ∈ CD(X) and y ∈ CD(T(X)) in-
correctly. This means that the correct match y′ for x may now be
matched with another change incorrectly. This holds for y and its
match x′ and may cascade. The incorrect matching of two changes
may thus impact the entire matching process. The matching pro-
cess therefore needs to consider all possible matching combina-
tions of changes. Another reason is that the optimal matching may
not include all changes in CD(X) or CD(T(X)), as there may be new
changes (false positives) and removed ones (misses). The match-
ing process may therefore need to skip changes. However, it is not
clear how many changes it should skip.

Due to Requirement R2, our measure must take into account both
the difference in time and score (importance) between two changes.
Moreover, it should be possible to weight these differences depend-
ing on the application scenario. For example, in the compression
scenario (Section 2.1), the difference in time has a higher weight
than the difference in score. We therefore first define these weights:
Let x = (tx, sx) be a change of CD(X) and y = (ty, sy) one of
CD(T(X)). We define fTIME : R 7→ R+ as a function of the normal-
ized difference in time (∆t) between x and y and fSCORE : R 7→ R+

as a function of the normalized difference in score (∆s) between
x and y. These functions are application-dependent, as explained
above. The distance between two changes then is a function g of
fTIME and fSCORE:

dist(x, y) = g(fTIME(∆t(x, y)), fSCORE(∆s(x, y))) (1)

We fix g as the sum of the contributions fMISS and fSCORE:

dist(x, y) = fTIME(∆t(x, y)) + fSCORE(∆s(x, y)) (2)

In our experiments, we have tested other distances, such as the
maximum between the two contributions: max(fTIME(∆t(x, y)),
fSCORE(∆s(x, y))). This has not lead to substantially different re-
sults.

Based on the above-defined distance, one trivial way to find the
correspondence between changes CD(X) and CD(T(X)) is to cal-
culate all possible one-to-one combinations of events which main-
tain the original succession of changes and choose the one with the
smallest total distance. However, this is computationally expen-
sive; the number of such combinations grows exponentially with
the number of changes in CD(X) and CD(T(X)). At first sight, the
setting may resemble the one of the well-known Hungarian Algo-
rithm. The difference however is the need to maintain the original
order of changes for the matching. Several publications however
have studied this specific problem or closely-related ones [22, 43].
We use the Optimal Subsequence Bijection (OSB) algorithm intro-
duced in [22], which fulfills the matching prerequisites:

• the matching should consider all distances between matched
changes

• the matching should allow leaving unmatched changes
(misses and false-positives)

However, OSB as is does not solve our problem. This is because,
after performing the matching, it does not take unmatched changes

into account. OSB matches two sequences CD(X) and CD(T(X)) of
(possibly different) lengths m and n:

CD(X) = {(tx1 , sx1), (tx2 , sx2), . . . , (tx1 , sxm)}

CD(T(X)) = {(ty1 , sy1), (ty2 , sy2), . . . , (tyn , syn)}

Its goal is to find best-matching subsequences CD(X)′ of CD(X) and
CD(T(X))′ of CD(T(X)). Thus, it may skip changes. The authors
of OSB motivate having unmatched changes by the fact that the
sequences may contain outliers that should be skipped. In our case,
these correspond to false-positive and missed changes. However,
skipping too much may result in random matches. To avoid this,
OSB uses a penalty C for skipping.

The algorithm requires the two sequences, a distance measure
and a penalty for skipping changes as input. To find the opti-
mal matching, OSB minimizes the sum of the distances between
matched changes and the penalties for changes skipped. It thus con-
siders all distances between matched changes, as required. [22] uses
the Euclidean distance. We adapt OSB to our case by using the dis-
tance from Equation (2), next to some other adaptations:

There are many possibilities to set the penalty C. From our ex-
periments, we have found that the standard penalty recommended
in [22] produces correct matchings and rarely results in mismatches
between changes. We therefore used the standard penalty, which is
defined as follows:

C(CD(X), CD(T(X))) = mean
i

(min
j

(dist(xi, yj)) +

std
i

(min
j

(dist(xi, yj))

where xi ∈ CD(X), i = 1, . . . ,m and yj ∈ CD(T(X)), j =
1, . . . , n.

Algorithm 1 Algorithm computing PC, MISS and FP

1: Let MISS = {}
2: Let FP = {}
3: PC = OSB(CD(X), CD(T(X)), C)
4: for x ∈ CD(X) do
5: if x /∈ PC then
6: MISS = MISS ∪ x
7: end if
8: end for
9: for x ∈ CD(T(X)) do

10: if x /∈ PC then
11: FP = FP ∪ x
12: end if
13: end for

In our case, OSB outputs a one-to-one pairing between changes
in CD(X) and CD(T(X)), which makes up the set PC. To identify
the changes which disappeared as a result of the transformation
(MISS), we loop over changes in CD(X) and select those which do
not have a match in CD(T(X)), i.e., are not in PC. Similarly, to
obtain new changes (FP) we loop over the changes in CD(T(X))
and select those without a match in CD(X). See Algorithm 1.

3.3 Measure Definition
As explained in the previous subsection, having sets PC, MISS

and FP, we can construct a general-purpose measure, which satis-
fies Requirements R1, R2 and R3. We first consider the impact of
each set separately, followed by the total impact.



Paired Changes.
Changes in such a couple may differ in the time when they occur

and in their score. As just explained, we quantify this difference
using the distance defined in Equation (2). To quantify the global
impact of such changes, we sum up the distances between “paired
changes”. This creates the following term, which is part of our
measure:

errPC =
∑

(x,y)∈PC

dist(x, y) =

∑
(x,y)∈PC

fTIME(∆t(x, y)) + fSCORE(∆s(x, y))

The intuition is that, the more changes are shifted in time and score,
the bigger the impact of the transformation on them and vice versa.
In case information on the particular impact of shifts in time and
score was necessary, errPC could be split into two terms calcu-
lated separately:

errPC = errTIME + errSCORE

where

errTIME =
∑

(x,y)∈PC

fTIME(∆t(x, y))

and

errSCORE =
∑

(x,y)∈PC

fSCORE(∆s(x, y))

Misses.
Depending on the application scenario considered, we may want

to deal with misses in a differentiated manner according to their
score. For example, we may choose to completely ignore missed
changes with a low score and conversely assign a bigger weight to
ones with a high score. We therefore introduce a weighting func-
tion on missed changes fMISS which depends on their score. We
discuss how we define this function in the following subsection. To
quantify the total impact of missed changes, we sum up their indi-
vidual impacts weighted by fMISS, yielding the second term of our
measure:

errMISS =
∑

(t,s)∈MISS

fMISS(s) (3)

False Positives.
As in the case of missed changes, we may want to handle false

positives in a differentiated manner depending on their score. For
this, we introduce a weighting function on false positives fFP. As
in the previous cases, we sum up the individual impacts weighted
by fFP and create the last term of our measure:

errFP =
∑

(t,s)∈FP

fFP(s) (4)

Weight function Argument
fTIME shift in time
fSCORE shift in score
fMISS missed changes
fFP false-positive changes

Table 2: Notation Summary

Total Impact.
To quantify the total impact of the different terms introduced

above, MILTON sums them up. However, there is another issue,
which MILTON should take into account, namely, the number of
changes in the original time series |CD(X)| = |PC| + |MISS|. We
explain the rationale using an example:

EXAMPLE 2. Suppose that, for a time series X1, CD detects
2 changes, while for another time series X2, it detects 100. Let us
further assume that applying transformation T on X1 introduces
a shift in time and score to the original changes CD(X1) and the
summed-up impact is equal to 0.5. We also assume that applying
the same transformation T on X2 leaves all but two changes intact
and introduces a shift in time and score to the two changes resulting
in an equivalent impact equal to 0.5. Logically, the global impact
between the two cases should be significantly different. This is be-
cause in the case of X2, T leaves 98% of the changes intact, while
it affects 100% of the changes in the case of X1. We therefore need
to normalize the total impact and divide it by the number of changes
CD detects in the original time series.

Using the above results, we define MILTON as follows:

MILTON(X, T, CD) =
errPC + errMISS + errFP
|PC|+ |MISS|+ 1

(5)

We add 1 to the denominator to account for the case when PC and
MISS are both empty.

Table 2 lists the functions presented above. We have explained
the need to use weights within MILTON, and we have provided
some intuition on how to set them.

3.4 Parametrization
MILTON has four parameters: fSCORE, fTIME, fMISS and fFP. In

the following we say how we set these parameters for each appli-
cation scenario described in Section 2. Observe that the domain of
these functions is normalized to the interval [0, 1].

We first consider the compression scenario. Here, we must pe-
nalize missed changes substantially more than false positives. We
therefore assign a larger weight to fMISS than to fFP. See Table 3.
Concerning shifts in time and score, we set fTIME proportional to
the size of the shift and we set fSCORE equal to zero. This is because
we ignore alterations of the importance of changes.

Compression Estimation Anonymization
fTIME(∆t) |∆t| e|∆t| − 1 1

2
· |∆t|

fSCORE(∆s) 0 e|∆s| − 1 1
2
· |∆s|

fMISS(s) s2 + 1 es − 1 s
fFP(s) s s s

Table 3: Measure parametrization

We now turn to the estimation scenario. As mentioned, shifts and
modifications of the scores are critical to the subsequent applica-
tion. Thus, we decide to set fTIME and fSCORE to grow exponentially
with increasing shifts in time and score (Table 3). Regarding fMISS

and fFP, we use a similar logic as for the previous scenario where
we penalize missed changes substantially more than false-positive
ones.

Lastly, we consider the anonymization scenario. As stated, we
are in the general case of data publishing. This means that little or
no information on the subsequent use of the data is available. We
therefore use the average of shifts in time and score (importance)
between two changes as distance, with no differentiation between



the type of shift (Table 3). We let the terms errFP and errMISS due
to missed and false positive changes correspond to the sum of the
scores of changes in the respective sets (MISS and FP).

4. EVALUATION
MILTON operates as intended if it fulfills the requirements from

Subsection 2.4. We have covered the flexibility and robustness re-
quirements by design. To cope with generalizability, we have eval-
uated MILTON using our three scenarios. In the following, we
present the datasets used, the setup of our experiments and their
results.

4.1 Datasets
To evaluate MILTON, we use five datasets, as follows. We use

the first two for the evaluation of the compression and anonymiza-
tion scenarios. We use the other three for the estimation scenario.

The Reference Energy Disaggregation Dataset (REDD) comes
from the field of energy disaggregation and is publicly available [21].
It contains measurements of smart meters from several buildings.
For our experiments, we use a part of it, namely data measured
second-wise from four individual houses.

The Smart Home Dataset (Smart) includes data collected from
real homes and is publicly available [2]. Its goal is to facilitate
further research on home-energy consumption. We use the second-
wise measurements of aggregate electricity consumption from one
building for our experiments.

The following three datasets consist of measurements we had
performed at our institute. These contain real and estimated energy-
consumption data from three computer systems. We had used a dig-
ital multimeter Wattsup PRO [44] (accuracy: 1.5%) to record the
reference energy consumption. We have used a dynamic estima-
tor and a calibration-based one [10] to obtain estimates of energy
consumption.

The Desktop Dataset contains measurements of three weeks of
real and estimated energy consumption from an office computer
with a sampling frequency of one second. Its workload is the result
of typical secretarial tasks, e.g., MS Office, Internet Explorer and a
number of custom-made administrative applications. The workload
rarely reaches the maximal computing capacity, and the computer
is active only during office hours.

For the Laptop Dataset we have measured the real and esti-
mated energy consumption of a laptop over a period of two weeks
with a sampling frequency of one second. We had used the lap-
top [10] for research purposes, i.e., in contrast to the desktop com-
puter, the system load does not follow any regular pattern and shows
both idle periods and maximum load conditions.

The Server Dataset is about a mail server filtering spam by con-
stantly executing SpamAssassin. Its workload is a daily pattern
with low usage during the night and high usage in the morning and
afternoon hours [10]. Load peaks occur when the server checks
bulks of e-mails sent to large mailing lists. We had measured and
estimated the energy consumption every minute over a period of
three weeks.

4.2 Setup
For the evaluation of all scenarios, we have usedCUSUM [28],

an established change-detection method. We have configured it to
detect changes of the mean of a data sequence of at least 5% of
its range. We set the parameters (weights) of MILTON according
to each application scenario (Table 3), cf. Subsection 3.4. In the
following we present the lossy transformation methods used for
each scenario.

4.2.1 Compression Scenario
We use compression techniques based on different classes of

models:

a) Adaptive Piecewise Constant Approximation (APCA) uses
constant functions to approximate segments of data of vary-
ing length [20].

b) Piecewise Linear Histogram (PWLH) compresses the data in
a similar manner as APCA using straight-line functions in-
stead of constant ones [8].

c) Adaptive Polynomial Piecewise Compression (APP) com-
bines polynomial functions of different degrees to approxi-
mate the data piecewisely in an incremental manner [11].

All of these methods compress the data, such that the maximum
deviation between the original and decompressed data under the
uniform norm is smaller than an error threshold ε.

4.2.2 Estimation Scenario
As mentioned, we use a dynamic and a calibration-based estima-

tor to obtain the energy-consumption estimates, cf. [10].

4.2.3 Anonymization Scenario
We use two data perturbation/anonymization methods: one using

the Fourier transform and one using the Wavelet one [29].

4.3 Scenario Evaluation
We now present our evaluation of MILTON.

4.3.1 Compression Scenario
In this scenario, the energy provider wants to identify the method

which delivers the best compression ratio for a given impact on
the changes in the data together with a good parameter set. For
this, we have first computed MILTON for all three compression
techniques for different values of the threshold ε going from 0.2%
to 5% of the range of the time series used. Figure 1 shows the
average results for the Smart Dataset. They are similar to those
we obtained with the REDD Dataset. We observe that the measure
generally increases with a growing threshold value. This is because
some changes disappear as a result of the rougher compression. We
also observe that, for large values of ε, compression using APCA
has a worse impact on the subsequent change detection than the
other two methods.
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Figure 1: MILTON vs. Threshold (ε) - Smart Dataset

To understand the reasons behind the results in Figure 1, we list
and inspect the number of changes in sets PC, MISS and FP, as well
as MILTON components errPC, errMISS and errFP for one time
series of the Smart dataset. We first notice that PWLH and APP pre-
serve existing changes better than APCA when ε > 0.2%. This



accounts for their lower values of MILTON. Second, in comparison
to both PWLH and APCA, APP introduces considerably more false-
positive changes. We assume that this is due to the use of polyno-
mials of degree higher than 1. These may introduce “bumps” in the
time series, which CUSUM interprets as changes. However, they
do not impact the value of MILTON significantly, as we set the
weight fFP for false-positive changes significantly smaller than for
misses (fMISS).

ε PC MISS FP errPC errMISS errFP
0.02 170 0 0 0.000 0.000 0.000

A
PC

A

0.05 167 3 3 0.006 3.000 0.015
0.1 160 10 7 0.007 10.000 0.036
0.2 156 14 7 0.010 14.000 0.038
0.5 153 17 2 0.007 17.000 0.013
1 145 25 1 0.010 25.001 0.000
2 110 60 0 0.008 60.002 0.000
5 89 81 0 0.000 81.003 0.000

0.02 170 0 0 0.000 0.000 0.000

PW
L

H

0.05 164 6 6 0.002 6.000 0.031
0.1 164 6 6 0.005 6.000 0.031
0.2 162 8 8 0.006 8.000 0.041
0.5 160 10 9 0.014 10.000 0.046
1 157 13 10 0.019 13.000 0.053
2 148 22 6 0.031 22.001 0.032
5 110 60 2 0.091 60.002 0.012

0.02 148 22 15 0.013 22.001 0.345

A
PP

0.05 147 23 10 0.011 23.001 0.310
0.1 165 5 4 0.006 5.000 0.021
0.2 165 5 3 0.022 5.000 0.015
0.5 159 11 8 0.020 11.000 0.041
1 154 16 7 0.022 16.000 0.040
2 154 16 6 0.026 16.000 0.032
5 138 32 52 0.226 32.001 0.373

Table 4: Number of Changes and Measure Components in
Compressed Data for Threshold ε – homeB – Smart Dataset
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Figure 2: Compression Ratio vs. Threshold (ε) – Smart Dataset

We next compute the compression ratio for all three methods for
the same values of ε as in our previous experiment. We use the
following formula:

compression ratio =
size of compressed data

size of initial data
(6)

Figure 2 shows the average results for the Smart Dataset. We
notice that the techniques diverge significantly for small values of ε
(ε < 0.2%) and converge to similar ones when ε grows (ε > 1%).
For small values of ε, compression with PWLH is worst, followed
by APCA and APP.

Using the results above, the provider can identify a good com-
pression method with a good parameter set if a bound on the impact
on the changes is given. To this end, he first needs to identify, for
each method, the value of ε which gives way to an impact within
the bound. Then, using the results on compression ratios, he can
select the best method.
Summary: We have shown that MILTON can help the provider de-
cide which compression method suits his needs best. In this use
case, for the specific settings used here, no method is generally su-
perior to the other ones.

4.3.2 Estimation Scenario
In this scenario, a data-center manager wants to identify which

estimation method at which aggregation level (e.g., per minute or
hourly) has the smallest impact on changes in the data. For this,
we aggregate the energy-consumption time series to time intervals
from one minute to 60 minutes. We then calculate our measure for
both estimators on all datasets for these intervals. Table 5 shows
the average value of MILTON for time series in each dataset tested.
We first notice that the calibration-based estimator has a smaller
impact on changes than the dynamic one for almost all datasets
and interval lengths. For the laptop dataset, for instance, MILTON
is 30% smaller on average. Furthermore, the value of MILTON
generally increases with the interval length. This means that, while
using a longer time interval for aggregation may improve accuracy
as shown in [10], it has a bigger impact on changes in the data.

Time interval length (min.)
1 2 5 15 30 60

Dynamic 0.01 0.01 0.03 0.00 0.00 0.04

A
T

IS

Calibr. 0.00 0.01 0.02 0.00 0.00 0.05

Dynamic 0.01 0.03 0.04 0.06 0.11 0.33

D
es

kt
op

Calibr. 0.00 0.00 0.01 0.01 0.03 0.27

Dynamic 0.01 0.01 0.01 0.04 0.06 0.17

L
ap

to
p

Calibr. 0.00 0.01 0.01 0.02 0.04 0.09

Table 5: MILTON by Time Interval Length

To find out why MILTON behaves in this way in this case, we
list the number of changes in the sets PC, MISS and FP, as well
as MILTON components errPC, errMISS and errFP for one time
series of the Desktop Dataset. We see that the dynamic estimator
usually produces more missed and false positive changes than the
calibration-based one. This makes MILTON grow significantly due
the definition of fMISS and fFP. Moreover, for small interval lengths
the pairing matches changes better than for longer ones. This ac-
counts for the big impact of aggregation on changes for long inter-
vals .
Summary: For this scenario MILTON lets a data-center manager
assess the impact of an estimation method on change detection. The
calibration-based estimator impacts changes significantly less than
the dynamic one.



Interval
PC MISS FP errPC errMISS errFPlength

(min)

D
yn

am
ic

1 76 37 75 0.614 0.057 0.351
2 43 1 33 1.191 0.022 0.284
5 19 1 20 0.472 0.053 0.208

15 8 0 6 0.431 0.000 0.142
30 3 0 4 0.312 0.000 0.129
60 1 2 0 1.055 0.000 0.000

C
al

ib
r.-

ba
se

d 1 86 27 0 0.152 0.032 0.012
2 34 10 1 0.123 0.021 0.003
5 11 9 0 0.031 0.033 0.000

15 5 3 0 0.065 0.033 0.000
30 3 0 0 0.189 0.000 0.000
60 1 2 0 0.061 0.134 0.000

Table 6: Number of Changes and Measure Components by In-
terval Length – Desktop Dataset

4.3.3 Anonymization Scenario
In this scenario, an energy provider needs to quantify the impact

of anonymization methods on the changes in the data. The goal is
to identify the method which protects privacy best while keeping
the data useful for subsequent analytics. For this, we computed
MILTON for both anonymization methods. We vary the value of
the perturbation σ these methods add, as described in [29].
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Figure 3: Milton vs. perturbation added σ – House 4 – REDD
Dataset

Figure 3 shows the average values of MILTON for House 4 of the
REDD dataset when the perturbation σ goes from 0.001 to 50. In
this case, these values of σ correspond to the interval [0.01%, 58%]
of the standard deviation of the energy-consumption time series of
House 4. We obtained similar results for all other REDD and Smart
time series.

We observe that MILTON increases if we add more perturba-
tion when using the Wavelet transform, while it stays practically
constant when using Fourier. To understand why this happens, we
show the number of changes in the sets PC, MISS and FP, as well
as MILTON components errPC, errMISS and errFP for one time
series of House 4 in Table 7. The number of paired changes and
missed ones varies only slightly in both cases. However, adding a
bigger perturbation when using the Wavelet transform introduces
more false-positive changes (FP), which makes MILTON grow.
We believe that this is due to the nature of the Haar-Wavelet, which
the Wavelet-based method uses. Adding perturbation in the form of
Haar-Wavelets of significant magnitude introduces changes which
have not been present in the data originally.

σ PC MISS FP errPC errMISS errFP

Fo
ur

ie
r

1 160 0 0 0.001 0.000 0.000
2 160 0 0 0.002 0.000 0.000
5 156 4 4 0.004 0.394 0.394

10 159 1 1 0.011 0.209 0.209
25 158 2 3 0.033 0.148 0.168
50 157 3 5 0.071 0.213 0.257

W
av

el
et

1 153 7 9 0.025 1.109 1.164
2 157 3 6 0.065 0.370 0.434
5 149 11 120 0.044 1.965 4.931

10 152 8 336 0.048 1.171 11.606
25 148 12 469 0.038 2.158 26.093
50 152 8 498 0.047 0.984 38.317

Table 7: Number of Changes and Measure Components by Per-
turbation σ – House 4 – REDD Dataset

Summary: Using MILTON, an energy provider can quantify the
impact of anonymization methods on subsequent change detection.
In this case, the evaluation of the two methods (Fourier-based and
Wavelet-based) shows that they have a significantly different impact
on the changes. This is even though they protect the privacy on most
of the datasets tested to a similar extent according to [29].

5. RELATED WORK
We now review modern change-detection methods, time-series

similarity measures and lossy transformation techniques. We are
aware of three classes, namely lossy time-series compression, com-
puter energy-consumption estimation and time-series anonymiza-
tion.

5.1 Change Detection
The goal of change detection is identifying significant changes

of the data or of its parameters. Research has produced numerous
methods for different types of change to be detected.

Some methods compare the probability distributions of (subse-
quent) sequences of data. [38] features a test which checks if two
datasets are sampled from the same underlying distribution using
a Gaussian kernel density estimator. [25] uses a density estimator
to instead calculate the ratio of the distributions of two consecu-
tive subsequences of data and to detect if they come from different
distributions. Another research direction is detecting changes in
parameters of a data sequence (e.g., mean or variance). CUSUM
is an established sequential analysis method for change detection
of the parameters of a probability distribution [28]. It calculates a
cumulative sum for the segment currently considered and issues a
change alert once this exceeds a given threshold. [4] describes a
method which adjusts the size of the sliding window once a change
is detected, such that the parameter of the data in the current win-
dow (e.g., mean) is constant. A further research area is detecting
changes using models describing the data. [17] uses polynomials
to describe a time series piecewisely and to detect a change once
the approximation error of the current model crosses a threshold.
As another example, [39] uses an auto-regressive model to detect
and remove outliers before detecting changes in the data. [37] uses
Gaussian Processes to model and predict the current run length –
the length of a time segment between two consecutive changes.

5.2 Time-Series Similarity Measures
Time-series similarity is a well-researched area. The Euclidean

Distance is a frequently used distance. Another measure, Dynamic
Time Warping (DTW), is commonly used to align sequences [3,



34]. The DTW between two sequences is the sum of distances
of their corresponding elements. The classic DTW algorithm em-
ploys dynamic programming to identify corresponding elements so
that this distance is minimal. The Longest Common Subsequence
(LCSS) is another measure used to solve the alignment problem and
to detect outliers in time series [41]. LCSS determines the longest
common subsequence between two sequences. The Optimal Sub-
sequence Bijection (OSB) [22] is yet another measure which, in
contrast to DTW, creates a one-to-one correspondence between two
subsequences. Another difference to DTW is that OSB allows skip-
ping of elements.

5.3 Lossy Time-Series Compression
Many modern lossy compression methods divide time series into

pieces which they approximate with mathematical models [18].
Thus, [23] uses constants to approximate fixed-length intervals.
[13] presents two methods which produce connected and discon-
nected piecewise straight-line segments of variable length. [30]
proposes using multiple models in parallel and choosing the one
which best compresses the current segment. [11] uses the same
idea and proposes an incremental approach using polynomials of
different degrees for compressing energy-consumption time series.

To quantify the loss of data due to approximation and to guaran-
tee a certain quality of the compressed data, the methods consider
the error between the original and the approximated data. For this
purpose, the uniform norm (L∞-norm) is commonly used [18]. To
additionally evaluate the quality of approximation, [18] uses the
root mean square error (RMSE). None of the proposals otherwise
consider how lossy compression might affect subsequent change
detection.

5.4 Computer Energy-Consumption Estima-
tion

Smart meters are commonly used to monitor the energy con-
sumption of computers [16]. As monitoring a large number of
computing systems in this way comes at high costs, recent research
has developed methods to characterize and estimate computer en-
ergy consumption. Some of this work has built models based on
collecting micro-architectural events using hardware registers [5].
Such models are less portable and not applicable to large hetero-
geneous deployments of computers, as they are hardware-specific.
Other methods create black-box models using high-level statisti-
cal information obtained from the operating system. [14] for in-
stance estimates the power consumption of a large group of servers
by matching it with CPU utilization. [36] compares several mod-
els which use CPU and disk utilization and shows that these attain
good accuracies over many workloads.

The accuracy of the above-mentioned estimation methods is mea-
sured using common measures, such as the mean absolute percent-
age error [5, 36]. Recent work has identified application scenarios
where estimation methods are useful. Thus, the authors of [27]
use their model to detect energy hotspots in software. [10] presents
several use cases which make use of computer energy-consumption
data, e.g., energy-aware management of data centers. We have not
found any work which considers the impact of computer energy-
consumption estimation on subsequent change detection.

5.5 Time-Series Anonymization
Research has produced a multitude of anonymization techniques.

See [15] for an overview. Differential Privacy is an intuitive mea-
sure of the risk of one’s privacy when having personal data in a
database [9]. [1] is an example of a privacy-preserving system
compliant with differential privacy. Other work has addressed time-

series anonymization. [29] proposes several schemes for time-series
anonymization in a streaming context. [32] studies the problem of
smart-meter time-series anonymization by filtering out low-power
frequency components.

Others have analyzed the effect of anonymization on subsequent
use of the data. As an example, the framework developed in [7]
allows to quantify the economic and environmental effects of
anonymization on local energy markets. [24] argues that the qual-
ity of anonymized data should be measured based on the workload
the data would be used for. We have however not found any work
which explicitly investigates this effect.

6. CONCLUSIONS
Recent research has proposed numerous lossy transformation

techniques for time-series data. While transforming the data, they
may impact characteristics of the data, such as changes, which are
important for further analyses. To address this issue, we have de-
veloped a generalizable and flexible measure which quantifies the
impact of a lossy transformation on subsequent change detection.
Our evaluation shows that it is useful for various application sce-
narios to identify adequate parameters of a lossy transformation so
that its advantages are maximized while the impact on subsequent
change detection is bounded.
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