

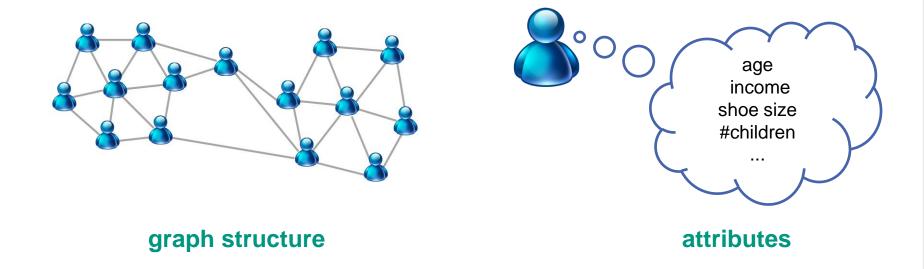
Statistical Selection of Congruent Subspaces for Mining Attributed Graphs

Patricia Iglesias, Emmanuel Müller, Fabian Laforet, Fabian Keller, Klemens Böhm

IEEE International Conference on Data Mining (ICDM 2013)

Attributed Graphs

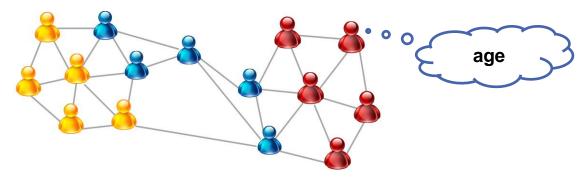
- Several application domains
 - Communication networks, co-purchased networks, social networks



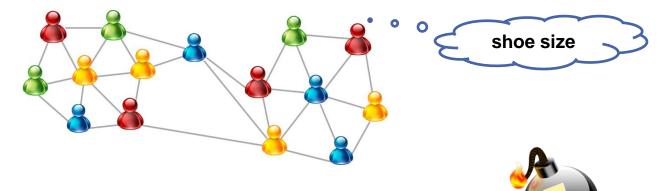
Novel problems on attributed graphs

Commonly Used Assumption

Homophily: "birds of a feather flock together"



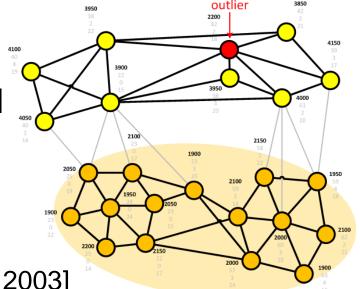
Homophily: not fullfilled for all attributes



deterioration of mining techniques on attributed graphs

Mining Attributed Graphs

- Different graph mining techniques
 - Clustering
 - Community outlier detection [Gao 2010]
- Used assumption: Homophily has to be fulfilled for all the attributes
- Problem: disassortative mixing [Newman 2003] hinders the detection of communities (i.e. similarity assessment of nodes)

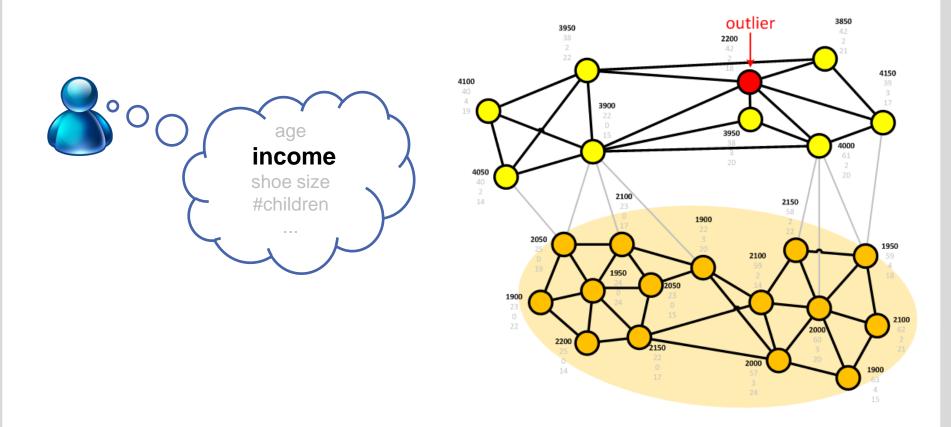


Solution: pre-processing techniques ensuring homophily

[Gao 2010] Gao et al. "On community outliers and their efficient detection in information networks" In ACM SIGKDD 2010 [Newman 2003] M.E. Newman. Mixing patterns in networks. Physical Review, 2003

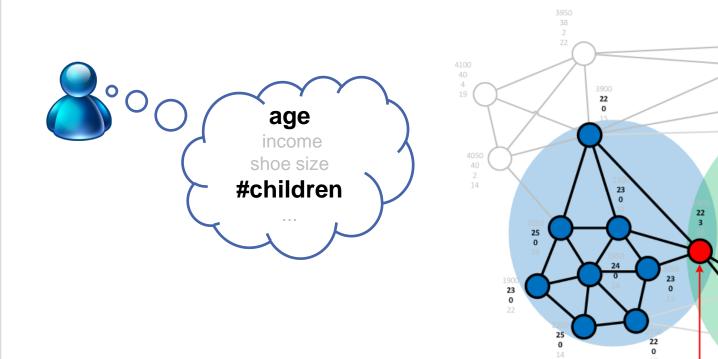
Multiple Views in Attributed Graphs

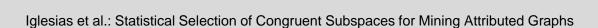
Different structures depending on the subset of attributes



