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Attributed Graphs

® Several application domains
® Communication networks, co-purchased networks, social networks
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graph structure attributes

® Novel problems on attributed graphs
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Commonly Used Assumption

® Homophily: ,birds of a feather flock together”
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® Homophily: not fullfilled for all attributes
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» deterioration of mining techniques on attributed graphs “
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Mining Attributed Graphs

® Different graph mining techniques
® Clustering

® Used assumption: Homophily
has to be fulfilled for all the attributes

® Problem: disassortative mixing [Newman 2003]
hinders the detection of communities
(i.e. similarity assessment of nodes)

» Solution: pre-processing techniques ensuring homophily

[Gao 2010] Gao et al. “On community outliers and their efficient detection in information networks" In ACM SIGKDD 2010
[Newman 2003] M.E. Newman. Mixing patterns in networks. Physical Review, 2003
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Multiple Views in Attributed Graphs

® Different structures depending on the subset of attributes
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Multiple Views in Attributed Graphs

® Different structures depending on the subset of attributes
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Specialized Approaches (Related Work 1)

® Frequent subgraph mining, graph partitioning, subspace clustering ...
® Local selection of the attributes
® Individual subgraphs

In contrast, we aim at:

{income,age,children}

A

{income,children} kg)
{age}

not designed as pre-processing step
for other graph mining methods
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General Approaches (Related Work II)

B Assortative mixing coefficient [Newman 2003]

® Correlation between an attribute and the graph structure
® For asingle attribute only

® Unsupervised feature selection LUFS [Tang 2012]

® Improvement of traditional feature selection
by incorporating additional information from the graph structure

® No selection of multiple view possible

[Tang 2012] Tang et al. “Unsupervised feature selection for linked media data" In ACM SIGKDD 2012
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ConSub |

® Congruent subspaces
® Mutual similarity between attribute values in subspace S
B Significantly more edges than expected by a random distribution

® Constraint Subgraph G¢ s

® Set of constraints formed by all the pairs (I; = [low;, high;], Aj € 5)

S ={shoe size}
nodes with 8 < shoe size£9

» small number of edges
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ConSub Il

® Congruent subspaces
® Mutual similarity between attribute values in subspace S
B Significantly more edges than expected by a random distribution

® Constraint Subgraph G¢s
® Set of constraints formed by all the pairs (I; = [low;, high;], Aj € 5)

S ={age,income}
nodes with 45 < age < 60 and
1900 s income < 4500

» high number of edges
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ConSub Il

® Edge count (constraint subgraph G s)

observed edges: |E¢ | VS. expected edges: E.y, (Ge.s)

(w.r.t. some given null model)
B Statistical test

Hy: |EC,S| = Eexp(GC,S)

Hy:|Ecs| > Eexp(Ges) ¢—1 congruent

Statistical evidence for the congruence of the entire graph?
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ConSub IV

® Monte Carlo approach
® Random generation of constraint subgraphs in each iteration

S = {age,income} 5 = {age income} S = {age,income}

Cl - { Iage: Iincome } { Iage» income } CS - { Iage: Iincome }

el s

m=1 m=2

1
congruence(S) = I Z deviation(|E{'s |, Eexp(G(s))

m=1
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Experimental Setup

« Synthetic data
* Real world data

)

Preprocessing Outlier Mining
» Fullspace
. LUFS [Tang 2012] + ) ggfoAu[tGao 2010}
« ConSub

gquality ﬂruntime

AUC for known outliers
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Experiments on Real World Networks

#nodes  #edges #attributes ground truth

Amazon: Disney 124 333 28 Benchmark [Muller 2013]
(external human knowledge for evaluation)

Amazon: Books 1,418 3,695 28 tag: amazonfail
(external human knowledge for evaluation)

Enron 13,533 176,987 20 spammers
(external labels used for evaluation)
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[Muller 2013] Muller et al. “Ranking outlier nodes in subspaces of attributed graphs” In GDM at IEEE ICDE 2013
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Experiments on Real World Networks

Disney AUC [%] Runtime [s]
ConSub + DistOut 81.77 8.93
ConSub + CODA 67.97 152.66
LUFS + CODA 44.44 3.46
Fullspace + CODA 50.00 6.05

Books
ConSub + DistOut 60.02 2.15
ConSub + CODA 53.53 14.81
LUFS + CODA - -
Fullspace + CODA 53.35 36.14

Enron
ConSub + DistOut 74.80 840.50
ConSub + CODA 60.80 1130.78
LUFS + CODA 48.30 472.60
Fullspace + CODA 45.70 397.33
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Subspaces Provide Novel Insights

® Giant component of the Amazon co-purchased network
® Nodes: 314,824

® Edges: 882,930
® Runtime: 5160 s
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Conclusions & Future Work

® Challenge: attributed graphs v Congruent subspaces

® Homophily measure v~ Congruence measure
based on statistical selection of subspaces

® Subspace selection algorithm v/ First algorithm: ConSub

® Applications v’ Pre-processing of existing methods
v/ Design of novel graph mining methods
v~ Knowledge discovery in attributed graphs

® Future Work
® Mixed attribute types
W Extensions for semi-supervised tasks
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Thank you for your
attention

Our benchmark databases are available online;

http://www.ipd.kit.edu/~muellere/consub/
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