
The final publication is available at Springer via http://dx.doi.org/10.1007/s41060-017-0068-8

International Journal of Data Science and Analytics manuscript No.
(will be inserted by the editor)

Hiding Outliers in High-Dimensional Data Spaces

Georg Steinbuss · Klemens Böhm

Received: date / Accepted: date

Abstract Detecting outliers in very high-dimensional

data is crucial in many domains. Due to the curse of

dimensionality, one typically does not detect outliers in

the full space, but in subspaces of it. More specifically,

since the number of subspaces is huge, the detection

takes place in only some subspaces. In consequence, one

might miss hidden outliers, i.e., outliers only detectable

in certain subspaces. In this paper, we take the oppo-

site perspective, which is of practical relevance as well,

and study how to hide outliers in high-dimensional data

spaces. We formally prove characteristics of hidden out-

liers. We also propose an algorithm to place them in the

data. It focuses on the regions close to existing data ob-

jects and is more efficient than an exhaustive approach.

In experiments, we both evaluate our formal results and

show the usefulness of our algorithm using different sub-
space selection schemes, outlier detection methods and

data sets.

Keywords Outlier Detection · High Dimensionality ·
Subspaces · Hidden Outliers

1 Introduction

Many applications in different domains, e.g., fraud de-

tection, depend on the effective and efficient identifi-

cation of outliers [5]. Due to the curse of dimension-

ality, outliers often occur in attribute subspaces. Such

Georg Steinbuss
Karlsruhe Institute of Technology (KIT), Karlsruhe, Ger-
many
E-mail: georg.steinbuss@kit.edu

Klemens Böhm
Karlsruhe Institute of Technology (KIT), Karlsruhe, Ger-
many
E-mail: klemens.boehm@kit.edu

outliers are referred to as subspace outliers. In high-

dimensional spaces, it is not feasible to inspect all sub-

spaces for outliers, since their number grows exponen-

tially with the dimensionality. Thus, most approaches

only inspect a subset of the set of all subspaces. Depend-

ing on the subspaces inspected, the outlier detection

method used and the distribution of the data, so-called

hidden outliers may occur. A hidden outlier exhibits its

outlier behaviour only in subspaces where no outlier de-

tection takes place. Hence, the characteristic whether

an outlier is hidden or not depends on the subspaces

where one is looking for outliers. Figure 1 displays a

low-dimensional illustrative example. The outlier in the

figure is hidden when looking at each one-dimensional

subspace in isolation. It can only be detected when look-

ing at the two-dimensional subspace.

Outlier

Fig. 1 Example showing a hidden outlier

1.1 Motivation

In this article, we examine how to place hidden outliers

in high-dimensional data spaces, and we quantify the

risk of the data owner that such outliers can be placed

in the data. We see three reasons why studying the is-

sue is necessary, namely (1) increasing the reliability of

critical infrastructures, (2) coping with attacks, and (3)

2 Georg Steinbuss, Klemens Böhm

systematic evaluation of outlier detection algorithms.

We now elaborate on these points one by one.

1.1.1 Reliability of Critical Infrastructures

Think of data objects each representing a state of a crit-

ical infrastructure. Outliers are unusual system states

which may represent any kind of fault or a state pre-

ceding a fault. Since faults of infrastructures that are

critical may be catastrophic [15], any action preventing

such faults pays off. However, data objects represent-

ing these states usually do not exist or are extremely

rare. Hidden outliers represent combinations of values

that remain undetected with existing models. If hidden

outliers were detected, a domain expert could inspect

them and assess how detrimental they are.

1.1.2 Attacks with Hidden Outliers

Research on classifier evasion [19] studies the behaviour

of an adversary attempting to ’vanquish’ a learner. Ex-

ample 1 shows that the situation here is analogous, in-

cluding the motivation, i.e., studying the adverse be-

haviour in order to shield against it. While Example 1 is

extreme for the sake of illustration, it is our running ex-

ample due to its intuitiveness. The example also shows

that hidden outliers pose a risk, and it is worthwhile to

quantify this risk.

Example 1 Think of a criminal intending to commit

credit-card fraud. He has inside information, i.e., he

knows that the bank checks for fraud by means of an

outlier-detection method on a high-dimensional repre-

sentation of the credit-card transactions. More specifi-
cally, the bank uses a subspace-search method that is

confined to subspaces consisting of few attributes only.

The attacker then identifies regions of the data space

where outliers are hidden from the detection method

and designs fraudulent transactions whose representa-

tion falls into these regions.

1.1.3 Evaluation of Subspace Outlier Detection

Being able to hide outliers is expected to help evaluate

subspace outlier detection methods. Current schemes

for evaluation often either use an already existing mi-

nority class as outlying or downsample the data to one

rare class [3]. However, these outliers are not necessarily

subspace outliers, in contrast to hidden outliers gen-

erated with our approach. Placed hidden outliers are

known to be outliers in certain subspaces, and one can

quantify how well they are found. An evaluation scheme

based on our approach would also allow differentiating

between different kinds of hidden outliers and might

be more systematic than one depending on the outliers

which have been found so far. – The design and assess-

ment of such evaluation schemes is one of our long-term

research efforts and is beyond the scope of this current

article. Here, our concern is the effective and compre-

hensive placement of subspace outliers.

1.2 Challenges and Contributions

To our knowledge, the general question of how to place

outliers in data sets has not been studied explicitly so

far. Placing outliers such that they are hidden is even

more unclear. Various challenges arise when designing

such a placement, as follows.

Hidden outliers are inliers in certain subspaces. This

means that we cannot just use extreme values to obtain

hidden outliers. Compared to Figure 1, the situation

may also be more complex. For instance, one is not con-

fined to just ’high dimensional versus low dimensional

subspace’. Instead, a mix of the two is feasible as well.

The variety of outlier definitions is another, orthogonal

challenge. Some rely on statistical models, others on

spatial proximity [11] or angles between objects [12].

We hypothesize that different outlier definitions lead to

different regions where hidden outliers can be placed.

When designing a general algorithm that hides out-

liers we cannot assume much on the outlier-detection

method used. Another challenge relates to the relative

size of the region where hidden outliers can be placed.

In some scenarios, this region may be small, while it

may be huge in others, e.g., close to the full data space.

Placing many hidden outliers that are diverse requires

methods that adapt to the size of this region. I.e., the

placement should cover a broad range of positions if the

region is huge. When the region is small in turn, the

placement must be more fine-grained. A last challenge

is that assessing the probability of success of attackers

(the ones who hide the outliers) is not trivial. In con-

trast to Example 1, attackers may not have full access

to the data. Hence, an attack is more likely to be suc-

cessful if hiding is feasible without knowing much on the

data. Any risk assessment should take into account the

extent of knowledge which is necessary for the hiding.

In our work we start by deriving important char-

acteristics of hidden outliers analytically, focusing on

multivariate data following a normal distribution. One

result is that hidden outliers do exist in this setting.

Another one is that correlation within subspaces can

reduce the size of the region of hidden outliers. An-

other contribution of ours is an algorithm that places

hidden outliers. It relies on only one mild assumption

regarding outlier detection, but without the assump-

tions behind our theoretical analyses, e.g., the normal

Hiding Outliers in High-Dimensional Data Spaces 3

distribution assumption. Its design is based on the hy-

pothesis that hidden outliers tend to be close to real

data objects. This is based on the property that hid-

den outliers must be inliers in some subspaces. Hence,

our algorithm concentrates on placing hidden outliers

in regions close to existing data objects, with adjustable

tightness. This allows for a placement that concentrates

on a small region, close to the data, or a rather large

one. The algorithm does not rely on any assumption re-

garding the outlier detection method used, except for a

non-restrictive one: Namely, the detection method must

flag points as outliers or not. The output of any method

we are aware of can be transformed without difficulty

to have this characteristic (see e.g., [14]). Our algorithm

also gives way to a rigid definition of the risk of an at-

tacker being able to hide outliers. Finally, we have car-

ried out various experiments. They confirm that some

of our theoretical findings also hold in the absence of

the underlying model assumptions, e.g., for other out-

lier detection methods and data sets. They also demon-

strate that our algorithm is much better in hiding than

a baseline. In particular, this holds for high-dimensional

data sets. The main part of the paper is structured as

follows:

1. Definition of hidden outliers. Section 4.1

2. Analytical derivations of characteristics of hidden

outliers. Section 4.3

3. Algorithm to place hidden outliers. Section 4.4

4. Evaluation of concept and algorithm. Section 5

All our code and data sets used are publicly available.1

2 Related Work

We are not aware of any comprehensive study of hidden

outliers. [27] however describes the notion of masked

outliers. Masked means that irrelevant attributes within

a data set can hide the outlier behaviour to some extent.

Our work is of course related to the various methods for

outlier detection and subspace search. Some schemes

exist solely for subspace search [6, 16], some with inte-

grated outlier detection [13,17] and numerous methods

merely for outlier detection [2, 8, 11, 12]. All outlier de-

tection methods compute whether existing data objects

are outliers or not. This is different from our approach:

We study how to place outliers in data sets.

