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ABSTRACT
Research on Moving Object Databases (MOD) has resulted
in sophisticated query mechanisms for moving objects and
regions. Wireless Sensor Networks (WSN) support a wide
range of applications that track or monitor moving objects.
However, applying the concepts of MOD to WSN is diffi-
cult: While MOD tend to require precise object positions,
the information acquired in WSN may be incomplete or in-
accurate. This may be because of limited detection ranges,
node failures or detection mechanisms that only determine
if an object is in the vicinity of a node, but not its exact
position. In this paper, we study the processing of spatio-
temporal queries in WSN. First, we adapt the models used
in MOD to WSN while keeping their semantical depth. Sec-
ond, we propose two approaches for processing such queries
in WSN in-network instead of collecting all data at the base
station. Our experimental evaluations using simulation as
well as a Sun SPOT deployment show that our measures re-
duce communication by up to 89%, compared to collecting
all information at the base station.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Systems—Distributed Data-
bases; H.2.8 [Information Systems]: Database Applica-
tions—Spatial databases and GIS

Keywords
Sensor Networks, Spatio-Temporal Queries

1. INTRODUCTION
Wireless Sensor Networks (WSN) have a broad range of

applications. Many of them track moving objects and have
spatio-temporal semantics. For example, environmental pro-
tection agencies track animals or hazardous materials in
nature-protection areas [1, 25]. Authorities observe if unau-
thorized persons enter sensitive regions [21, 2].

Research on WSN has demonstrated that the declarative-
ness of queries (e.g., [37, 24]) is advantageous, but has fo-
cused on relational queries so far. However, [17, 35] have
shown that expressing spatio-temporal semantics using re-
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lational query languages results in complex queries that are
“hopelessly inefficient to process”. This is because model-
ing the movement of objects and regions requires data types
and operators not offered by purely relational database sys-
tems. To solve this problem, researchers on Moving Object
Databases (MOD) have proposed languages to query moving
objects and regions. To our knowledge, the question how to
process such queries efficiently in WSN is untouched so far.

Well-known limitations of WSN render the problem diffi-
cult: MOD tend to assume precise and complete information
on objects and regions queried. A region is modelled as a set
of points that meet a user-defined criterion, e.g., all positions
inside a forest. Applying this model to WSN would require
precise knowledge which points fulfill such a criterion. This
frequently is impractical. Instead, for many WSN applica-
tions, one can say for each node if a certain user-defined
criterion is met, e.g., if the node has been deployed inside or
outside the forest. Thus, spatio-temporal queries in such set-
tings typically target the topological relationship of objects
detected and a set of nodes. The semantics of such spatio-
temporal queries have not been defined yet. Additionally,
object detection mechanisms in WSN have limited accuracy.
Thus, even if precise information on the location of a region
was available, nodes might be unable to determine if objects
are inside, on the border or outside of a region. Finally,
sensor nodes have limited energy resources. Communica-
tion in particular dominates energy consumption. Thus, it
is important to minimize communication when processing
spatio-temporal queries in WSN.

In this paper, we show how to compute meaningful results
for spatio-temporal queries in WSN. We first provide seman-
tics for such queries related to object movement in relation
to a set of nodes. These semantics also take the limited ac-
curacy of object detection into account, while keeping the
semantical depth of MOD. We then show how these seman-
tics are integrated into the theoretical foundations for MOD,
the 9-intersection model [10] in particular. This is impor-
tant because it allows the re-use of existing concepts, e.g.,
spatio-temporal query languages [11].

To compute detection scenarios and query results, nodes
must collect information on objects. A simple way to do so
is sending all information about objects detected to the base
station. This is prohibitive regarding energy consumption.
To avoid this, we propose two strategies which compute re-
sults in-network. They differ in the way they collect infor-
mation from nodes close to each other. By combining the
spatial correlation of object detections and spatio-temporal
semantics, both strategies reduce the number of messages



exchanged significantly. It depends on the query in question
which strategy requires less communication. Our approach
also addresses node failures. We provide mechanisms for the
detection of such failures.

Our study includes an evaluation using simulations as well
as a Sun SPOT deployment. It shows that our in-network
strategies reduce communication by 45% to 89%, compared
to collecting all information at the base station.

Summing up, we are the first to consider the following
questions:
Q1 How can point-set based semantics of MOD be trans-

lated to node sets in WSN?
Q2 How can WSN efficiently derive results for spatio-tem-

poral queries using the semantics just mentioned?
We answer Q1 by adapting the point-set model for WSN in
Section 4. Section 5 answers Q2 with execution strategies
for spatio-temporal predicates in WSN.