Multiple Views in Attributed Graphs

Different structures depending on the subset of attributes

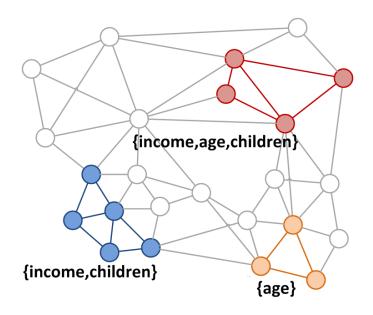




outlier

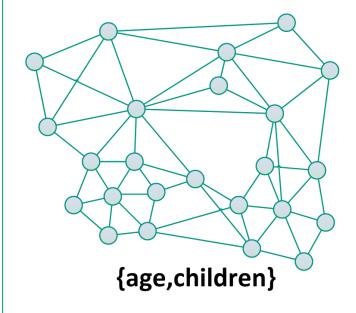
Specialized Approaches (Related Work I)

- Frequent subgraph mining, graph partitioning, subspace clustering ...
 - Local selection of the attributes
 - Individual subgraphs



not designed as **pre-processing step** for other graph mining methods

In contrast, we aim at:



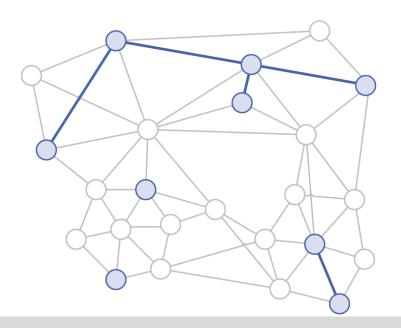
General Approaches (Related Work II)

- Assortative mixing coefficient [Newman 2003]
 - Correlation between an attribute and the graph structure
 - For a single attribute only
- Unsupervised feature selection LUFS [Tang 2012]
 - Improvement of traditional feature selection by incorporating additional information from the graph structure
 - No selection of multiple view possible

ConSub I

- Congruent subspaces
 - Mutual similarity between attribute values in subspace S
 - Significantly more edges than expected by a random distribution
- Constraint Subgraph G_{C,S}
 - Set of constraints formed by all the pairs $(I_j = [low_j, high_j], A_j \in S)$

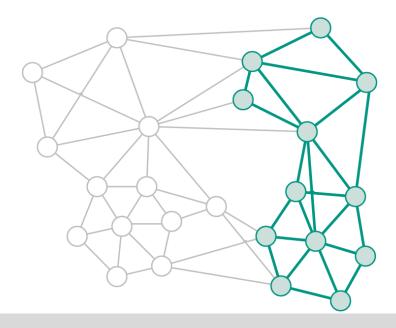
S = {shoe size} nodes with 8 ≤ shoe size ≤ 9



ConSub II

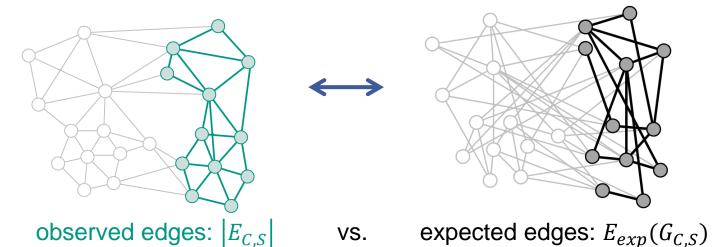
- Congruent subspaces
 - Mutual similarity between attribute values in subspace S
 - Significantly more edges than expected by a random distribution
- Constraint Subgraph G_{C,S}
 - Set of constraints formed by all the pairs $(I_j = [low_j, high_j], A_j \in S)$

S ={age,income} nodes with $45 \le age \le 60$ and $1900 \le income \le 4500$



ConSub III

Edge count (constraint subgraph $G_{C,S}$)



Statistical test

$$H_0$$
: $|E_{C,S}| = E_{exp}(G_{C,S})$
 H_1 : $|E_{C,S}| > E_{exp}(G_{C,S})$ congruent

(w.r.t. some given null model)

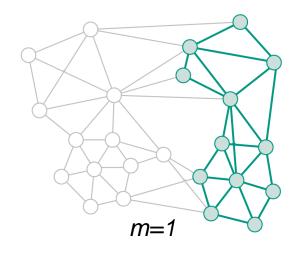
Statistical evidence for the congruence of the entire graph?