Related to detecting outliers with the help of sub-

space search is detection with the help of feature selec-

tion. [1] is one of the early pieces of work in this disci-

pline. They select features where the density of inliers is

1 Our code and data: http://ipd.kit.edu/mitarbeiter/steinb
ussg/Experiments HideOutlier.zip

high and the density of outliers is low. This is inspired

by the well-known outlier detection algorithm LOF [2].

[21, 22] both work with categorical data and consider

so called value couplings to select features. These cou-

plings determine that features are only selected when

they agree on the outlierness of objects. Feature selec-

tion and subspace search are related. However, there is

a profound difference on the methodology level. Sub-

space search aims at finding different subspaces, each

regarding other aspects of outlierness. Feature selection

on the other hand aims at finding a single subspace that

exhibits all or at least many of these outlier aspects. Be-

cause of this difference, subspaces found and methods

developed for subspace search differ significantly from

those for feature selection.

To illustrate classifier evasion mentioned before ex-

plicitly, think of a spam filter. The idea now is that a

spammer wants to send emails that are as close as pos-

sible to spam, but are classified as regular. However,

existing approaches to find such positions [20, 26] rely

on at least one instance of spam email, which we do

not rely on in outlier detection. Secondly, we are not

aware of any approach considering the effects of using

subspaces. Adversarial examples [25] that were recently

introduced in the neural network community follow the

concept of classifier evasion. An adversarial example is

an object that is classified wrongly due to some small

changes to it. [25] formalizes the crafting of such adver-

sarial examples as an optimization problem, to find the

smallest modification of an object of some class so that

it is classified differently. We in turn want to maximize

the number of hidden outliers placed successfully. Other

approaches for crafting adversarial examples also focus

on the case that the classifier they invade is a neural

network [4, 23].

Protecting privacy is another area in data analysis

that is related. This is because some approaches for

privacy protection add objects to the data. For exam-

ple, [7] proposes an algorithm to add dummy objects

to position data of individuals, in order to have bet-

ter privacy. Clearly, the objective is different: Privacy-

protection approaches attempt to add data that be-

haves like the original data. Hence, the true data is

hidden, while relevant information is still available. We

in turn hide data objects which contradict the general

structure of the data. Another difference is that such

privacy approaches so far are global, i.e., not based

upon subspaces.

Another related notion is robust statistics. It deals

with the fact that assumptions in statistics often are

only approximations of reality. Violations of these as-

sumptions are often interpreted as outliers. Hence, ro-

bust approaches take such possible violations into ac-

http://ipd.kit.edu/mitarbeiter/steinbussg/Experiments_HideOutlier.zip
http://ipd.kit.edu/mitarbeiter/steinbussg/Experiments_HideOutlier.zip

4 Georg Steinbuss, Klemens Böhm

count to stabilize statistical models. [24] for instance

proposes a modification of a subclass of Gauss-Markov

models such that it is free from outlier hiding effects.

Without these modifications, outliers might affect the

model itself in a way that they are not detectable, i.e.,

are hidden. However, such approaches are not based

upon subspaces, do not compute outlier regions or ad-

dress the problem of hiding outliers in the data.

3 Notation

Let DB be a database containing n objects, each de-

scribed by a d-dimensional real-valued data vector y =

(y(1), . . . , y(d))T . The set A = {1, . . . , d} denotes the

full attribute space. W.l.o.g., we assume that each at-

tribute lies within [l, u] where l, u ∈ R. An attribute

subset S = {a1, . . . , am} ⊆ A is called a m-dimensional

subspace projection (1 ≤ m ≤ d). A set Collection =

{S1, . . . ,St} ⊆ P (A) is a collection of t subspace pro-

jections (1 ≤ t ≤ 2d − 1). The set FullR = {y ∈ [l, u]d}
is the entire data space. When not stated different ex-

plicitly, for any region R, it holds that R ⊆ FullR.

Further, we assume that there exists a function outS(·)
of the form:

outS(y) :=

{
1 if y is outlier in S,
0 if y is inlier in S.

(1)

The function outS(·) is a generic outlier definition. Dif-

ferent outlier detection methods which typically incor-

porate different definitions of this generic function are

in use. Many such methods output a score instead of

a binary value. However, we assume that these scores

are transformed to a binary signal, e.g., by applying a

threshold.

4 The Region of Hidden Outliers

In this section we formalize the notion of hidden out-

lier and derive important characteristics. Section 4.2

features some assumptions behind our formal results.

In Section 4.1, we define hidden outliers and other rel-

evant concepts. In Section 4.3, we derive our formal

results. Section 4.4 features an algorithm to place hid-

den outliers. This algorithm also allows to define the

risk of hidden outliers.

4.1 Definition

We briefly review the well known multiple view prop-

erty [18] of subspace outliers before presenting our un-

derlying definitions. It is crucial for the notion of hidden

outliers. The property refers to the case that an object

can be an outlier in some subspaces while being an inlier

in others. Hence, there are several subspaces, each con-

taining outliers that are different in nature. Think for

instance of a dataset from a bank. In this data there

might be a subspace related to characteristics of the

family of customers and another one regarding their

employment. The outliers in the family characteristics

subspace are of a different nature than those in the

employment subspace. With subspace outlier detection,

promising subspaces are detected in a first step; in a sec-

ond step, each of these subspaces is searched for outliers

using a conventional outlier-detection method.

Bearing the multiple view property in mind, we de-

fine the notion of hidden outlier as follows:

Definition 1 Let two disjunct sets of subspace pro-

jections Collectionoutlier and Collectioninlier be given.

o ∈ [l, u]d is a hidden outlier with respect to subspace

collections Collectioninlier and Collectionoutlier if

outS(o) = 0 ∀ S ∈ Collectioninlier

and ∃ S ∈ Collectionoutlier : outS(o) = 1

The number of subspaces not in Collectioninlier is usu-

ally rather high. Testing a subspace for outliers con-

tained in it is expensive computationally. Thus, we fo-

cus on the case that the hidden outliers are outlier

in at least one subspace of Collectionoutlier instead of

any subspace not in Collectioninlier. Collectioninlier and

Collectionoutlier must always be disjunct. This is be-

cause there cannot be any point being an inlier and

outlier in the same subspace. However, there can be

overlapping attributes in subspaces of both sets. If there

is no attribute within subspaces of both sets, the task of

placing hidden outliers is rather simple. One creates an

outlier for one of the subspace in Collectionoutlier and

sets the values for the remaining attributes in A to the

ones of any existing inlier object. Thus, in this article

we focus on scenarios with such overlap. Based on this

definition, we now formulate a hypothesis.

Hypothesis 1 Since hidden outliers are inliers for all

subspaces in Collectioninlier, hidden outliers must be

spatially close to the points in DB.

We will return to this hypothesis when designing our

algorithm (Section 4.4) and in the experiments (Section

5.4.6).

A core issue in this study is to identify the po-

sitions/region with the following characteristic: If we

place a data point there, it is a hidden outlier. We now

derive this region and present some characteristics of

hidden outliers. To this end, we do not rely on any fur-

ther assumption regarding outS(·).

Hiding Outliers in High-Dimensional Data Spaces 5

InR OutR Hidden outliers Inlier bounds Dataset

l u

u

Collection = {{1, 2}} = {A}

Attribute 1

A
tt

ri
b

u
te

2

(a)

l u

u

Collection = {{1}, {2}}

Attribute 1

A
tt

ri
b

u
te

2

(b)

l u

u

Attribute 1

A
tt

ri
b
u

te
2

HiddenInA
HiddenFromA

(c)

Fig. 2 Example for InR(Collection), OutR(Collection) and hidden outliers in HiddenInA and HiddenFromA.

Definition 2 The region of inliers InR(Collection) is

defined as

{o ∈ [l, u]d |outS(o) = 0 ∀ S∈Collection}

The region of outliers OutR(Collection) is its comple-

ment.

Definition 2 formalizes the notion of the region fulfill-

ing one property of hidden outliers, i.e., regions with

positions that are inlier or outlier for each subspace in

Collection. This notion is a prerequisite before defining

the region of hidden outliers. See Figures 2a and 2b for

examples using the Mahalanobis distance. We discuss

characteristics of it in Section 4.3.

Lemma 1 The region InR(Collection) is the intersec-

tion of the regions InR({S}) ∀ S ∈ Collection.

Lemma 1 states that we can derive InR(Collection) us-

ing only intersections of InR({S}), i.e., the inlier region

in a single subspace. Detecting outliers in one subspace

is well defined and has been explored intensively.

Definition 3 Let two sets of subspace projections Col-

lectionoutlier and Collectioninlier be given. The region of

hidden outliers Hidden(Collectionoutlier,Collectioninlier)

is the intersection of the region InR(Collectioninlier) and

the region OutR(Collectionoutlier).

Thus, every point in Hidden is a hidden outlier. We

see that, up to intersections, unions and complements,

Hidden solely depends upon outlier detection in a sin-

gle subspace. However, InR({S}) is of arbitrary shape –

depending on outS(·). Hence, computing these intersec-

tions, unions and complements is arbitrarily complex.