2. APPLICATION EXAMPLE
This section introduces our running example. Several bi-

ology projects track the movement of individuals at large
spatial and temporal scale [19]. An example of a species
studied in this way are caribous [26, 28]. The following
query is an example of a spatio-temporal query scientists
studying caribous could issue: “Which caribous have moved
into the tree-covered swamp area on the south-western side
of the river?” See Figure 1. The swamp area on the south-
western side of the river that is covered by trees is a set
of points. For most WSN deployments, recording the exact
location of trees, swamp and river is impractical and unnec-
essarily complex. Instead, most WSN use a controlled de-
ployment [16]: Before the nodes [36, 31] start sensing, node
positions and properties of their surroundings are recorded.
Examples of such properties are if a node has been deployed
inside the forest or in a treeless area, close to food resources,
in the swamp or in a calving area. This information allows
users to derive a set of nodes that are, say, in a tree-covered
swamp area on the south-western side of the river (black-
colored circles in Figure 1). It is sufficiently accurate for the
purpose of such an installation if the WSN observes caribou
movement in relation to this set of nodes. Our paper stud-
ies this case, i.e., users are interested in object movements
in relation to a set of nodes. We refer to this set of nodes
as zone to distinguish it from the term ‘region’, which is a
set of points. Thus, users of WSN typically express their
interest described above as follows: “Which caribous c have
entered the zone Z?” We define the exact meaning of such
a query in Section 4.

This current work relies on several assumptions: Nodes
are stationary, and they can distinguish between query-re-
levant objects and irrelevant ones. There exist several ap-
proaches to detect animals, e.g., acoustic recognition [22]
or radio receivers which detect caribous wearing radio col-
lars [26]. Typically these mechanisms only determine if an
animal is in the vicinity of a node, but not its exact posi-
tion. While our approach can be applied to more accurate
mechanisms, we do not require such mechanisms. Further,
nodes are able to identify objects. For instance, if Sensor
Si detects a certain object, and Sj detects the object later
on, the WSN knows that it is the same object. Such an
identification is usually available, e.g., through identifica-
tion numbers on the radio collars or noise patterns that are
characteristic. Finally, we limit this paper to queries regard-
ing the relationship between moving objects and one zone.

Figure 1: Illustration of the application scenario

3. PRELIMINARIES
3.1 Foundations of MOD

We only review the foundations of MOD as far as relevant
for this paper; see [17, 12] for further details. In MOD there
exist three spatial entities: objects, lines and regions. An
entity is a set of points of the d-dimensional Euclidean space
Ed [15]. To ease presentation, we focus on d = 2, and leave
aside lines in the following.

An entity divides the space into three pair-wise disjoint
partitions: The interior, the border and the exterior. For
a region R, the border RB contains all points of the line
encompassing the interior RI . All points that are neither
in RB nor in RI are part of the exterior RO . Typically, an
object x is represented by its position p ∈ E2 and partitions
the space as follows: The interior xI contains only p, the
border xB is empty, and all points except p are the exterior
xO. See [10] for formal definitions.

The 9-intersection model [10] describes the topological re-
lationship of two entities A andB: As illustrated in Figure 2,
there are nine possible intersections of the exterior, the bor-
der and the interior of A with the exterior, the border and
the interior of B, respectively. Each of these intersections is
either empty or not. Hence, a matrix of nine boolean values
identifies the relationship of A and B.

There exist three predicates to describe the relationship
of an object x and a region R: Inside (x,R), Meet (x,R)
and Disjoint (x,R). Figure 3 illustrates each predicate.

Example 1: The rightmost matrix in Figure 4 describes
Inside (p3,R). Since the border p3

B is empty, it does not
intersect with any partition of R, as reflected by the first
row of the matrix. p3

I contains one point, and the second
row implies that pI3 ∩RI 6= ∅, i.e., p3 is inside R. The last
row shows that p3

O intersects with all partitions of R. The
matrices for Meet (p2,R) and Disjoint (p1,R) only differ
from the matrix for Inside (p3,R) in the second row: The
topological relation of p2 and R conforms to Meet (p2,R)
if pI2 ∩RB 6= ∅. Similarly, pI1 ∩RO 6= ∅ implies that p1 is
outside of x, i.e., Disjoint (p1,x). �

Objects can move, and the topological relation of an ob-
ject and a region can change over time. To deal with such
changes, [12] defines the concatenation operator:

Definition 1 (Concatenation): The concatenation of
two predicates P and Q, referred to as P ⊲ Q, is true if P is
true for some time interval [t0; t1[, and Q is true at t1. 2

Concatenation allows users to formulate sequences of pred-
icates P1 ⊲ P2 ⊲ . . . ⊲ Pp. These sequences, also called spatio-





AB ∩BB 6= ∅ AB ∩BI 6= ∅ AB ∩ BO 6= ∅
AI ∩BB 6= ∅ AI ∩BI 6= ∅ AI ∩BO 6= ∅
AO ∩ BB 6= ∅ AO ∩ BI 6= ∅ AO ∩BO 6= ∅




Figure 2: 9-Intersection Model for two spatial entities A and B

Disjoint (p1,R) Meet (p2,R) Inside (p3,R)

Figure 3: Spatial Predicates for Point/Region rela-
tions
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Disjoint (p1,R) Meet (p2,R) Inside (p3,R)

Figure 4: 9-Intersection representation of spatial
predicates (A = pi and B = R)

temporal developments, express the interest in the spatio-
temporal relationship of an object and a region over time.

Example 2: A user interested in all objects x that move
into a region R can express this using the following spatio-
temporal development:

Disjoint (x,R) ⊲ Meet (x,R) ⊲ Inside (x,R) (1)

This predicate sequence is paraphrased as Enter (x,R). Sim-
ilar sequences like Touch (x,R) are possible as well:

Disjoint (x,R) ⊲Meet (x,R) ⊲ Disjoint (x,R) (2)

3.2 Related Work
[6, 8] have shown that accessing WSN declaratively is de-

sirable for several reasons: Users formulate queries instead
of writing code on sensor-node level. Such query engines
can be re-used for different applications, which reduces de-
velopment costs. Furthermore, these systems prolong the
lifetime of battery-powered nodes by reducing communica-
tion [37, 24]. So far, relational queries have been the focus
of research on query processing in WSN [7, 9, 29, 23]. Rela-
tional approaches are sufficient for queries like “What is the
average temperature measured by all nodes?”. But even sim-
ple spatio-temporal queries become very complex [35] and
inefficient to process [17]. This is because expressing spatio-
temporal semantics with relational operators typically re-
sults in a large number of joins. Research on join process-
ing [38, 20] in WSN has shown that, except for special cases,
joins should be processed at the base station. Examples of
such cases are join queries with high selectivity or queries
where source nodes of tuples that join are close to each other.
For example, [38] concludes that the distance between source
nodes must be less than a few hops. This is because deter-
mining which nodes store tuples that meet the join condi-
tion possibly requires communication among many nodes.
For spatio-temporal queries one join condition would be a
selection that distinguishes between objects detected that
are relevant and those that are not. First, the number of
nodes detecting an arbitrary number of query-relevant ob-
jects over time can be arbitrarily high, i.e., selectivity is
low. Second, the distance between these nodes may be large.
Hence, existing join-processing approaches for WSN are not
applicable, or they send all tuples to the base station to
compute the join. Therefore, our evaluation compares our
approach to collecting all information on object movements
at the base station. Additionally, we show in Section 6 that
taking spatio-temporal semantics into account reduces com-
munication significantly. This occurs even if nodes detecting
an object are close to each other.

A straightforward application of the existing results on
MOD [12, 14, 17, 18], instead of using a conventional re-

lational query processor for WSN, is not possible as well:
First, the semantics of spatio-temporal queries in MOD are
defined for regions, i.e., point sets, but not for zones, i.e.,
node sets. Second, sensor nodes typically cannot determine
an object position precisely. [34, 33] have shown how to
process spatio-temporal queries in MOD if only some points
of object trajectories are known. While this helps if object
positions are determined periodically, it still does require
precise object positions from time to time. Our approach
tries to derive meaningful results based on inaccurate object
detections by sensor nodes.

In [4], we have shown how to acquire meaningful results
for spatio-temporal queries in WSN referring to regions. As
mentioned in Section 2, acquiring precise information on
the location of a region is sometimes impractical. Further-
more, [4] does not address the processing of queries at all,
in contrast to the approach presented here.

4. PREDICATE SEMANTICS IN WSN
4.1 Network Model and Notations
Notation (WSN): A wireless sensor network is a set
N = {S1, . . . , Sn} of sensor nodes. pi is the position of Si.

Processing spatio-temporal predicates requires detection of
objects moving in the area where the WSN has been de-
ployed. To detect an object, it must be “in range”, i.e., in
the area observed by the detection function.

Definition 2 (Detection Area): The detection area of
node Si is the set of points Di ⊆ E2 where Si can detect an
object. 2

Definition 3 (Detection Function): The detection func-
tion detect (Si,x, t) is defined as follows:

detect (Si,x, t) =

{
T iff x ∈ Di at t
F otherwise

(3)

We say that object x is detected at time t if detect (Si,x, t)
returns T for at least one i ∈ {1, . . . , n}. The detection
area can have any shape or size, may overlap with detection
areas of other nodes and may change over time. This is
illustrated by Figure 5 where a rock prevents a sensor node
from detecting objects behind it. Overlap of detection areas
results in simultaneous detection.

Notation (Detection Set): The detection set Dx

t ