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An Ensemble Technique for Better Decisions Based on
Data Streams and its Application to Data Privacy

Fabian Laforet, Christian Olms, Rudolf Biczok and Klemens Böhm

Abstract—In this work, we address the problem of making decisions based on data streams, i.e., choosing an action when a new value
is recorded. For instance, actions can be trading decisions in financial markets, choices of controllers in dynamic systems or
perturbations of the data stream itself. To start with, we propose a language that allows individuals to formulate requirements on the
action space. We use prediction techniques to identify the best possible action. However, for many scenarios there is not just one
technique that predicts the future precisely, and different techniques behave quite differently. Thus, since there is no technique that
dominates all the others, our conclusion is to take multiple predictions generated by different techniques into account. While ensemble
techniques aggregating the predictions seem promising, existing techniques have issues, such as unnecessary information losses or the
need for a predefined quality measure. Thus, we propose a new ensemble approach that weights predictions techniques according to
requirements and solves an optimization problem that derives decisions directly from weighted predictions. We apply our solution to
data privacy on data streams. For this setting, the benefits provided by prediction techniques have not been studied yet. In three case
studies, we show that our solution consistently achieves better decision-making quality than approaches from related work.

Index Terms—Decision support, Time series analysis, Privacy, Markov processes, Constrained optimization
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1 Introduction
Making predictions based on data streams is a data analy-
sis task which has received much attention over the years.
Predictions are expectations or probability distributions of
future values. Importantly, they are not an end in itself, but
support decision making [1]. Making a decision means that an
action out of a given action space is chosen. To distinguish
between feasible and infeasible or good and bad decisions,
one can define requirements (aka. constraints) on the action
space. Think of a trader who decides at each point of time
at which price to order a stock. Here, a requirement that
constrains the action space is that orders must not exceed the
liquidity of the trader. Given this requirement, traders now
have the objective to buy stocks with the largest gain. Clearly,
predictions of future prices help to make decisions to maximize
the expected return. This article aims for a framework to
make good decisions based on data streams in the presence
of requirements on the action space.

Another scenario where predictions help to make decisions
is the perturbation of data streams, in order to ensure privacy.
This setting is of interest to the database community by itself.
To our knowledge, there has not been much research regarding
the benefits provided by prediction techniques. This setting
will be our running example.
Data Perturbation as running example. Streaming data
may be sensitive with regard to privacy. For instance, health-
care data allows inferences on unhealthy lifestyles. Analyzing
energy consumptions allows burglars to identify when residents
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are at home [2]. Data perturbation shields from such risks.
Perturbation of streaming data means that, every time a new
value is recorded, a decision-making mechanism decides on a
value to replace the original one.

Research has proposed different perturbation schemes for
data streams. We now map these schemes to requirements.

Data-Perturbation Requirements. Some schemes perturb
the data so that certain private information is not inferable.
For instance, proposals are the addition of random values
to the records [3] that must follow a certain distribution to
guarantee differential privacy [4], [5]. Other schemes smooth
the perturbed data stream as well as possible [6] to hide private
information. We call such characteristics of the perturbation
privacy requirements. On the other hand, some applications
require certain information to remain in the data. An example
is that the sum of energy consumptions must not change, to
facilitate invoicing [2]. These are what we call utility require-
ments. In the context of energy, there are proposals to deploy
batteries whose charging perturbs the actual energy consumed
at a certain point of time [7]. Here, a perturbation mechanism
must consider any characteristic of the battery such as its
capacity when controlling the charging rate. We refer to such
restrictions as technical requirements.

From our running example, we see that there are various
requirements one can choose from. In addition, these require-
ments do not exist in isolation, i.e., one often must combine
one with others.

Predictions [8] can support the decision how to perturb
records. The following example illustrates this.

Predictions for better perturbations. Think of the re-
quirement to smooth a data stream as well as possible [6].
The perturbation of the current point of time also affects
the smoothness in the future. Thus, predictions can help to
make better decisions [9]. In particular, one should not choose
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Fig. 1. Prediction example

a perturbation that maximizes the smoothness between the
previous and the current record, but one that optimizes the
expected smoothness of the entire series, including predictions.

In consequence, we see two research questions, one generic
for decision making, and the other one specific for data
perturbation: First, how to select prediction techniques for
arbitrary requirements automatically, and how to arrive at
optimal decisions based on the predictions? I.e., we propose
a framework to make decisions based on individually defined
requirements and on a set of prediction techniques. Second,
given a general solution to this question, how to adapt it to
the perturbation scenario? In particular, we formulate pertur-
bation characteristics from related work as requirements. –We
now explain the difficulties that come with these questions.

Difficulties. Preliminary experiments of ours confirm
that different techniques give way to prediction with different
properties, as Example 1 illustrates.

Example 1. The black continuous line in Figure 1 graphs the
energy consumption of a household. To predict the consump-
tion of the next day, we apply three state-of-the-art prediction
techniques [8]: artificial Neural Network (aNN), Double Sea-
sonality Exponential Smoothing (DSES) and Pattern Sequence
based Forecasting (PSF). All techniques behave differently. To
actually choose one, one may want to rely on quality measures.
Here, we have applied three measures comparing the original
with the predicted series: (1) the Euclidean distance, (2) dif-
ference of the overall consumption of the next 24 hours and
(3) the range coverage. Figure 1 reveals that these techniques
perform quite differently regarding the quality measures.

In Example 1, we use different quality measures to il-
lustrate the properties of prediction techniques. A core hy-
pothesis is that different prediction techniques are suited for
different decision-making problems. This is because quality
measures are differing in relevance in different application
scenarios, with no measure being superior throughout.

Example 2. Consider the different properties of the tech-
niques from Example 1. In general, one could apply aNNs
since the error is minimal for each point of time. However, if
one has the requirement to smooth the data stream, knowing
the range of values in the near future is important. Or, if

a battery performs the perturbation, and the sum of the per-
turbations must not violate capacity restrictions, knowing the
consumption over several future records is useful. For the first
requirement, DSES shows the highest accuracy. For the second
requirement, PSF is optimal.

In general, the connections between the properties of
different prediction techniques and the requirements are not
clear. I.e., one cannot formulate or fix aprori the required
quality measures to evaluate different prediction techniques.
In consequence, the first difficulty is to identify the connection
automatically to select appropriate predictions.

Next, if one formulates several requirements, the selec-
tion scheme of prediction techniques must consider different
properties. At a first sight, existing ensemble techniques [10]
seem appropriate to combine different predictors. However, we
cannot readily adapt them for our scenario. This is because
they require a quality measure for predictions as input, but
the connection between quality measures and requirements is
not known. Even if we knew appropriate quality measures,
existing ensemble techniques would not be readily applicable:
Since those techniques rely on exactly one measure, one would
need additional knowledge on how to combine them. Quality
measures have different domains and units. In consequence,
it is hard to impossible to derive a general rule on how to
combine them. Finally, existing ensemble techniques produce
a single prediction by aggregating several ones [11]. This might
result in a loss of information. In Example 1, combining the
prediction of DSES with any other prediction decreases the
range coverage. So we aim at making decisions by deriving
decisions directly from the available predictions.

When it comes to data perturbation, one must identify
a language that facilitates the representation of respective
requirements. It should cover the full range of privacy, utility
and technical requirements from related work. For instance,
it will be necessary to verify that the formulation can express
and provide differential privacy [12], preserving correct sums
of records [2] or simulating the behavior of a battery [7].

Contributions. Our contributions are as follows:
(1) We treat the search for a good perturbation as an opti-

mization problem, which we derive from a set of requirements.
We introduce two types of requirements, one to distinguish
between feasible and infeasible and another one to distinguish
between good and bad decisions. We show that our solution
allows to represent privacy, utility and technical requirements.

(2) Next, we demonstrate that existing approaches using
predictions to make decisions do not meet our objectives.
To do so, we describe frameworks that are generalizations of
existing approaches. We refer to them as baselines. (2a) The
first baseline is an optimization problem that uses a single
prediction to arrive at a decision. We demonstrate that its
solutions are suboptimal. (2b) The second baseline applies
a Markov Decision Process that considers several possible
futures. However, it relies on predictions that result from
Markov chains whose optimal design is unknown since it
depends on the requirements. In addition, decisions are sub-
optimal, due to several discretization steps.

(3) We then propose a framework that makes decisions
based on streaming data in the presence of requirements,
as follows: We formulate decision making as an optimiza-
tion problem depending on several predictions. Specifically,
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since prediction techniques perform differently, we propose an
ensemble-weighting scheme. It applies individually defined re-
quirements to evaluate prediction techniques. The framework
does not require any individually defined quality measures.

(4) For our evaluation, we focus on perturbations and
apply combinations of privacy, utility and technical require-
ments. Our experiments show that our solution consistently
achieves better perturbation compared to the baselines when
applying the same prediction techniques.

2 Related Work
We first review approaches that use predictions and ensemble
techniques to make decisions on streaming data. We then look
at data-perturbation approaches in streaming scenarios.

2.1 Decision Making on Streaming Data
State-of-the-art approaches coming from control theory ap-
ply prediction techniques to make good decisions. Many
of them rely on single prediction techniques [8], e.g., they
predict energy consumption to implement demand-response
systems [13] or they predict traffic to anticipate traffic con-
ditions [14]. In some scenarios it is possible to increase the
accuracy of predictions to make better decisions, e.g., for
wind forecasting, by creating ensembles over different tech-
niques [15]. In addition, methods which adapt ensemble meth-
ods for supervised machine-learning tasks from static data to
data streams have been proposed over the years [16]. These
solutions take multiple predictions and aggregate them to a
single prediction. In general, their main challenge when ap-
plying existing ensemble mechanisms [17] are concept drifts.
This means that the environments are dynamic, so concepts
from which the data stream is generated may shift. The range
of their solutions covers approaches which replace [18] or up-
date [19] predictors, their parameters [20] or their ensemble-
weights [21] over time, eventually by following different rules
according to the type of the drift [22]. All this is orthogonal
to our work and can be combined with it. When working
with data streams that are impossible to predict accurately,
just aggregating over predicted values may yield suboptimal
results. This is because valuable information provided by
each prediction, e.g., the range coverage, is lost when just
aggregating the predicted values.

So techniques that predict probability distributions, e.g.,
Markov chains, are preferred. Markov Decision Processes
(MDPs) add decision components to the Markov chain which
enable decision making. Recent examples are to decide when
to charge vehicles optimally [23] or when to intervene for
health events [24]. However, as we illustrate in Section 4.2,
MDPs suffer from unknown optimal design of the state space
and from reduced decision quality due to discretization.

2.2 Privacy Approaches
In general, data streams contain private information which
one can infer. For instance, stalkers can track their vic-
tims [25], or companies can perform targeted advertising that
may result in price discrimination [2].

One approach to perturb data adds random values to each
record [3]. To guarantee that certain information remains
secret as defined by differential privacy [12], state-of-the-art
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Fig. 2. Illustration of notation for perturbations

approaches let the perturbation follow a certain distribu-
tion [4], [26]. Other approaches ensure privacy by smoothing
data streams to hide activities [6]. Although those approaches
can hide certain information, they tend to leave aside that the
perturbed data must fulfill utility requirements.

Other approaches consider the utility of the data by mini-
mizing the difference between the original and the perturbed
data streams [27]. Next to utility requirements, there may be
technical restrictions: To cope with legal constraints, current
research proposes to use charging rates of batteries to perturb
individual energy consumptions [7]. Since the perturbation
is limited by the capacity and the power of the battery, a
perturbation mechanism must consider these restrictions.

The approaches listed here are specific solutions for a given
use case, and their privacy, utility or technical requirements
are not combinable in a straightforward way. We apply their
characteristics to define requirements to verify the generality
of our solution. [28] proposes an approach to combine privacy
constraints, but this solution is for static data only. I.e., it does
not use predictions and is not applicable to data streams.

3 Fundamentals
In this section, we present the notation and say how require-
ments on the action space are represented.

3.1 Notation
To formulate requirements on numerical streaming data, we
use the following notation: A stream is a sequence of records
over time. Individuals record values xt at points of time t.
We call the current point of time T , i.e., the new value is xT .
At each point of time, after observing xT , an action aT is
chosen. To determine aT , information on the current and pre-
vious records xT , xT−1, xT−2, . . . and actions aT−1, aT−2, . . .
are used, as well as expectations regarding future records
xT +1, xT +2, . . . that result from prediction techniques.

Figure 2 illustrates the notation for our perturbation
example on streaming data. Here, aT is the deviation added
to xT to obtain the perturbed value yT .

3.2 Requirements
We distinguish between two types of requirements individ-
uals may have, namely strict and soft requirements. Strict
requirements define properties each action must fulfill, soft
requirements define properties actions should fulfill as well as
possible, and individuals can select several of them. We now
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define these types mathematically and show that they cover
our related work.

Definition 1 (Strict requirement).
Let fstrict(xT , xT−1, . . . , aT , aT−1, . . . ) be a function that is
defined on the current and previous records xT , xT−1, . . . and
actions aT , aT−1, . . . . The inequation

fstrict(xT , xT−1, . . . , aT , aT−1, . . . ) ≤ 0

is a strict requirement.

We refer to fstrict as strict requirement function. The
evaluation of strict requirements results from current and
previous points of time only. This is because it is impossible
to predict future records precisely. Individuals should specify
strict requirements in a way that, independently of what has
happened in the past, an action aT exists that fulfills all of
them. In case that no feasible aT can be identified, one must
specify an exception handling such as “do nothing” or “set aT

to a random value”. Observe that such exception handling is
necessary in general and is not specific to our approach.

We now present the formulation of the perturbation char-
acteristics presented in Section 2.2 as strict requirements.

Example 3. To provide differential privacy [12], the devi-
ations must follow a certain distribution, e.g., a Binomial
one [4], [26]. To formulate this use case, the inequation

fdiff-privstrict = τ − α(aT , aT−1, . . . ) ≤ 0

is a strict requirement, where α(aT , aT−1, . . . ) is the level
of significance rejecting a statistical test that the deviations
follow different distributions, and τ is the minimum level of
significance that is acceptable.

Example 4. [7] proposes to charge batteries so that energy-
consumption data is perturbed. In consequence, one must
formulate technical restrictions as strict requirements. The
maximum amount of energy pmax chargeable between two
points of time results in the requirement

fpowerstrict = |aT | − pmax ≤ 0.

In addition, the load level of a battery must be larger than zero
and smaller than its capacity c:

fcap1strict = −

∣∣∣∣∣
T∑

t=0

at

∣∣∣∣∣ ≤ 0 ∧ fcap2strict =

∣∣∣∣∣
T∑

t=0

at

∣∣∣∣∣− c ≤ 0

The formulation of the correct sum of multiple records to
facilitate correct invoicing [2] is straightforward by defining
error bounds that decrease during the invoicing period.

Next, we formulate soft requirements that actions should
fulfill as well as possible.

Definition 2 (Soft requirement).
Let fsoft(xt, xt−1, . . . , at, at−1, . . . ) be a function that is defined
on the current and previous records of xt, xt−1, . . . and actions
at, at−1, . . . . The term

min
∑

t

fsoft(xt, xt−1, . . . , at, at−1, . . . )

is a soft requirement.

We refer to fsoft as soft requirement function.In contrast to
strict requirements that check for fulfillment at each point of

time, soft requirements require a minimum at a (finite) time
horizon. If one formulates more than one soft requirement, we
assume that they all are equally important. At each current
point of time T , fsoft describes the impact aT has on the
objective function in the absence of future records. However,
the instantiation aT can influence the quality of future actions,
e.g., if the data stream is smoothed while future records
increase, one should increase the current record to minimize
the differences between subsequent records. In consequence,
choosing an instantiation of aT that does not maximize the
quality of the current action might be necessary in order to
minimize fsoft over all points of time t.

Now we formulate the requirements from our related work
we have not discussed yet using soft requirements.

Example 5. To hide activities, individuals might want to
smooth their data streams [6], i.e., to minimize the difference
between subsequent records. A soft requirement that represents
this is

min
∑

t

fdiffsoft = min
∑

t

(xt + at − xt−1 − at−1)2

Example 6. An individual might want to reduce the differ-
ences between the original and the perturbed records [27]. A
respective soft requirement can be the quadratic distance:

min
∑

t

ferrorsoft = min
∑

t

a2
t

3.3 Optimal Decisions

Having requirements, the question remains how to arrive at a
decision, i.e., choosing good actions. Under the condition that
all strict requirements are fulfilled, an optimal action sequence
a0, . . . , aΩ fulfills the average of soft requirements as well as
possible, where Ω is the time horizon. I.e., an action sequence
that fulfills all strict requirement is optimal if there is no other
action sequence that also fulfills all strict requirements but
results in a better (smaller) value w.r.t. soft requirements.

Definition 3 (Optimal action sequence).
The quality of the action sequence is optimal iff
∀T ∈ [0, Ω],∀fstrict : fstrict(xT , xT−1, . . . , aT , aT−1, . . . ) ≤ 0

AND

@a′0, a′1, . . . , a′Ω :
∑
fsoft

∑
t

fsoft(xt, xt−1, . . . , a′t, a′t−1, . . . ) <∑
fsoft

∑
t

fsoft(xt, xt−1, . . . , at, at−1, . . . ) ∧

∀T ∈ [0, Ω],∀fstrict :
fstrict(xT , xT−1, . . . , a′T , a′T−1, . . . ) ≤ 0

In the following sections, we present and discuss solutions
that aim at identifying such an optimal action sequence.

As mentioned, decision quality can suffer from inaccurate
predictions. However, since predictions tend to increase de-
cision quality, aT should be chosen so that the decision is
optimal regarding the current prediction.

Definition 4 (Optimal action regarding prediction).
The action aT is optimal regarding a prediction of future
records iff the average of all soft requirement functions of
the current and predicted points of time has the lowest value
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possible under the condition that the current and all future
actions fulfill all strict requirements.

4 Baselines
In this section, we present two baselines that are generaliza-
tions of related work to make decisions on streaming data
w.r.t. requirements. We demonstrate that they do not meet
our objectives and use them as competitors in our evaluation.

4.1 Single Predictions
To identify an optimal action aT every time a new value xT is
recorded, one must consider future records. Our first baseline
builds on related work [13], [14] that applies a prediction
technique to gain information on the subsequent n future
records. Having a series of predicted records xT +1, . . . , xT +n

at hand, the question is how to identify an optimal aT .
We must formulate an optimization problem that excludes

solutions that violate strict requirements and identifies the
best solution among the remaining ones. We do not make any
assumption regarding the form of the requirement functions,
e.g., being convex or linear. This calls for a solution scheme
for constrained problems that is sufficiently general. Penalty
methods [29] do have this characteristic. They apply terms
that describe the degree of fulfillment of each constraint, to
transform a constrained optimization problem into an uncon-
strained one. They distinguish between two kinds of terms,
namely objective and penalty terms:

The objective term quantifies the quality of feasible solu-
tions.

Definition 5 (Objective term).
Let min f(◦) be the objective of an optimization problem.
o is an objective term iff

o(◦) = f(◦).

In our scenario, the objective term is the aggregation∑
fsoft

∑
t

fsoft(◦)

over all soft requirements. Thus, the objective term preserves
the identity of soft requirements, i.e., the objective term and
soft requirements define the same function. In contrast, the
penalty term adds penalties if strict requirements are not
fulfilled to transform a constrained optimization problem into
an unconstrained one.

Definition 6 (Penalty term).
Let fstrict(◦) ≤ 0 be a constraint that restricts the solution
space of an optimization problem. The function p is a penalty
term iff

p(◦) =

{
0 if fstrict(◦) ≤ 0
huge if fstrict(◦) > 0.

If the constraint fstrict(◦) ≤ 0 is fulfilled, it does not have
any influence on the objective function. Otherwise, it dom-
inates the objective term so that the result of the objective
function is larger than any feasible one, i.e., huge � o(◦).
Normally, there is no information on the maximum of the
objective term over all feasible solutions. Hence, an annealing
penalty function [29] such as

huge = efstrict(◦)/temp

is common, where temp ∈ (0, 1] and, in case an identified
solution is infeasible, the value of temp decreases until a
feasible action is identified.

Penalty methods formulate an unconstrained optimization
problem by summing up the objective and the penalty term.

Definition 7 (Penalty method).
Let o(◦) be an objective term and p(◦) a penalty term. The
minimum

min o(◦) + p(◦)

is the objective of a penalty method.

We now instantiate the objective and penalty terms of
penalty methods with requirement functions.

Baseline 1. Let a set of strict and soft requirements with
their corresponding functions fstrict and fsoft and a sequence
of predicted records xT +1, . . . , xT +n be given. At each point of
time T , we solve the following optimization problem.

min
aT ,...aT +n

T +n∑
t=T

∑
fstrict

p(fstrict(xt, xt−1, . . . , at, at−1, . . . ))+∑
fsoft

fsoft(xt, xt−1, . . . , at, at−1, . . . )

The decision we make at T is the action aT .

Now we prove that the solution of the optimization prob-
lem is the optimal action according to Definition 4.

Lemma 1. The solution aT of Baseline 1 is optimal according
to Definition 4.

Proof. According to Definition 4, an optimal action has the
following two characteristics: First, the current action aT must
not violate any strict requirement fstrict. Second, under the
restrictions defined by fstrict, aT fulfills the average over all
soft requirements fsoft as well as possible. We now prove that
our optimization problem fulfills both characteristics.
1) Suppose that our optimization problem identified a se-

quence of actions that violated at least one strict require-
ment. According to Definition 6, the result of the penalty
function would be larger than the largest value of the
objective term over all feasible solutions. In consequence,
the identified solution is not minimal, and our optimiza-
tion problem cannot identify infeasible actions.

2) Assume that there is a solution a′T , . . . , a′T +n that fulfills
all strict requirements and has a smaller aggregated value
over all soft requirements compared to the identified
solution aT , . . . , aT +n. Since our optimization problem
considers strict and soft requirements within one function
simultaneously, the solution a′T , . . . , a

′
T +n would result

in a smaller value than the solution aT , . . . , aT +n. In
consequence, aT , . . . , aT +n cannot be a solution of our
optimization problem.

Drawbacks. According to Lemma 1, the solution iden-
tified is optimal for the given prediction. If the prediction
is inaccurate, the quality of the decision decreases as well.
As illustrated in Example 1, the choice of the prediction
technique depends on the requirements. The independence
from any assumptions regarding the relationship between
prediction techniques and requirements is a distinctive feature
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of our approach. I.e., we do not expect individuals who use
our technique to have any knowledge on this relationship.
Different techniques might provide additional information, cf.
Example 2. Thus, we now look at Markov Decision Processes
that consider several possible futures simultaneously.

4.2 Markov Decision Processes
In contrast to Section 4.1, we now assume that every time
an individual records a new value xT , we know a probability
distribution over future records, provided by a Markov chain.
A Markov chain is a stochastical process that consists of
a finite set of states Schain and probabilities Pchain(s, s′) to
transit from state s at time T to state s′ at time T + 1. In our
scenario, states in Schain bear information on previous records,
at least on xT , and Pchain the probabilities to observe record
xT +1 after xT has been observed.

Example 7. Consider a data stream with two possible values
0 and 1. Figure 3a features an example. After observing value 0
at T , there is a chance of 80% to observe the value 0 and one of
20% to observe 1 at T +1. To increase the prediction accuracy,
one can include further information in the state description.
For instance, in addition to the current value, this can be
the current time of day (“observing 0 at 9 p.m.”) or previous
records (“observing 0 at T after observing 1 at T − 1”).

We now extend the description of the temporal behavior
provided by Markov chains to Markov Decision Processes
(MDP) [30]. MDPs choose the best action at each state
considering the distribution of expected future states.

Definition 8 (Markov Decision Process).
The tuple

〈S,A, P (s, a, s′), R(s, a, s′)〉

is a Markov Decision Process where
• S is a finite set of states,
• A is a finite set of actions,
• P (s, a, s′) are probabilities to transit from state s ∈ S at
time T to state s′ ∈ S at time T + 1 when choosing action
a ∈ A, and

• R(s, a, s′) are rewards for transitting from s ∈ S to s′ ∈ S
after choosing action a ∈ A

Having defined MDP, the problem is to identify a policy
π that specifies an action for each state that maximizes the
cumulative reward. Approaches such as value iteration or
reinforcement learning identify such an optimal policy [31].

We now illustrate the application of MDP to perturbation:

Example 8. Think of the binary data stream in Example 7.
In addition, consider the strict requirement “published records
must have a binary value” and the soft requirement “minimize
the quadratic distance between subsequent records”.

First, we describe the state and action space of the MDP:

Example 8.1. To validate whether the strict requirement is
fulfilled and to compute the quality of the soft requirement,
the state description of the MDP includes the value of the
previously published record yT−1 and of the current record
xT . In consequence, the MDP has four states s1 = 〈yT−1 =
0;xT = 0〉, s2 = 〈yT−1 = 0;xT = 1〉, s3 = 〈yT−1 = 1;xT = 0〉
and s4 = 〈yT−1 = 1;xT = 1〉. The actions at each state are

deviations aT where aT ∈ {−1, 0, 1}. Figure 3b graphs the
general structure of the MDP.

We now formulate transition probabilites and rewards.

Example 8.2. Figure 3c graphs the transition and Figure 3d
the reward matrices of each action. The transition probabil-
ities result from the initial Markov chain in Example 7. For
instance, the probability to transit from state s2 to s1 choosing
action−1 is P (s2,−1, s1) = 0.6. This is because the probability
to transit from record xT = 1 to record yT +1 = 1 − 1 = 0
is Pchain(1, 0) = 0.6. If an action resulted in an infeasible
record such as yT +1 = −1 or yT +1 = +2, the transitions apply
the probabilities to the closest feasible records, e.g., transiting
to the published record 0 instead of −1. However, rewards
reflect the infeasibility of an action. Here, infeasible actions
result in the lowest possible reward, i.e., R(s1,−1, s1) = −∞.
Rewards of feasible actions result from soft requirements. For
instance, the reward of reducing the current record 1 by −1
after publishing yT−1 = 1 at the previous point of time is
R(s4, 1, s1) = R(s4, 1, s2) = −(0− 1)2 = −1.

Approaches such as policy iteration [31] identify the opti-
mal policy that returns the optimal action at each state. For
the MDP in Example 8, the following policy is optimal:

( 0; 0 0; 1 1; 0 1; 1
π = ±0 −1 +1 ±0

)
Now we explain how to model requirements using MDP.

Baseline 2. Let a set of strict and soft requirements with their
corresponding functions fstrict and fsoft be given. We identify
the policy π of the MDP with the following structure:
• Set of states S: The state description must include the
union of the inputs of all requirement functions fstrict and
fsoft, excluding the current action aT .

• Set of actions A: Actions cover the range of feasible
actions aT .

• Transition probabilities P (s, aT , s
′): The transition proba-

bilities result from a Markov chain whose state description
contains information identical to the one of the state de-
scription of the MDP, except for information on previous
actions. The transition probability P (s, aT , s

′) is equal to
Pchain(s \ {aT−1}, s′ \ {aT }).

• Rewards R(s, aT , s
′): If any strict requirement is in-

feasible, the reward has the lowest possible value,
here −∞. Otherwise, the reward is R(s, aT , s

′) =
−
∑

fsoft
fsoft(s, aT ).

Let sT be the current state of the MDP at T . The action aT =
π(sT ) is the decision we make at T .

We now prove that the resulting optimal policy yields the
decision of the highest quality according to Definition 4.

Lemma 2. The solution aT of Baseline 2 is optimal according
to Definition 4.

Proof. Since the optimal policy of a MDP results in the
maximum reward, we now show that the actions of the policy
result in an optimal decision quality according to Definition 4.
I.e., we prove that the policy (1) does not violate any strict
requirement, and that (2) it minimizes the average over all
soft requirements as well as possible.
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(a) Initial Markov Chain

0 10.8

0.2

0.6

0.4

(b) MDP Structure

yT−1;xT

+1

±0

−1

xT ± 0;
xT +1

transition
probability
reward

(c) MDP Transition Matrices
Action −1 Action ±0 Action +1

0; 0 0; 1 1; 0 1; 1
0; 0 0.8 0.2 0.0 0.0
0; 1 0.6 0.4 0.0 0.0
1; 0 0.8 0.2 0.0 0.0
1; 1 0.6 0.4 0.0 0.0

 
0; 0 0; 1 1; 0 1; 1
0.8 0.2 0.0 0.0
0.0 0.0 0.6 0.4
0.8 0.2 0.0 0.0
0.0 0.0 0.6 0.4

 
0; 0 0; 1 1; 0 1; 1
0.0 0.0 0.8 0.2
0.0 0.0 0.8 0.2
0.0 0.0 0.6 0.4
0.0 0.0 0.6 0.4


(d) MDP Reward Matrices

Action −1 Action ±0 Action +1
0; 0 0; 1 1; 0 1; 1

0; 0 −∞ −∞ − −
0; 1 0 0 − −
1; 0 −∞ −∞ − −
1; 1 −1 −1 − −

 
0; 0 0; 1 1; 0 1; 1
0 0 − −
− − −1 −1
−1 −1 − −
− − 0 0

 
0; 0 0; 1 1; 0 1; 1
− − −1 −1
− − −∞ −∞
− − 0 0
− − −∞ −∞


Fig. 3. MDP example

1) We show that no solution that violates any strict require-
ment can be part of the policy. The proof is in line with
the proof of Lemma 1: Actions that violate any strict
requirement result in the lowest solution quality, in this
scenario in the minimal reward −∞. In consequence,
the solution quality of each action that does not violate
any strict requirement is higher, independently from the
soft requirements. Thus, actions that violate any strict
requirement cannot be part of the optimal policy.

2) The optimal policy minimizes the average over all fsoft
as well as possible. This is because rewards determined
from feasible actions result from the average over all
soft requirement functions at the current point of time.
The optimal policy specifies the actions that maximize
the cumulative rewards. I.e., the reward is equal to the
highest decision quality, as required in Definition 4.

Drawbacks.We now explain that this structure of a MDP
has several characteristics which curb decision quality.
1) MDPs require a finite state and action space. This makes

a discretization of the data streams necessary and in
consequence yields quality losses. In addition, the set of
actions must be finite. This is in the way of applying
MDPs to use cases such as differential privacy where
deviations must follow an unrestricted distribution [12].

2) Transitions follow the Markov assumption. I.e., they de-
pend on the actual state only and cannot include infor-
mation on states visited previously. For high prediction
accuracy, one can extend the state description. However,
this requires precise knowledge of which information to
add and leads to an explosion of the state space. Thus,
identifying the optimal policy requires a huge body of
training data and long runtimes.
We now propose a new approach in Section 5. It does not

have the drawbacks of both baselines identified so far.

5 Decision Making using Multiple Predictions
We now propose a solution with the following features: (1)
It is independent from any assumptions regarding the rela-
tionship between prediction techniques and requirements. (2)
It considers multiple possible futures, without the need for
discretization or complex instantiations of predictors.

5.1 Overview
Besides strict and soft requirements, our framework has a set
M of prediction techniques as input. Since our framework
identifies good techniques automatically, M may also contain
techniques which often do not perform well, such as taking the
value 24 hours or one week ago as prediction. Even though
such techniques may result in large prediction errors, they
tend to cover the value range. This can be helpful for some
requirements, cf. Example 1.

Our framework works with optimization methods that
solve unconstrained problems. In our evaluation, we have
resorted to the Nelder-Mead method [32] that performs best
for our data and requirements. But one is free to use any other
approach such as hill climbing or genetic algorithms.

In addition, our framework requires two points of time t1
and t2 as input. They define three steps: (I) Over a period
of time [1, t1], the framework trains each predictor. (II) In
[t1 + 1, t2], the framework computes an individual weight for
each predictor. This weight is in line with the expected quality
improvement of the predictor when being combined with oth-
ers. (III) Starting at t2 + 1, we use the weighted predictors to
make decisions. To this end, we formulate a new optimization
problem that considers all predictors simultaneously. We now
present details of each step.

5.2 Step I: Training
Comparably to our baselines that require some training,
our framework requires a data stream sample for the ini-
tial training. Its length is t1. As a result of the first step,
each technique m is capable of returning predicted records
xm

T +1, x
m
T +2, . . . , x

m
T +n each time a new value xT is recorded.

For now, we assume that the nature of our data stream
remains constant. I.e., the predictors and their weights do not
change over time. However, this assumption does not hold for
cold starts or concept drifts [16]. Thus, Section 5.5 explains
how to adapt our framework to cope with these challenges.

5.3 Step II: Weighting
In the second step, our framework determines a weight for
each prediction technique according to its expected improve-
ment when becoming part of an ensemble solution in the
third step. We first explain the general weighting scheme and
discuss its implementation afterwards.
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Algorithm 1 Weight Determination
Input: original records xt and predicted records xm

t

for t ∈ [t1 + 1, t2] and m ∈ [1, M ],
requirement functions fstrict and fsoft

Output: weights wm for m ∈ [1, M ]
1: determine actions am

t for predictions xm
t regarding Lemma 1

2: determine actions aoptt for records xt regarding Lemma 1
3: for t ∈ [t1 + 1, t2] do
4: qual(opt, t) = −

∑
fsoft

fsoft(xt, xt−1, . . . , aoptt , aoptt−1, . . . )
5: for m ∈ [1, M ] do
6: qual(m, t) = −

∑
fsoft

fsoft(xt, xt−1, . . . , am
t , am

t−1, . . . )
7: diff(m, t) = (qual(opt, t)− qual(m, t))2

8: normalize diff such that ∀m, t : diff(m, t) ∈ [0, 1]
9: for t ∈ [t1 + 1, t2] do
10: v = median({diff(m, t)|∀m ∈ [1, M ]})
11: for m ∈ [1, M ] do
12: diff(m, t) = diff(m, t)− v

13: initialize zt = 1/(t2 − t1) for t ∈ [t1 + 1, t2]
14: for i ∈ [1, M ] do
15: choose m that minimizes

∑
t

zt · diff(m, t)
16: identify wm that minimizes

∑
t

zt · ewm·diff(m,t)

17: for t ∈ [t1 + 1, t2] do
18: zt = zt · ewm·diff(m,t)

19: normalize z such that
∑

t
zt = 1

20: return w

5.3.1 Weighting scheme

An obvious idea how to determine the weights is to consider
the quality of prediction techniques. However, as Example 2
has shown, this has issues. As discussed, connections between
prediction techniques and requirements are hard to detect and
describe. It is even unreasonable to assume domain experts be-
ing able to make such connections explicitly. Thus, we propose
a weight determination technique that includes requirements
automatically.

We define the decision quality at a certain point of time t:

Definition 9 (Decision quality at t).
Let a set of strict and soft requirements with their corre-
sponding functions fstrict and fsoft and sequences of records
x0, . . . , xt and actions a0, . . . , at be given. The decision quality
at point of time t is

qual(t) =


−∞
if ∃fstrict : fstrict(xt, xt−1, . . . , at, at−1, . . . ) > 0
−
∑

fsoft
fsoft(xt, xt−1, . . . , at, at−1, . . . ) else.

We consider the decision quality of each technique at each
point of time in [t1 + 1, t2]. By considering each point of time
individually, different prediction techniques perform best at
different points of time. In order to avoid overfitting, we do not
determine the weights on the sequence of the data stream from
Step I. To determine the decision qualities for each prediction
technique, we solve the optimization problem from Lemma 1.
In Step III, we formulate a new optimization problem that ex-
tends the one from Lemma 1 by combining several predictions.
The extension combines the prediction techniques linearly.
Our weight determination is an adaptation of established
boosting mechanisms [17] that combine classifiers linearly.
So we can use the decision quality of individual prediction

t1 + 1 t2
0
1
2
3

Va
lu
e

original optimal pred. 1 pred. 2

t1 + 1 t2
10−3
10−2
10−1

100

Time

D
iff
er
en
ce

Fig. 4. Decision qualities for Example 9

techniques here to determine the weights.

5.3.2 Weighting algorithm

Algorithm 1 is our weight determination approach. We now
explain its main parts.

Determine decision qualities (Line 1-6). We first
solve the optimization problem from Lemma 1 for each predic-
tion technique m (Line 1). In addition, we solve the optimiza-
tion problem with original records as predictions (Line 2) in
order to have an oracle. Now we compute the decision qualities
at each point of time t for each prediction techniquem (Line 4)
and the original records (Line 6) according to Definition 9.

Comparing decision qualities (Line 7). Next, we
compute the differences between the qualities of the prediction
techniques and the oracle. Example 9 illustrates why we need
the comparison with the oracle.

Example 9. Think of some strict requirements and the soft
requirement “minimize the quadratic difference between subse-
quent records”, as in Example 5. The upper part of Figure 4
shows an original data stream (black line) as well as a pertur-
bation that is optimal regarding the requirements (red line). In
addition, there are two perturbations (blue and green lines) that
base on two prediction techniques. The lower part compares the
decision qualities of the three perturbations with each other.
At t1 + 1, the difference is undefined for all perturbations.
This is because there is no previous perturbation the quadratic
difference can be computed with. The cumulative difference
over all points of time is lowest for the optimal perturbation
(0.055). However, at t1 + 2 and t2, the perturbation based
on Technique 2 is better. This local improvement results in
a larger cumulative difference of Technique 2 (1.45) compared
to Technique 1 (0.19). At t1 + 3 in particular, the cumulative
difference would be better if apred. 2

t1+2 had a lower value.

As Example 9 illustrates, choosing prediction techniques
that result in best decisions at certain points of time can be
misleading. Instead, by choosing prediction techniques that
lead to actions most similar to actions that would result
from perfect knowledge of the future, we put qualities at
single points of time into the global context. We compute the
quadratic distance diff(t,m) between the decision qualities at
each point of time t of each prediction technique m with the
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decision quality of the original records (Line 7).
Normalization (Line 8-12). We now apply a boosting

mechanism [17] to determine a weight wm for each prediction
technique m. As proposed in [33], we use an exponential
function to quantify the quality loss induced by the imper-
fectness of any prediction technique. First, we normalize the
quality differences to be applicable to the error function: To
identify a weight wm that minimizes

∑
t e

wm·diff(t,m), values
of diff(t,m) must be in [−1, 1]. In consequence, we normalize
the differences to range in [0, 1] (Line 8) and shift the medians
of each point of time t to value 0 (Lines 9-12). This approach
is robust in the presence of differences of extreme value.

Iterative Boosting (Line 13-19). Following the boost-
ing idea of [33], we apply an iterative approach that consid-
ers prediction techniques successively. For every prediction
technique, our approach compares the quality differences to
optimal decisions at each point of time t with the differences
of prediction techniques of earlier iterations. The weight of
the current prediction technique depends on its ability to im-
prove the quality at those points of time previous techniques
resulted in large differences. In the beginning, there is no
information on differences. Thus, we create weights zt for each
t that have the same initial value (Line 13). We iteratively
identify the prediction technique m with the smallest qualitfy
difference to the optimal actions

∑
t zt · diff(m, t) (Line 15).

For this technique, we compute its weight wm that minimizes
the term

∑
t zt · ewm·diff(m,t). Finally, we update the temporal

weights zt in Lines 17-19 to have a higher weight in the
next iteration if the current prediction technique m has a
large decision-quality difference to the perfect decision at
t and a smaller weight vice versa. After m iterations, we
have identified a weight wm for each prediction technique m.
As illustrated in [17], this allows to weight techniques that
perform best in different cases to create an ensemble solution.

5.4 Step III: Making Decisions
In Step III, we apply the pre-trained prediction techniques,
taking their weights into account, to make decisions. To do
so, we formulate a new optimization problem that relies on
penalty methods. The problem is similar to Baseline 1, but it
takes several series of predictions into account.
Framework. Let a set of strict and soft requirements
with their corresponding functions fstrict and fsoft, a set of
prediction techniques M with corresponding weights wm (m ∈
[1,M ]) and sequences of predicted records x1

T +1, . . . , x
1
T +n, . . . ,

xM
T +1, . . . , x

M
T +n be given. At each point of time T we solve the

following optimization problem:

qual(t) =


−∞
if ∃fstrict : fstrict(xt, xt−1, . . . , at, at−1, . . . ) > 0
−
∑

fsoft
fsoft(xt, xt−1, . . . , at, at−1, . . . ) else.

The action aT that froms the solution is the decision at T .
Now we prove that the solution of the optimization prob-

lem is the optimal action according to Definition 4.

Lemma 3. The solution aT of our framework is optimal
according to Definition 4.

Proof. For M = 1, the proof is identical to the proof of
Lemma 1. For M > 1, the proof results from the proof

of Lemma 1, i.e., the identified solution aT , a
1
T +1, . . . , a

M
T +n

(1) does not violate any strict requirement for any series
xT , x

m
T +1, . . . , x

m
T +n for m ∈ [1,M ] and (2) fulfills the average

over all soft requirements over all predictions according to
their weights wm as well as possible.

Since we do not create an aggregated series over all predic-
tions, but solve the problem for all predictions simultaneously,
there is an action variable am

t′ for each prediction technique
m ∈ [1,M ] at each point of time t′ ∈ [T + 1, . . . , T + n].
However, all predictions share the same currently observed
record xT and its action variable aT . Thus, we optimize aT

at the current point of time T w.r.t. all predictions and their
weights wm. This means that we meet the required properties:
(1) in contrast to using a single prediction, we can apply
arbitrary prediction techniques and do not depend on knowing
the connection between prediction techniques and require-
ments. (2) in contrast to MDPs, we solve an optimization
problem to identify the best action that does not require any
discretization or results in an exploding state space.

5.5 Further Refinements: Updates over Time
Until here, we assumed that training the prediction techniques
at the beginning is feasible, and that the behavior of data
streams does not change over time. However, this does not
hold if a cold start is necessary, or if concepts shift. These
challenges are there in any case, i.e., for our baselines as well as
for our framework. We now explain how to adapt our baselines
and our framework to cope with cold starts and concept shifts.

If a cold start is necessary, we initially use random pre-
dictions and weights. To improve quality over time, we store
all records in the starting phase. At each point of time, we
perform the training and weighting using all stored records.
When the starting phase is over, our approaches will work as
described before.

If the characteristics of the data stream are non-stationary,
we need to update predictors and their weights over time. For
MDPs, there exist solutions that are directly applicable to
our problem [34]. When it comes to updating the predictors,
some approaches propose to partition the data in sequential
blocks [18] or data chunks [19]. These partitions can either be
used to update predictors [20] or to train and replace existing
ones [18]. Analogously to updating the predictors, we can also
re-compute the weights every time we update the predictors.
An alternative to regular updates are techniques that detect
concept drifts and perform updates only when needed [22].

6 Experiments
We evaluate the decision quality of the two baselines and
of our framework. Prediction techniques applied for the first
baseline as well as for our framework are as follows: Simple Ex-
ponential Smoothing (SES), Double Exponential Smoothing
(DES), Double Seasonality Exponential Smoothing (DSES),
Pattern Sequence based Forecasting (PSF), Pattern Sequence
based Forecasting with temporal information (PSFtemp), ar-
tificial Neural Network (aNN), Floating Average (FA), “same
value as previous day” (prevDay) and “same value as previous
week” (prevWeek). In addition, we generate an ensemble pre-
diction (Aggregation) [10] by aggregating over all predictions
using the weights identified by Algorithm 1 for Baseline 1.
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Fig. 5. Distances of Use Case 1

To solve the optimization problems of Lemmas 1 and 3, we
apply the Nelder-Mead method [32] with parameters α = 1.0,
γ = 2.0, β = 0.5 and σ = 0.25. To identify the policy of
our MDPs, we apply the policy-iteration approach [31] with a
discount factor of 0.9.

6.1 Use Case 1: Perturbation via Batteries
Experiment Setup. For our first use case, we deploy bat-
teries whose charging perturbs the energy consumed [7]. As
illustrated in Example 4, the maximum charging rate and the
capacity restrict the perturbation. In addition, we add the
soft requirement to minimize the quadratic difference of sub-
sequent records to hide activities, as explained in Example 5.

The optimization problems result from the requirement
functions presented in Examples 4 and 5. The state de-
scription of the MDP contains a discretized representation
of the current record xT , a discretized representation of the
published record yT−1 of the previous point of time and a dis-
cretized representation of the current load level cT =

∑T
t=0 at.

The action space contains discretized deviations whose abso-
lute value |at| is smaller than the max. charging rate pmax.
On average, each MDP has 12.8 transition and 12.8 reward
matrices, each consisting of about 26 million cells. Due to this
huge complexity, we update the probability transitions and
optimal policies only once a week (every 336 points of time).

We perform our experiments for the first use case on
the CER dataset [35]. This is because it contains private
energy consumptions of over 2500 households recorded every
30 minutes for almost 1.5 years. Due to the large number of
records per data stream, we are able to train our prediction
techniques precisely, and due to the large number of data
streams, we expect our results to be robust.

Results. Table 1 shows the average runtimes of each
approach and use case to perturb a data stream, Table 2
shows runtime statistics about the perturbation of single
records. MDPs require on average 129 minutes per household.
I.e., every time we update the Markov chain and compute

Baseline 1 Baseline 2 Framework

Use Case 1 128 7,789 1,817
Use Case 2 58 NA 413
Use Case 3 27,632 NA 436,584

TABLE 1
Average Runtimes per Use Case [sec]

DS
ES

PS
Ft
em
p

DE
S FA SE

S
PS
F

aN
N

pr
ev
W
eek

pr
ev
Da
y

0
0.2
0.4
0.6
0.8

1

w
ei
gh

t

Fig. 6. Weights of Use Case 1

the optimal policy, it takes over 100 seconds. Accessing the
computed policy in turn requires almost no time. Solving the
optimization problem of Lemma 1 requires about 2 min for an
entire data stream. In contrast, the ensemble from Lemma 3
takes about 30 min. This is because the number of variables
the optimization problem considers is linear with the number
of prediction techniques. However, with less than 0.1 seconds
to compute a deviation aT , our framework is well applicable
in a scenario where one value is recorded every 15 min.

Figure 5 shows the average quadratic differences of subse-
quent records of all approaches. The first bar is the average dif-
ference one can achieve with perfect knowledge on the future.
The last bar shows the differences in the original unperturbed
data. As a first result, we observe that all approaches reduce
the differences of the original record. MDPs perform worse
than perturbations based on single predictions and our frame-
work. We see the reason for this in the discretization of the
records and actions, as explained in Section 4.2. The quadratic
differences of the perturbations that rely on single predictions
perform similarly and have a maximum difference of 0.03
to each other. As expected, creating an averaged solution
over all predictions does not increase decision quality, and
DSES provides slightly better results. Our framework clearly
outperforms its competitors.

To analyze the influence different prediction techniques
have on our framework, we summarize their weights in Fig-
ure 6. Their order is identical to their order in Figure 5. We
observe that the weights are not monotonically decreasing

Baseline 1 Baseline 2 Framework

U
se

C
as
e
1 min 0.002 0.001 0.004

avg 0.009 0.383 0.092
max 0.114 128.583 1.616
std 0.009 1.64 0.070

U
se

C
as
e
2 min 0.001 NA 0.003

avg 0.008 NA 0.056
max 0.097 NA 1.253
std 0.005 NA 0.041

U
se

C
as
e
3 min 0.081 NA 0.294

avg 3.095 NA 48.901
max 70.563 NA 788.185
std 4.267 NA 92.371

TABLE 2
Runtimes per individual record [sec]
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Aggregation SES DES DSES PSF PSFtemp aNN FA prevDay prevWeek MDP

UC 1 31.97% 33.63% 32.34% 30.88% 34.76% 32.12% 42.58% 33.48% 45.03% 44.60% 63.28%
UC 2 23.06% 19.78% 37.12% 16.21% 13.39% 16.23% 27.58% 21.85% 36.29% 31.26% NA
UC 3 5.49% 24.76% 29.85% 3.67% 20.17% 13.27% 18.29% 26.00% 59.90% 47.74% NA

TABLE 3
Quality improvement of our framework compared to baselines

with an increasing difference. As expected, our weighting
scheme does not allocate weights depending on the cumula-
tive perturbation quality over the complete data stream, but
combines techniques that perform best in different cases.

6.2 Use Case 2: Differential Privacy
Experiment Setup. In our second use case, we evaluate
our framework in the presence of differential-privacy guaran-
tees [12]. The scenario is one where an attacker disaggregates
the energy consumption to devices to learn daily routines
of individuals. If the perturbation follows a certain distribu-
tion [4], such attacks are guaranteed to fail. We implement the
strict constraint described in Example 3. In addition, we add
the soft constraint that the quadratic difference to the record
three time stamps from now should be as small as possible.
In consequence, we achieve a long-term smoothing. For our
experiments, we use the REDD [36] and the smart* [37]
datasets that contain information on the energy consumptions
of single devices.

Results. First, we see that we cannot apply MDPs due to
computational restrictions. This is because the state descrip-
tions become daunting in size. To perform the statistical test
whether the deviations follow a certain distribution, each state
includes a histogram of the current distribution with b bins,
each of them having one of v possible discretized values. Think
again of Use Case 1: Here, the state description consists of
only three parameters, and the description results in matrices
with over 4 billion cells overall. For the current use case, the
matrices would increase cubically multiplied with the number
of bins. All this explains why it has not been possible to
perform experiments for MDPs for this second use case.

We use the following measure to quantify the quality
improvement our framework provides, by comparing it to a
method m

QI(m) = qual(m)− qual(framework)
qual(m)− qual(perfect)

where qual(m) is the quality of method m, qual(framework)
the quality of our framework and qual(perfect) the quality
when having perfect knowledge on the future. If QI(m) =
0%, our framework does not provide any improvement over
methodm. The second row of Table 3 shows the improvement
of our framework compared to the different predictions with
our first baseline. Since all values are positive, our framework
outperforms its competitors. In contrast to Use Case 1, PSF
provides the best results among the single predictions. This
result indicates that our hypothesis that different prediction
techniques perform best for different requirements is correct.

6.3 Use Case 3: Data Utility
Experiment Setup. For our third use case, we consider
health-care data that allows inferences on sporting activities.

Here, it is important to give guarantees that sudden changes
in the data stream remain hidden. Thus, we formulate the
strict requirement that differences in values of subsequent
records do not exceed a threshold. At the same time, we want
data to be useful to detect accidents, i.e., we formulate the
soft requirement that the quadratic error of the perturbation
should be as small as possible, cf. Example 6. Here, we use
fitness data recorded by a pedometer every 5 minutes over 31
days [38].

Results. Again, we cannot apply MDPs. The reason is
that it is not possible to define an action space that guarantees
the inclusion of any feasible deviation. For instance, if the
data stream increases over a long period of time, feasible
deviations might become larger and larger. Since we do not
have any knowledge on lower or upper limits of future records,
we cannot implement a MDP for this use case.

Considering the quality improvement in Table 3, we ob-
serve that our framework again outperforms the baselines.
We observe that the prediction technique DSES clearly out-
performs the other elementary techniques. The information
gain our framework obtains from other techniques is small
compared to the previous use cases. This result shows that
choosing good prediction techniques is still an important
aspect, but our framework can identify the best techniques
to create a perturbation that is at least as good as the
perturbations that result from single prediction techniques.

7 Conclusions
This paper has studied decision-making on data streams in
the presence of requirements. We have proposed formulations
of strict and soft requirements and have shown that our
language is capable of covering related work, e.g., technical,
utility or privacy requirements on data perturbation. Next,
we have generalized approaches used in related work, namely
solving an optimization problem based on a single prediction
and solving MDPs. We see that both approaches have differ-
ent drawbacks, such as requiring knowledge on the relation
between requirements and prediction techniques or loosing
decision quality from discretization. In consequence, we have
proposed a new framework that does not suffer from these
drawbacks. It can handle multiple predictions simultaneously.
I.e., in scenarios where no accurate prediction is possible, our
framework covers the range of possible future records. To
consider the varying impacts of different prediction techniques
on the decision quality, we have proposed an ensemble scheme
that determines weights for each prediction. By solving an
optimization problem, one can determine the best decision
for the given predictions. Experiments on real-world data
show the applicability to different use cases and the quality
improvement of our solution. For future research, we plan to
explore further requirements from different domains and to
extend our solution to multidimensional data streams.
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