The number of possible Collections is huge: Having

|P (A)|(= 2d − 1) subspaces yields 2|P (A)| − 1 possi-

ble Collections. The number of possible combinations of

two Collections to obtain Hidden is even larger. Thus,

in the first part of this work we focus on two cases,

Collection1 = {A} (the full space) and Collection2 =

{{1}, . . . , {d}} (each one-dimensional subspace).

Notation 1 HiddenInA refers to the setting when Col-

lectioninlier = {{1}, . . . , {d}} and Collectionoutlier =

{A}. HiddenFromA to the setting when vice versa Col-

lectioninlier ={A} and Collectionoutlier ={{1}, . . . ,{d}}.

In setting HiddenInA, outliers are detectable in the full

space, but not in any one-dimensional projection. Set-

ting HiddenFromA is the opposite: Outliers are not de-

tectable in the full space, but in at least one of the

one-dimensional projections.

Example 2 In Figure 2c, the Mahalanobis distance is

used to identify outliers. The red crosses are hidden

outliers in the settings just proposed. The square rep-

resents the bound for points that are inliers in both

subspaces of Collection = {{1}, {2}}. The circle rep-

resents the inlier bound for points that are inliers in

Collection = {A} = {{1, 2}}. Hidden outliers in set-

ting HiddenInA are points inside the square but out-

side of the circle. Analogously, hidden outliers in set-

ting HiddenFromA are points outside of the square but

inside the circle.

In some cases we will refer to a more general form of the

settings HiddenInA and HiddenFromA, i.e., where one

collection is an arbitrary partition of A into subspaces.

When analysing characteristics of Hidden, we will

make use of the relative volume of a region. More ex-

plictly, we use it to bound the region of hidden outliers.

6 Georg Steinbuss, Klemens Böhm

Definition 4 Let a region R ∈ R be given. The rela-

tive volume of R is defined as RelativeVolume(R) :=

Volume(FullR∩R)÷Volume(FullR).

Lemma 2 An upper bound on RelativeVolume(Hidden)

is the minimum of RelativeVolume(InR(Collectioninlier))

and RelativeVolume(OutR(Collectionoutlier)).

Thus, if the relative volume of OutR(Collectionoutlier) or

InR(Collectioninlier) is very small, e. g., zero, we know

that the relative volume of Hidden cannot be larger.

In a next step, we investigate specific scenarios with

an outlier-detection method using the Mahalanobis Dis-

tance. Having such a specific outlier notion allows to

derive distinct characteristics of Hidden.

4.2 Assumptions for Formal Results

We assume that DB follows a multivariate normal dis-

tribution (MVN) with zero mean. Of course, Gaussian

distributed data points have attribute limits −∞ and

+∞. However, we assume that l and u are so large that

even outliers will most likely be contained in the range

spanned by l and u. With MVN data, the Mahalanobis

distance [11] yields the likeliness of a data point. We

assume data objects to be outliers if they are very un-

likely according to that distance. We refer to the Ma-

halanobis distance of y in subspace S as MDistS(y).

Quantile(α, df) is the α quantile of a χ2 distribution

with df degrees of freedom. According to [11], we can

instantiate our outlier definition as follows:

outS(y) :=

{
1 if

[
MDistS(y)

]2
>Quantile(0.975, |S|) ,

0 otherwise.

4.3 Formal Results

Motivation for Theorem 1: Figure 2c is a two-dimen-

sional example illustrating hidden outliers. The lines

are outlier boundaries using the Mahalanobis distance.

In this two-dimensional case, hidden outliers can ex-

ist for both settings HiddenInA and HiddenFromA. We

wonder whether this eventuality of having hidden out-

liers extends to higher dimensionalities and more gen-

eral subspace selections. We answer this question by

analysing a more general scenario. In our two sample

settings, there are two kinds of subspace selections. We

have Collection1 = {{1}, . . . , {d}} and Collection2 =

{A}. To generalize this, we replace Collection1 with an

arbitrary partition of the attribute space.

Theorem 1 Let A be the full data space and Collection

a non-trivial (i.e., 6= A) partition of A into subspaces.

Let the number of dimensions of A and of each subspace

in Collection converge to infinity. Let the data attributes

be i.i.d. with N(0, 1). Then there exists a hidden outlier

that is outlier in at least one subspace of Collection and

inlier in A. There also exists a hidden outlier that is

outlier in A but inlier in each subspace of Collection.

All proofs are in the appendix. We have assumed that

the dimensionality goes to infinity in order to approxi-

mate Quantile in the proof. However, Figure 2c shows

that the theorem holds even in a two-dimensional case.

Our experiments will show that it holds for other data

sets as well.

Uncorrelated Correlated

Attribute 1

A
tt

ri
b

u
te

2

Fig. 3 Motivation for Theorem 2 and Hypothesis 2

Motivation for Theorem 2: Next, we consider the ef-

fect of correlation on the relative volume of InR({A}).
Figure 3 displays InR({A}) in a two-dimensional exam-

ple. The circle is for the case that Attributes 1 and 2

are uncorrelated. The ellipse stands for strong correla-

tion. The volume of the ellipse is smaller than the one

of the circle. Thus, a higher correlation seems to imply

a smaller relative volume of InR({A}) and a larger rel-

ative volume of OutR({A}). Theorem 2 formalises this

for data spaces of arbitrary dimensionality.

Theorem 2 Let subspaces S1 and S2, both of dimen-

sionality d and MVN distributed, be given, and let the

attributes in S1 be i.i.d. with N(0, λ). The covariance

matrix in S1 is Σ1 and in S2 Σ2. For these matrices,

it holds that diag (Σ1) = diag (Σ2), and that Σ2 has

off-diagonal elements (i.e., covariance). Then we have:

RelativeVolume(InR(S1)) ≥ RelativeVolume(InR(S2))

This theorem relies on one further technical assump-

tion spelled out in the appendix which also contains the

proof.

Lemma 3 From OutR(S) = InR(S) it follows that

RelativeVolume(OutR(S1)) ≤ RelativeVolume(OutR(S2))

Hiding Outliers in High-Dimensional Data Spaces 7

Motivation for Hypothesis 2: Theorem 2 reasons on

the influence of correlation on inlier and outlier regions.

In HiddenInA, the outlier region is OutR({A}), i.e., in-

volves the full space. In HiddenFromA, the inlier region

InR({A}) involves the full space. In both settings, the

respective other region depends on a Collection con-

sisting of only one-dimensional subspaces. Correlation

does not affect the distribution within these subspaces

and hence does not affect the relative volume. Lemma 2

states that the minimum of the relative volumes of in-

lier and outlier region is an upper bound on the relative

volume of Hidden. Thus, if one of the relative volumes

of inlier and outlier increases or decreases this bound

might do so as well.

Hypothesis 2 Correlated data leads to a smaller rela-

tive volume of Hidden in setting HiddenFromA than

uncorrelated data. In HiddenInA, it is larger.

If this hypothesis holds, it is more difficult to hide out-

liers in correlated subspaces in HiddenFromA and less

difficult in HiddenInA. We evaluate this assumption us-

ing various data sets and outlier-detection methods in

Section 5.2.2.

4.4 Algorithm for Hidden

So far, we have studied characteristics of Hidden analyt-

ically depending on certain assumptions. We now pro-

pose an algorithm which places hidden outliers, for any

instantiation of outS(·), subspace selections and data

set.

Our proposed algorithm is randomized, i.e., checks

for random points x ∈ [u, l]d whether they are part of
Hidden. The baseline we propose samples these points

according to a uniform distribution with domain [u, l]d.

However, inspecting such samples would not only be ex-

tremely expensive, it also would not take into account

that Hidden can be a very small portion of FullR. See

Figure 2c. The red crosses indicate some areas of points

in HiddenInA and HiddenFromA. We have computed

these areas by detecting outlier positions in each at-

tribute in isolation as well as in the full space. While

the Region HiddenInA is rather large, HiddenFromA is

not. If Hidden is small, an algorithm which concentrates

on this part of the data space is desirable. However,

the algorithm should also inspect points exhaustively

otherwise. A placement that is always exhaustive how-

ever would leave aside Hypothesis 1. It has stated that

hidden outliers are close to DB. According to it, it is

unlikely that an extreme position, a point far from DB,

is a hidden outlier. To facilitate a placement that is

adaptive in this spirit, we specify a parameter to model

the probability of positions to be checked. In particular,

points next to existing data points y ∈ DB will have a

higher likelihood.

1. Input 2. Place 3. Check

Fig. 4 Exemplary flow of our placement algorithm.

Our algorithm basically consists of two steps. First

it places random points in the data space. Second, it

checks which ones are hidden outliers. Figure 4 illus-

trates the flow. The example resembles the scenario

from Figure 2. The method detecting outliers is based

upon the Mahalanobis distance, and our data has two

dimensions. In Figure 4, we place hidden outliers in the

HiddenInA setting. I.e., the hidden outliers are outliers

in the full space but must not be detectable in any one-

dimensional projection. The leftmost plot shows the

dataset that is part of the input of the algorithm. The

area framed by the dotted lines are positions where ob-

jects, when placed there, will be hidden outliers. This

area depends on other inputs of the algorithm (e.g.,

which detection method is used in a subspace). The

other two plots display the actual placement. In the

second plot, random points are placed in the domain.

Here, the baseline placement scheme from our paper,

i.e., uniform sampling, has been used. Afterwards these

placed points are filtered; only the desired hidden out-

liers are kept. In the following enumerated list, we dis-

cuss the probability of positions being checked and how

this check is performed in detail.

4.4.1 Probability of a Position

A straightforward approach would be to only check

points x closer than some threshold to existing data

objects. However, we should also consider the distance

of x to the attribute bounds. To this end we introduce

the parameter eps ∈ [0, 1]. Figure 5 graphs the proba-

bility of a position being checked, for a single attribute

and data point y. We use the log scale for better illus-

tration. The area of both rectangles is 1. If eps = 0 we

do not allow for any distance greater than 0 to y. Thus,

the probability of checking y is 1 and of any other po-

sition 0. If eps = 1 we allow for any distance, as long as

positions do not exceed the attribute bounds. We set

the probability of checking x to be constant and thus

to 1
u−l . If 0 < eps < 1, a point x between y−eps ·(y− l)

8 Georg Steinbuss, Klemens Böhm

and y+eps · (u−y) is checked with a probability 1÷eps
u−l .

Any point outside of these bounds is not checked.

x ∈ [l, u]

eps = 1

0 < eps < 1

eps = 00

l uy

y − eps · (y − l) y + eps · (u− y)

log 1
u−l

log 1÷eps
u−l

lo
g
p
(x

)

Fig. 5 Exemplary probability density of checking random
points regarding a single attribute and data object y.

Definition 5 Let y1, . . . ,yn ∈ [l, u]d and eps ∈ [0, 1]

be given. The surrounding region of a single obser-

vation yj is defined as:

SurrReps(yj) :=
{
x ∈ [l, u]d

∣∣ DistRatioy(x) ≤ eps
}

where

DistRatioy(x) := max
i∈A

(
y(i) − x(i)

u− y(i)
,
x(i) − y(i)

y(i) − l

)
The surrounding region of several observations y1,

. . . ,yn is SurrReps(y1, . . . ,yn) :=
⋃n
j=1 SurrReps(yj).

Thus, SurrReps(y) consists of all x whose probability

of being checked is greater than zero. Figure 6 displays

the surrounding region for several points in an example

where |DB| = 4.

The following two lemmas feature useful character-

istics of the surrounding region.

Lemma 4 If eps = 0 then SurrR0(yj) = {yj} and

SurrR0(y1, . . . ,yn) = {y1, . . . ,yn}.

Lemma 5 If eps = 1 then SurrR1(yj) = FullR and

SurrR1(y1, . . . ,yn) = FullR.

Hence, the surrounding region can consist of solely the

observations themselves, the entire data space or a mid-

dle ground between these extremes (0 < eps < 1).

Placing random points only in SurrReps(DB) does away

with the difficulties of an exhaustive placement. How-

ever, our approach so far features a parameter (eps),

and it is unclear how to choose its value. We will dis-

cuss this in Section 4.4.4.

Dataset SurrReps(yj) SurrReps(y1, . . . ,yn)

Attribute 1

A
tt

ri
b

u
te

2

l u

u

y(2) − l

u− y(2)

eps · (y(2) − l)

Fig. 6 Example of range distance and surrounding region

Regarding the selection of random points, a sur-

rounding region gives way to a probability distribution

from which to draw the samples, as follows

p(x) ∝ 1

n

n∑
j=1

1{x∈SurrReps(yj)} (2)

p(x) is the multivariate generalisation of p(x) in Fig-

ure 5. We now propose the algorithm in Algotihm 1

to sample points, given the density function. The first

step to obtain #Samples random samples from p(x) is

to randomly draw #Samples data points from DB. For

every attribute value of each such point, the algorithm

calculates two new positions, one towards the upper at-

tribute limit u and one towards the lower limit l. Both

are scaled by eps. The algorithm then determines ran-
domly whether the sample has the position next to u or

l. This results in #Samples random samples from p(x).

Algorithm 1 Sample points using the pdf from Equa-

tion 2
Input: #Samples, eps, DB
Output: Samples x1, . . . ,x#Samples

1: Sample y1, . . . ,y#Samples from DB (with replacement)
2: for yj ∈ y1, . . . ,y#Samples do
3: for attribute i of yj do

4: lowerChange ← Sample from Unif (0, y
(i)
j − l)

5: upperChange ← Sample from Unif (0, u− y(i)j)
6: Select at random if
7: x

(i)
j ← y

(i)
j − eps · lowerChange

8: or
9: x

(i)
j ← y

(i)
j + eps · upperChange

10: end for
11: end for
12: return x1, . . . ,x#Samples

Hiding Outliers in High-Dimensional Data Spaces 9

Algorithm 2 Filter sample points for hidden outliers
Input: Collectionoutlier, Collectioninlier, x1, . . . ,x#Samples,

DB, outS(·)
Output: Set of hidden outliers SamplesHidden
1: for xj ∈ x1, . . . ,x#Samples do
2: IsInlierInAll ← TRUE
3: IsOutlier ← FALSE
4: for type ∈ {outlier, inlier} and for S ∈ Collectiontype

do
5: outRes ← outS(xj)
6: if outRes 6= type = inlier then
7: IsInlierInAll ← FALSE
8: end if
9: if outRes = type = outlier then

10: IsOutlier ← TRUE
11: end if
12: end for
13: if IsInlierInAll & IsOutlier then
14: Add xj to SamplesHidden
15: end if
16: end for
17: return SamplesHidden

4.4.2 Checking Positions

The next step necessary to place hidden outliers is to

check if a point is a hidden outlier or not. See Algo-

rithm 2 for our algorithm. For a given point, it checks

if it is an inlier in each subspace in Collectioninlier and

an outlier in at least one subspace of Collectionoutlier.

Thus we can filter sampled points for hidden outliers.

Armed with these algorithms, it is now possible to hide

outliers in SurrReps(DB), for given a data set DB, eps

and #Samples, as long as RelativeVolume(Hidden) > 0.

In the following we will discuss an alternative interpre-

tation of eps which allows to choose eps and define the
risk of hidden outliers.

4.4.3 Interpreting eps

To motivate our interpretation we revisit Figure 6. The

region SurrReps(y1, . . . ,yn) with the blue surrounding

is a boundary for the observations. eps controls its tight-

ness. Lemma 5 has stated that, if eps = 0, SurrR1(DB)

contains each point from DB. Thus p(x) from Equa-

tion 2 is the empirical distribution function of DB. If

eps ≈ 0, p(x) still is similar to the empirical distribu-

tion. However, the closer eps is to 1, the less similar

the empirical data distribution is to p(x). Their simi-

larity quantifies how much knowledge p(x) reveals on

observations in DB. Thus, one can interpret eps as an

indication of how much information on the data (DB)

is used in the sampling procedure.

4.4.4 Choosing eps

Up to here, eps is an exogenous parameter, without

the flexibility envisioned. Thus we now add one step to

the algorithm. Figure 7 graphs the proportion of sam-

pled points that are hidden outliers in one example set-

ting. The maximum is reached at eps ≈ 0.3. Hence, in

this example, 0.3 is the value that allows for the best

placement of hidden outliers. We refer to the eps that

maximises the proportion of hidden outliers as optEps.

This is not just the optimum for eps but also allows for

the computation of the risk of hidden outliers. Usually

there is no knowledge on the dependency between eps

and the proportion of hidden outliers. This is why we

propose to use a genetic algorithm to find optEps.

eps

P
ro

p
.

h
id

d
en

in
%

Quantiles

0 0.4 0.6 0.8 1optEps
0

20

40

60

80

100

Fig. 7 Demonstration of the connection of the propor-
tion of hidden outliers in placed points and eps. Using
HiddenFromA, Arrhythmia and DBOut (See Section 5.1).
The risk is 0.36.

4.4.5 The Risk of Hidden Outliers

Definition 6 Let DB, outS(·), Collectioninlier and Col-

lectionoutlier be given. The risk of attacker success is the

harmonic mean of optEps and the proportion of hidden

outliers the attacker is able to hide in the surrounding

region SurrRoptEps(DB).

This risk has domain [0, 1]. If hiding outliers is diffi-

cult, the risk of the data owner is small. Recall our in-

terpretation of eps as the amount of information known

on the data. optEps ≈ 1 means that an attacker does

not need any information on DB to place hidden out-

liers. If both optEps and the maximal proportion of

hidden outliers are high, it is easy to hide outliers, and

the risk is high. If only one of them or both are low, the

risk is also low. Hence, the risk is low if an attacker ei-

ther needs much knowledge on the data and/or placed

points rarely are hidden outliers.

4.4.6 Complexity

The algorithm we propose exclusively targets at high

result quality. We deem absolute runtime less impor-

tant, as long as it is not excessive, since a data owner

10 Georg Steinbuss, Klemens Böhm

will conduct the analysis proposed here offline. Hav-

ing said this, we nevertheless discuss the worst case

complexity of our solution. When placing hidden out-

liers for a given eps, the algorithms performs #Calc =

#Samples · |Collectioninlier| · |Collectionoutlier| calcula-

tions. Let maxFitEval be the maximal number of fit-

ness-function evaluations by the genetic algorithm.

Lemma 6 The worst case complexity of our algorithm

is O(#Calc ·maxFitEval).

4.4.7 Summary of the Algorithm

The algorithm needs four inputs: the two subspace col-

lections (Collection inlier, Collection outlier), an outlier

detection method (outS(·)) and the number of sam-

ples (#Samples). An additional optional input is eps;

when not supplied, the algorithm itself determines eps

(optEps). First, the algorithm obtains #Samples points

from the probability distribution in Equation 2 (See Al-

gorithm 1). Then these points are filtered. Only points

that are inlier in each subspace of Collectioninlier and

outlier in at least one subspace of Collectionoutlier ac-

cording to outS(·) remain. See Algorithm 2. They are

hidden outliers. When eps is not given, the algorithm re-

peats this procedure for different values of eps. A heuris-

tic generates values of eps. They target at maximising

the share of hidden outliers in each sample.

5 Experiments

In Section 4.3, we have derived characteristics of Hidden

analytically, assuming a specific outlier definition and

underlying data distribution. In our experiments we in-

vestigate its behaviour in terms of other outlier defi-

nitions and data sets using our algorithm. The experi-

ments show the general ability of our algorithm to place

hidden outliers and the vulnerability of different detec-

tion methods. We also study the role of optEps, e.g.,

whether there exists a unique one.

5.1 Experiment Setup

5.1.1 Outlier Detection

Additionally to the Mahalanobis distance we investi-

gate three other outlier definitions. One of them, fol-

lows the (k, dmax)-Outlier, short DBOut, proposed

in [9]. A point is an outlier if at most k objects have

a distance less than dmax. The distance used is the

euclidean metric. Hence, solely the dimensionality of a

subspace implies different magnitudes of distances [27].

That is why, instead of using a fixed dmax for each sub-

space, we use an adaptive dmax. In particular, we set

dmax = 0.2 ·
√
| S |. The factor

√
| S | is used to scale

the distances to the size of the subspace. If the subspace

is of size 1, the maximal Euclidian distance is 1 =
√

1.

(Datasets are normalized to [0, 1].) In general, the max-

imal Euclidian distance between two points is
√
| S |.

Hence, the distance of an inlier to its nearest neighbor

can be at most 20% of the maximal distance. The last

two methods we use are ABOD [12] and LoOP [10].

ABOD uses angles to obtain the outlierness of a point.

These angles are much more stable in higher dimen-

sions than Lp-distances. [12] proposes three different

implementations of ABOD which incorporate different

tradeoffs between performance and result quality. We

use the fastest implementation, FastABOD. LoOP is an

adoption of the well known LOF [2] that incorporates

a density based on the neighbourhood of data points.

This allows to find density based outliers without as-

suming a specific distribution. In comparison to LOF,

LoOP returns a score that lies in [0, 1] and implies an

outlier probability instead of a score in [0,∞]. Except

for FastABOD and LoOP all methods already output a

binary signal if a data point is an outlier or not. FastA-

BOD and LoOP output scores. Regarding LoOP a low

score indicates usual observations, as for FastABOD a

high score. In our experiments we need an automatic

threshold that allows to transform that score to a bi-

nary signal. Regarding FastABOD we decided to use

the empirical 2.5 % quantile of the resulting scores to

this end. For LoOP we used a threshold of 0.5. We set

the neighbourhood size to k = 5.

5.1.2 Datasets

Two data sets we use are artificial and 14 are real-

world benchmark data sets, including two high dimen-

sional data sets from the UCI ML Repository 2, namely

Madelon and Gisette (500 and 5,000 attributes). The re-

maining real world datasets are from [3]. We always use

the normed data, and when the data has been down-

sampled we use version one. The two artificial data sets

are produced by sampling from a multivariate Gaus-

sian distribution, each with 500 observations and 30

attributes. One data set is from a MVN distribution

where each attribute is i.i.d N(0,1) , referred to as ’MVN

cor.’. In the second one ’MVN’, where attributes are

N(0, 1) distributed as well, each pair of attributes is

correlated with a covariance of 0.8. They are mostly

used for the experiments studying Hypothesis 2. To ob-

tain comparability across data sets, each data sets has

been normalized (i. e., l = 0 and u = 1).

2 UCI ML Repository: http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/

Hiding Outliers in High-Dimensional Data Spaces 11

5.1.3 Subspace Selection

To evaluate our theoretical findings, we have a deter-

ministic procedure for subspace selection (HiddenInA
and HiddenFromA). Only for Theorem 1 we need to

sample subspace partitions. However, when evaluating

the general quality of our approach, instantiations of

Collectioninlier and Collectionoutlier are much less obvi-

ous. We need realistic and diverse instantiations. How-

ever, the number of possible combinations is daunting.

On the other hand, the relationship of subspace size

and number of possible subspaces, exemplary displayed

in Figure 8, implies the following: We assume that one

normally checks low- and high-dimensional subspaces

for outliers (green area). Hence, it is most likely that

hidden outliers occur in the subspaces with a medium

number of dimensions (red area). Thus, these outlier

subspaces are a natural selection. However, even with

these restrictions, the number of outlier and even inlier

subspaces can still be infeasibly large. Thus, we sample

them according to the procedure in Algorithm 3.

1 2 3 4 5 6 7 8 9 10

Subspace Size

50

100

150

200

250

0#
S

u
b

sp
a
ce

s

Fig. 8 Number of subspaces versus subspace size (using ten
attributes)

Algorithm 3 Sample inlier and outlier subspaces

Input: #Subspaces, A = {1, . . . , d}, outS(·)
Output: Subspace collections for inlier and outlier
1: if outS(·) is FastABOD or LoOP then
2: combsinlier ← {S ⊆ A : |S| ≥ d− 2}
3: else
4: combsinlier ← {S ⊆ A : |S| ≤ 2}
5: end if
6: Collectioninlier ← Sample #Subspaces from combsinlier
7: Ã ← {a ∈ S : ∃ S ∈ inlierCombs}
8: combsoutlier ← {S ⊆ Ã : |S| =

⌊
d
2

⌋
}

9: Collectionoutlier ← Sample #Subspaces from combsoutlier

10: return Collectioninlier, Collectionoutlier

First we sample subspaces for Collectioninlier. For out-

lier detection methods for high-dimensional spaces (Lo-

OP and FastABOD), we use the large subspaces as in-

lier subspaces (right green area). For the other outlier

detection techniques, we use the smaller subspaces (left

green area). Then we obtain the attributes that are con-

tained in the sampled inlier subspaces. From those we

sample the outlier subspaces. This guarantees that at-

tributes from inlier and outlier subspaces overlap.

5.2 Evaluating Our Theoretical Findings

In the first experiments, we investigate the generaliz-

ability of our theoretical findings from Section 4.3. The

experiments approximate the scenarios described in the

theorems and hypotheses using various data sets and

outlier detection methods, cf. Section 5.1.

5.2.1 Theorem 1

The theorem states that hidden outliers exist when ei-

ther Collectioninlier or Collectionoutlier is a partition

of the full attribute space A into subspaces, and the

other one is A itself. We investigate the generalizabil-

ity of this statement by varying the data distribution

and the outlier detection method. For all data sets we

create a number Collections by randomly dividing A
into partitions. For each outlier detection scheme and

Collection we compute the maximal proportion of hid-

den outliers regarding two selections of Collectioninlier

and Collectionoutlier. With the first one, Collectioninlier

equals Collection and Collectionoutlier = A. Vice versa

in the other case, Collectionoutlier equals Collection and

Collectioninlier = A. We record how often the propor-

tion of hidden outliers is not 0, i.e., one can hide out-

liers. If Theorem 1 is generalizable, this should be possi-

ble. Table 1 lists the percentages of runs where we have

been able to hide outliers.

Table 1 Percentage of runs with more than zero hidden out-
lier

MDist DBOut LoOP FastABOD
* 64.29 77.86 87.14 95.36
** 37.86 87.50 96.43 95.71

* Collectionoutlier = A, ** Collectioninlier = A

In most cases our algorithm is able to place hidden out-

liers. Surprisingly, regarding MDist in particular, the

success rate is rather low. This is in some contrast to

our formal result that states there exist hidden out-

liers in these cases. The other detection methods show

higher success rates. Thus, we conclude that Theorem 1

is generalizable to some extent.

12 Georg Steinbuss, Klemens Böhm

5.2.2 Hypothesis 2

The hypothesis states that it is more difficult to place

inliers in correlated subspaces in setting HiddenFromA
and less difficult in setting HiddenInA. To investigate

this we try to hide outliers in both settings using differ-

ent outlier detection schemes. In one data set, attributes

are correlated (MVN corr.). In another one they are not

(MVN). To focus on the effects of correlation, the data

has only 10 attributes. If Hypothesis 2 holds we should

see an increase in the proportion of hidden outliers from

uncorrelated to correlated data in HiddenInA and a de-

crease in HiddenFromA. Table 2 lists the results: the

percentage obtained in each dataset, the raw difference

between the two results and a relative difference. The

last entry is obtained by dividing the raw difference

by the maximal percentage the detection algorithm has

obtained in any of the two datasets.

Table 2 Difference in percentage of hidden outliers

Values in % MDist DBOut LoOP FastABOD
MVN 28.14 56.54 12.96 1.12

MVN cor. 69.84 1.32 69.20 1.26
Difference 36.64 13.30 56.24 0.14
Relative 56.56 19.04 81.27 11.11

(a) HiddenInA

Values in % MDist DBOut LoOP FastABOD
MVN 0.84 0.62 29.08 21.50

MVN cor. 0.30 19.68 20.76 22.00
Difference -0.48 -0.32 -9.40 -0.50
Relative -57.14 -51.61 -32.32 2.27

(b) HiddenFromA

All detection methods except for FastABOD meet the

expectation. We find it interesting that the magnitude

of change of proportion is very different for HiddenInA
and HiddenFromA. However, the proportion of placed

hidden outliers on each dataset also varies greatly. In

summary, although the extents are different, the exper-

iments confirm the hypothesis to some extent.

5.3 Investigating optEps

The next experiments target at a crucial parameter

of our algorithm. The proposed algorithm is based on

a sampling distribution parametrized by eps. The eps

that maximizes the proportion of hidden outliers, de-

fined as optEps, is important: It allows to quantify the

risk of data owners. We now investigate the dependency

between eps and that proportion, to analyse if optEps

usually exists, i.e., if there is a global maximum of the

dependency.

eps

P
ro

p
.

h
id

d
en

in
%

Quantiles

0 0.4 0.6 0.8 1optEps
0

20

40

60

80

100

(a) HiddenFromA, Parkinson and LoOP. Risk: 0.21

eps

P
ro

p
.

h
id

d
en

in
%

Quantiles

0 0.4 0.6 0.8 1optEps
0

20

40

60

80

100

(b) HiddenInA, Lymphography and MDist. Risk: 0.16

Fig. 9 Proportion of hidden outliers in placed points versus
eps

Figures 7 and 9 illustrate the dependency between

the proportion of hidden outliers and eps. In Figures 7

and 9a we see a very distinct optEps. However, Figure

9b shows that this is not always the case. The risk is

highest with 0.45 in Figure 7. optEps as well as the

maximal proportion are relatively high. Figure 9b has

the lowest risk with 0.12.

5.4 General Quality

In these final experiments, we study the general abil-
ity of our algorithm to place hidden outliers. We also

compare our approach to a baseline. Since this arti-

cle is first to study hidden outliers, there is no explicit

competitor, and we choose uniform full space sampling

as baseline, which is equivalent to fixing eps to 1. We

will declare success if there is an increase in the quality

of placing hidden outliers, and this increase is signifi-

cant, e.g., a factor of at least two or three. Recall that

our algorithm requires data, outS(·), Collectioninlier,

Collectionoutlier as input. The subspace selection has

been derived in Section 5.1.3. Regarding the data, we

look at all datasets introduced in 5.1.2 and sample dif-

ferent numbers of attributes and observations. However,

we only downsample, upsampling would lead to data

that is redundant. To vary outS(·), we use all outlier

detection methods introduced in 5.1.1. Additionally, we

obtain eps candidates by using a fixed sequence of val-

ues instead of a heuristic. This allows for futher analysis

on the effect of eps and a straightforward comparison

to the baseline. We summarize our results to highlight

Hiding Outliers in High-Dimensional Data Spaces 13

the effect of the number of attributes or observations,

used dataset or detection method and eps.

5.4.1 Number of Attributes

Figure 10 graphs the effect of the number of attributes.

The y-axis displays the share of hidden outliers amongst

sampled points, i.e., the success of the placement. For

algorithm and baseline the figure shows boxplots of the

share of hidden outliers. We observe a significant im-

provement of our algorithm over the baseline – for high

dimensional data in particular. Second, for both alter-

natives it seems to be more difficult to place hidden

outliers in high dimensional datasets. The shape of the

left plot is caused by two effects. One is that it is diffi-

cult to hide outliers with few attributes. Any subspace-

based outlier detection scheme will most likely detect

them. If we increase the number of attributes, this effect

decreases. However, the second influence is that increas-

ing the number of attributes also increases the number

of subspaces searched for outliers. So it is very diffi-

cult to find positions that are inliers in each subspace

of Collectioninlier. In consequence, it also is difficult to

hide outliers.

Algorithm Baseline

#Attributes

P
ro

p
.

h
id

d
en

in
%

1
0

2
0

4
0

6
0

8
0

1
0
0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
0

2
0

4
0

6
0

8
0

1
0
0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0

20

40

60

80

100

Fig. 10 Effect of number of attributes

5.4.2 Number of Observations

Figure 11 plots the number of observations versus the

share of hidden outliers. Again, our algorithm is better

than the baseline, but with a bit less distinction. The al-

gorithm improves the baseline by a factor of about 5-10.

In both cases the effect of the number of observations is

not very significant. This is because the number of ob-

servations does not change the data distribution much.

I.e., dense areas will still be dense, and sparse areas will

still be sparse.

Algorithm Baseline

#Observations

P
ro

p
.

h
id

d
en

in
%

20
0

50
0
10

00
30

00
40

00
50

00
40

00
0

20
0

50
0
10

00
30

00
40

00
50

00
40

00
0

0

20

40

60

80

100

Fig. 11 Effect of number of observations

Table 3 Proportion of hidden outliers regarding data set
used

Data set Algorithm (in %) Baseline (in %)
ALOI 18.12 7.08

Annthyroid 13.07 7.13
Arrhythmia 23.64 8.23

Cardiotocography 24.57 7.29
Gisette 33.10 7.72

HeartDisease 29.53 6.85
InternetAds 6.29 3.54
Ionosphere 40.65 15.13
KDDCup99 16.32 10.73

Madelon 33.84 20.03
MVN 30.08 11.17

MVN corr. 18.14 5.49
PenDigits 21.72 5.34
SpamBase 21.27 7.06
Waveform 27.08 13.28

WDBC 22.26 5.93

5.4.3 Dataset Used

Table 3 displays the effect of the data set. We summa-

rize the results over all experiments, i.e., with different

samplings of observations and attributes. As before, our

algorithm outperforms the baseline significantly. We see

however that there are drastic differences between data

sets. While placing hidden outliers is successful when

using Madelon, this is more difficult with, say, Inter-

netAds. We speculate that the different data densities

cause this effect. We have seen this effect in our exper-

iments in Section 5.2.2 as well.

5.4.4 Measuring Dataset Characteristics

We now want to further investigate the difference in

the proportion of successfully placed hidden outliers re-

garding the datasets used. Thus, we have conducted an

intensive and systemtic study, as follows: We have de-

veloped some measures that we then have correlated

14 Georg Steinbuss, Klemens Böhm

with the characteristics in Table 3. Our measures divide

in three types that address the subspaces selected, the

amount of irrelevant attributes and the quality of out-

lier detection. The first type of measure addresses the

correlation in subspaces. As part of our formal results,

we have already derived that this correlation should

have an effect. In particular, we take the average of

the Spearman and Pearson correlation in both sub-

space collections (Collectioninlier and Collectionoutlier).

When a subspace has more than two dimensions, the

correlation measure is the average of each pair of di-

mensions. Regarding the second type, one measure uses

a PCA (Principal Component Analysis) computed on

each dataset. Each PC has a score dedicated to its im-

portance in explaining the data objects. If there are

only few PCs with very high score and many with low

scores, the dataset has a rather low intrinsic dimension-

ality, i.e., only a few transformed attributes are neces-

sary. A low intrinsic dimensionality means that many

irrelevant attributes are present, which might affect our

placement: The number of irrelevant features could re-

duce the share of hidden outliers, by making it difficult

to place them. However, it might also be that it in-

creases their proportion, by blurring low dimensional

outliers so that they are inliers in higher dimensions.

This is why we have quantified the skewedness of the

PCA scores. If this skewedness is high, it is likely that

there are only a few PCs with a high score. All our

datasets are anomaly detection benchmark datasets,

i.e., they include labels for outliers and inliers so that

one can use them to evaluate outlier detection algo-

rithms. For the remaining measures, we have fit a ran-

dom forest to each dataset that distinguishes between

the labeled inliers and outliers. We can derive measures

from this random forest fit for two of our types: the

importance of attributes which belongs to the second

type and the quality of the inlier/outlier-classification

which is of the third type. In line with the usual def-

inition, the importance of an attribute is the Gini in-

dex decrease with this attribute. If it is high, it is im-

portant for the classification. From the attribute im-

portance values, we compute the mean value, variance,

and skewedness, i.e., how important are the attributes

in general, how much does this vary and whether there

only are a few attributes that are very important. From

the classification, we obtain accuracy, sensitivity (how

well are outliers detected) and specificity (how well are

inliers detected). We then have computed the correla-

tion between all these measures and the percentage of

hidden outliers placed by our algorithm. The results

are listed in Table 4. We have separated them by the

type of inlier subspaces: low- (up to 2 dimensions) or

high-dimensional (at least d-2 dimensions).

Table 4 Correlation of data measurements with percentage
of hidden outliers

Measure Low High
Average Pearson (Inlier) 0.32 0.30

Average Spearman (Inlier) 0.04 0.14
Average Pearson (Outlier) 0.21 0.45

Average Spearman (Outlier) -0.06 0.20
Importance Mean -0.24 0.06

Importance Variance -0.29 -0.07
Importance Skewness -0.20 -0.39

PCA Skewness 0.00 0.16
Accuracy -0.35 -0.45
Specificity -0.16 -0.42
Sensitivity -0.41 0.24

We see that many measures influence the percent-

age of hidden outliers placed. As expected, correlation

has an effect. However, the effect in the low-dimensional

setting is not very prominent. This might result from

the many diverse subspaces that the scores are aver-

aged from, in the low dimensional setting in particular.

The feature importance has an overall negative effect

although the mean is not significant in the high di-

mensional setting. This makes sense: If there are only

a few important features that are well suited for out-

lier detection, it is more difficult to hide from these.

To illustrate, think of a dataset with four attributes.

The first two contain outliers that are easily detectable

(see for instance Figure 1). In the other two attributes,

the outlier and inlier class are scattered randomly and

are indifferent. As outliers and inliers are indifferent, it

is likely that the subspace follows a distribution that

makes it difficult for a point to be an outlier. For in-

stance, this is the case with an independent uniform

distribution. However, hidden outliers must be outly-

ing in certain subspaces. If this subspace consists of

irrelevant attributes (here, the third and the fourth

attribute), placing outliers might be difficult. In the

high-dimensional setting, the PCA skewedness seems

to have an effect. This might be because the attributes

that are more than the intrinsic dimensionality allow

for a good placement by blurring the result. Remember

that in the high-dimensional setting the inlier subspaces

(Collectioninlier) have more dimensions. The accuracy

has a negative effect. Clearly, the better the random

forest is in detecting outliers, the more difficult it is to

hide such. Regarding specificity, the effect is the same.

The better the random forest can detect inliers, the less

effective is our placement. Regarding the sensitivity, we

do not see an obvious interpretation of the results. The

effect is opposite for the high- and the low-dimensional

settings.

To conclude, we have experimented with various

measures to quantify effects that go along with different

Hiding Outliers in High-Dimensional Data Spaces 15

shares of successfully placed hidden outliers. However,

the main takeaway is that there is not one single mea-

sure or a few measures in combination correlated with

a successful placement.

5.4.5 Outlier Detection Method Used

To determine effects of the method used, we aggregate

the percentage of successful runs and the average share

of hidden outliers of all experiments. We have done this

for our algorithm as well as for the baseline. See Table 5.

Some detection methods are very prone to hidden out-

liers while others are not. Next, the gain in success when

using our algorithm varies among detection techniques.

With MDist this gain is high, while it is negligible with

FastABOD. However, it is possible to hide outliers with

all five detection techniques.

Table 5 Effect of the used detection method on the success
in hiding outliers and their average proportion

Values in % MDist DBOut LoOP FastABOD
Algorithm 99.32 81.19 97.70 96.06
Baseline 4.46 36.49 21.81 95.78

(a) Percentage of runs with placed hidden outliers

Values in % MDist DBOut LoOP FastABOD
Algorithm 7.67 30.28 30.13 26.41
Baseline 0.03 8.61 3.31 22.26

(b) Average proportion of hidden outliers

5.4.6 eps Used

Epsilon

eps

P
ro

p
.

h
id

d
en

in
%

Baseline

0

20

40

60

80

100

0 0.1 0.3 0.5 0.7 0.9 1

Fig. 12 Effect of eps

Figure 12 displays the proportion of hidden outliers

versus eps. eps = 1 is our baseline, i.e., uniform sam-

pling. The median has a peak when eps is 0.1. This

value results in hidden outliers placed closely to other

data points. This confirms Hypothesis 1, i.e., hidden

outliers are spatially close to the points in DB. The fig-

ure also confirms the superiority of our algorithm over

the baseline.

Summary

The experiments have shown that in many scenarios our

approach is able to place hidden outliers irrespective of

the data set or the detection method used. Further, our

approach is a significant improvement over the baseline.

While not in all cases, our algorithm has improved the

result by a factor of three or more in many settings.

6 Conclusions

In this work we have analysed characteristics of hidden

outliers, i.e., outliers that are only detectable in certain

attribute subspaces. This includes both formal results

based on model assumptions and a proposal for an al-

gorithm that places hidden outliers in data. Regarding

the first kind of contribution, we prove the existence

of hidden outliers in many scenarios and show that the

extent of correlation can have a significant effect on the

ease of hiding outliers. The algorithm we have devel-

oped places hidden outliers in regions close to existing

data objects. We evaluate the generalisability of our for-

mal results experimentally with our algorithm. Some of

these results do extend to scenarios not covered by the

model assumptions. Further we have shown that our al-
gorithm improves the results with a reference baseline

significantly.

In the future, we want to further analyze data char-

acteristics that go along with hidden outliers. Having

identified such characteristics, one might be able to de-

velop an approach for placing hidden outliers that relies

on this information and thus might be more successful.

Another future research direction is to improve sub-

space search using hidden outliers. For instance, this

might be done by analyzing placed hidden outliers. I.e.,

one could use placed hidden outliers to detect subspaces

that should be searched.

Acknowledgements This work was supported by the Ger-
man Research Foundation (DFG) as part of the Research
Training Group GRK 2153: Energy Status Data - Informat-
ics Methods for its Collection, Analysis and Exploitation.

Conflict of Interest On behalf of all authors, the corre-
sponding author states that there is no conflict of interest.

16 Georg Steinbuss, Klemens Böhm

References

1. Azmandian, F., et al.: GPU-Accelerated Feature Selec-
tion for Outlier Detection Using the Local Kernel Den-
sity Ratio. In: IEEE 12th International Conference on
Data Mining, pp. 51–60 (2012)

2. Breunig, M.M., et al.: LOF: Identifying Density-Based
Local Outliers. ACM Sigmod Record 29(2), 93–104
(2000)

3. Campos, G.O., et al.: On the Evaluation of Unsupervised
Outlier Detection: Measures, Datasets, and an Empirical
Study. Data Mining and Knowledge Discovery 30(4),
1–37 (2016)

4. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining
and Harnessing Adversarial Examples. arXiv preprint
arXiv:1412.6572 (2014)

5. Hodge, V.J., Austin, J.: A Survey of Outlier Detection
Methodologies. Artificial Intelligence Review 22(2), 85–
126 (2004)

6. Keller, F., Müller, E., Böhm, K.: HiCS: High Contrast
Subspaces for Density-Based Outlier Ranking. Interna-
tional Conference on Data Engineering pp. 1037–1048
(2012)

7. Kido, H., Yanagisawa, Y., Satoh, T.: An Anonymous
Communication Technique using Dummies for Location-
based Services. Proceedings of the International Confer-
ence on Pervasive Services pp. 88–97 (2005)

8. Knorr, E.M., Ng, R.T.: Algorithms for Mining Distance
Based Outliers in Large Datasets. Proceedings of the
International Conference on Very Large Data Bases pp.
392–403 (1998)

9. Kollios, G., et al.: Efficient Biased Sampling for Approx-
imate Clustering and Outlier Detection in Large Data
Sets. Transactions on Knowledge and Data Engineering
15(5), 1170–1187 (2003)

10. Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: LoOP:
Local Outlier Probabilities. Proceedings of the ACM
Conference on Information and Knowledge Management
pp. 1649–1652 (2009)

11. Kriegel, H.P., Kröger, P., Zimek, A.: Outlier Detection
Techniques. Tutorial at Knowledge Discovery and Data
Mining (2010)

12. Kriegel, H.P., Schubert, M., Zimek, A.: Angle-Based Out-
lier Detection in High-Dimensional Data. Proceedings of
the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining pp. 444–452 (2008)

13. Kriegel, H.P., et al.: Outlier Detection in Axis-Parallel
Subspaces of High Dimensional Data. Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining pp.
831–838 (2009)

14. Kriegel, H.P., et al.: Interpreting and Unifying Outlier
Scores. Proceedings of the SIAM International Confer-
ence on Data Mining pp. 13–24 (2011)

15. Kröger, W.: Critical Infrastructures at Risk: A Need for
a new Conceptual Approach and Extended Analytical
Tools. Reliability Engineering & System Safety 93(12),
1781–1787 (2008)

16. Lazarevic, A., Kumar, V.: Feature Bagging for Outlier
Detection. Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining pp. 157–166 (2005)

17. Müller, E., Schiffer, M., Seidl, T.: Statistical Selection
of Relevant Subspace Projections for Outlier Ranking.
International Conference on Data Engineering pp. 434–
445 (2011)

18. Müller, E., et al.: Outlier Ranking via Subspace Analysis
in Multiple Views of the Data. In: 12th International
Conference on Data Mining, pp. 529–538 (2012)

19. Nelson, B., et al.: Classifier Evasion: Models and Open
Problems. International Workshop on Privacy and Se-
curity Issues in Data Mining and Machine Learning pp.
92–98 (2010)

20. Nelson, B., et al.: Near-Optimal Evasion of Convex-
Inducing Classifiers. AISTATS Artificial Intelligence and
Statistics pp. 549–556 (2010)

21. Pang, G., Cao, L., Chen, L.: Outlier detection in com-
plex categorical data by modelling the feature value cou-
plings. In: Proceedings of the 25th International Joint
Conference on Artificial Intelligence, pp. 9–15 (2016)

22. Pang, G., et al.: Unsupervised Feature Selection for Out-
lier Detection by Modelling Hierarchical Value-Feature
Couplings. In: IEEE 16th International Conference on
Data Mining, pp. 410–419 (2016)

23. Papernot, N., et al.: The Limitations of Deep Learning
in Adversarial Settings. In: IEEE European Symposium
on Security and Privacy, pp. 372–387 (2016)

24. Prószyñski, W.: On Outlier-Hiding Effects in Specific
Gauss–Markov Models: Geodetic Examples. Journal of
Geodesy 74(7-8), 581–589 (2000)

25. Szegedy, C., et al.: Intriguing properties of neural net-
works. arXiv preprint arXiv:1312.6199 (2013)

26. Xu, W., Qi, Y., Evans, D.: Automatically Evading Clas-
sifiers. Proceedings of the Network and Distributed Sys-
tems Symposium (2016)

27. Zimek, A., Schubert, E., Kriegel, H.P.: A Survey on Unsu-
pervised Outlier Detection in High-dimensional Numer-
ical Data. Statistical Analysis and Data Mining 5(5),
363–387 (2012)

A Prerequisites for Proofs

We will use the abbreviations Collection =: SS, InR({S}) =:
IS and u− l =: range.

The Mahalanobis distance is defined as: MDistA(y) =√
(y − µ)TΣ−1(y − µ) where µ is the mean vector and Σ

the covariance matrix. W.l.o.g. we assume that µ = 0. As
the data is MVN distributed, MDist2 is χ2

d distributed. The
degrees of freedom are determined by the dimension of the
data. We can rewrite:[

MDistA(y)
]2

= y TΣ−1y

=
∑
i∈A

∑
j∈A

y(i) · σ(i,j)
−1 · y(j)

σ
(i,j)
−1 denotes the entry in the jth column and ith row of the

inverse of the covariance matrix. If the attributes are i.i.d.
N(0,1) distributed, this reduces to[

MDistA(y)
]2

=
∑
i∈A

[
y(i)

]2
To test a data point for outlier or inlier, we used the outlier
initialization formalized in Section 4.2. Although this initial-
ization uses the 0.975 quantile, here we will use a general α
quantile. The quantile function of a χ2 distribution is not
obtainable in closed form. Thus, we will make use of an ap-
proximation. Following the central limit theorem, for large
degrees of freedom a χ2

d distribution can be approximated by

a N(d,
√

2d) distribution. Thus:

Quantile(α, d) ≈ d+
√

2d zα

∂ Quantile(α, d)

∂ d
≈ 1 +

zα√
2d

(3)

Hiding Outliers in High-Dimensional Data Spaces 17

where zα is the α quantile of a standard normal distribu-
tion. We can derive that the approximation of the function
Quantile(α, d) is strictly monotonic increasing. For a fixed

distance, e.g.,
[
MDistA(y)

]2
= Quantile(α, d), the Maha-

lanobis distance exhibits an ellipsoid form. I. e., having λ1,
. . . , λd eigenvalues and v1, . . . ,vd eigenvectors of Σ, the el-
lipsoid has centroid µ, and axes v1, . . . ,vd. Half the length
of each axis is determined by

√
λi ·Quantile(α, d).

Introducing subspaces in this setting is quite trivial. We
assume that the full data space is MVN(0,Σ) distributed.
Hence, any subspace S is also Gaussian. To obtain its mean
and covariance matrix we only need to drop the irrelevant
variables from each parameter of the full space distribution.

B Proofs of Theorems

B.1 Theorem 1

In this proof we will use the normal approximation given in
Equation 3. From attributes i.i.d N(0, 1) and partitioning SS
follows:[

MDistA(y)
]2

=
∑
i∈A

[
y(i)

]2
=

∑
S∈SS

∑
i∈S

[
y(i)

]2
=

∑
S∈SS

[
MDistS(y)

]2
We first prove that a data point o1 with

o
(i)
1 =

{√
Quantile(α, |A|)

|S| if i ∈ S
0 otherwise

is an outlier for any S ∈ SS but an inlier for A. We know
that MDistA(o1) = Quantile(α, |A|) and MDistS(o1) =
Quantile(α, |A|) > Quantile(α, |S|). The quantile function
is strictly monotonic increasing. Thus, o1 is an inlier regard-
ing A but an outlier in S. It is important to note that o1 is
an outlier only regarding subspace S and not regarding any
other subspace in SS.

Moreover, a data point o2 defined by

o
(i)
2 =

√
Quantile(α, |S|)

|S|
for S ∈ SS : i ∈ S

is an outlier for A but an inlier for all S ∈ SS. It holds that:
MDistA(o2) =

∑
S∈SS Quantile(α, |S|) and MDistS(o2) =

Quantile(α, |S|). We know that o2 is an outlier if

MDistA(o2) > Quantile(α, |A|)

We also know that |A| =
∑
S∈SS |S|. Hence, in order to show

that o2 is an outlier in A, we have to show:

∑
S∈SS

Quantile(α, |S|)
!
> Quantile

α, ∑
S∈SS

|S|


∑
S∈SS

[
|S|+

√
2|S| zα

]
>
∑
S∈SS

|S|+
√

2
∑
S∈SS

|S| zα

∑
S∈SS

√
|S| >

√ ∑
S∈SS

|S|

∑
S1,S2∈SS

√
|S1|

√
|S2| >

∑
S∈SS

|S|

∑
S1 6=S2∈SS

√
|S1|

√
|S2|+

∑
S∈SS

|S| >
∑
S∈SS

|S|

As SS is a non-trivial partition, i.e., SS 6= A, the term∑
S1 6=S2∈SS

√
|S1|

√
|S2| is greater than 0, and the inequality

holds.

B.2 Theorem 2

This theorem relies on an assumption not explicitly listed in
the body of the article. Let λ denote the eigenvalue of Σ1

(algebraic multiplicity of d). Further let λ̃1, . . . , λ̃d denote
the eigenvalues of Σ2. We introduce ε1, . . . , εd which satisfy
λ+εi = λ̃i. Our assumption is that the εi’s are symmetrical,
i. e., for any εj > 0 there exist εk = −εj .

We know that, for both subspaces S1 and S2, the data
full space volume Volume(FullR) is equal. Using a constant
Volume(FullR) we can write

RelativeVolume
(
IS
)
∝ Volume(IS)

This volume is the one of a d-ellipse. Let λ1, . . . , λd be the
eigenvalues of the covariance matrix within a subspace S,
then

RelativeVolume
(
IS
)
∝

2π
d

2

dΓ (d
2

)

√√√√Quantile(α, |S|)
d∏
i=1

λi (4)

We further know that
∑d
i=1 λi is equal to the sum of the trace

of the corresponding covariance matrix. The trace of Σ1 and
Σ2 are the same. We have assumed that each attribute in S1
is i.i.d. N(0, λ). Hence, Σ1 is a diagonal matrix with λ in each
diagonal element. Thus, λ is the variance and each of the d
eigenvalues of Σ1. Σ2 has off-diagonal elements. Hence, the
eigenvalues can differ from the ones in Σ1. Using the equality
of traces we infer that

∑d
i=1 εi = 0. In order to prove our

theorem we need to show that:

d∏
i=1

λ = λd ≥
d∏
i=1

λ̃i =

d∏
i=1

(λ+ εi) (5)

We introduce index>0 := {i ∈ 1, . . . , d | εi > 0}. Similarly,
the index of εi = 0 as index=0. Let further be m = |index=0|.
We can infer that |index>0| = d−m

2
. Using this, we can write:

d∏
i=1

(λ+ εi) =

 ∏
i∈ index=0

λ

 ∏
j ∈ index>0

(λ+ εj)(λ− εj)


= λm

 ∏
j ∈ index>0

(λ2 − ε2j)


= λm

(
λ2
) d−m

2 − λm
 ∏
j ∈ index>0

ε2j


= λd−λm

 ∏
j ∈ index>0

ε2j


︸ ︷︷ ︸

≤0

Inserting this in Equation 5 directly proves the theorem. We
can also infer that if there is an εi > 0, the statement of the
theorem extends to

RelativeVolume
(
IS1

)
> RelativeVolume

(
IS2

)

	Introduction
	Related Work
	Notation
	The Region of Hidden Outliers
	Experiments
	Conclusions
	Prerequisites for Proofs
	Proofs of Theorems