ConSub IV

- Monte Carlo approach
 - Random generation of constraint subgraphs in each iteration

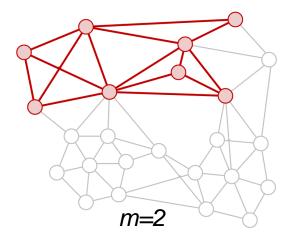
$$S = \{age, income\}$$

 $C_1 = \{I_{age}, I_{income}\}$



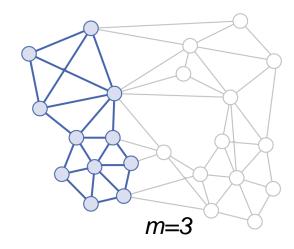
$$S = \{age,income\}$$

 $C_2 = \{I_{age},I_{income}\}$



$$S = \{age, income\}$$

 $C_3 = \{I_{age}, I_{income}\}$



$$congruence(S) \equiv \frac{1}{M} \sum_{m=1}^{M} deviation(|E_{C,S}^{m}|, E_{exp}(G_{C,S}^{m}))$$

Experimental Setup

- Synthetic data
- Real world data

Preprocessing

- **Fullspace**
- **LUFS** [Tang 2012]
- **ConSub**

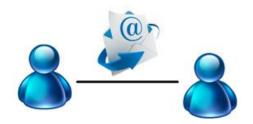
Outlier Mining

- CODA [Gao 2010]
- **DistOut**

quality

AUC for known outliers

	#nodes	#edges	#attributes	ground truth
Amazon: Disney	124	333	28	Benchmark [Müller 2013] (external human knowledge for evaluation)
Amazon: Books	1,418	3,695	28	tag: amazonfail (external human knowledge for evaluation)
Enron	13,533	176,987	20	spammers (external labels used for evaluation)



[Müller 2013] Müller et al. "Ranking outlier nodes in subspaces of attributed graphs" In GDM at IEEE ICDE 2013

Disney		AUC [%]	Runtime [s]
	ConSub + DistOut	81.77	8.93
	ConSub + CODA	67.97	152.66
	LUFS + CODA	44.44	3.46
	Fullspace + CODA	50.00	6.05
Books			
	ConSub + DistOut	60.02	2.15
	ConSub + CODA	53.53	14.81
	LUFS + CODA	-	-
	Fullspace + CODA	53.35	36.14
Enron			
	ConSub + DistOut	74.80	840.50
	ConSub + CODA	60.80	1130.78
	LUFS + CODA	48.30	472.60
	Fullspace + CODA	45.70	397.33

Disney		AUC [%]	Runtime [s]
	ConSub + DistOut	81.77	8.93
	ConSub + CODA	67.97	152.66
	LUFS + CODA	44.44	3.46
	Fullspace + CODA	50.00	6.05
Books			
	ConSub + DistOut	60.02	2.15
	ConSub + CODA	53.53	14.81
	LUFS + CODA	-	-
	Fullspace + CODA	53.35	36.14
Enron			
	ConSub + DistOut	74.80	840.50
	ConSub + CODA	60.80	1130.78
	LUFS + CODA	48.30	472.60
	Fullspace + CODA	45.70	397.33

Disney		AUC [%]	Runtime [s]
	ConSub + DistOut	81.77	8.93
	ConSub + CODA	67.97	152.66
	LUFS + CODA	44.44	3.46
	Fullspace + CODA	50.00	6.05
Books			
	ConSub + DistOut	60.02	2.15
	ConSub + CODA	53.53	14.81
	LUFS + CODA	-	-
	Fullspace + CODA	53.35	36.14
Enron			
	ConSub + DistOut	74.80	840.50
	ConSub + CODA	60.80	1130.78
	LUFS + CODA	48.30	472.60
	Fullspace + CODA	45.70	397.33

Disney		AUC [%]	Runtime [s]
	ConSub + DistOut	81.77	8.93
	ConSub + CODA	67.97	152.66
	LUFS + CODA	44.44	3.46
	Fullspace + CODA	50.00	6.05
Books			
	ConSub + DistOut	60.02	2.15
	ConSub + CODA	53.53	14.81
	LUFS + CODA	-	-
	Fullspace + CODA	53.35	36.14
Enron			
	ConSub + DistOut	74.80	840.50
	ConSub + CODA	60.80	1130.78
	LUFS + CODA	48.30	472.60
	Fullspace + CODA	45.70	397.33

Subspaces Provide Novel Insights

Giant component of the Amazon co-purchased network

Nodes: 314,824 **Edges:** 882,930 Runtime: 5160 s ratings prices average rating #reviews helpful votes ratings prices average rating #reviews helpful votes

Conclusions & Future Work

- Challenge: attributed graphs
- **✓** Congruent subspaces

Homophily measure

- ✓ Congruence measure based on statistical selection of subspaces
- Subspace selection algorithm
- ✓ First algorithm: ConSub

Applications

- ✓ Pre-processing of existing methods
- Design of novel graph mining methods
- Knowledge discovery in attributed graphs

Future Work

- Mixed attribute types
- Extensions for semi-supervised tasks

Thank you for your attention

Our benchmark databases are available online:

http://www.ipd.kit.edu/~muellere/consub/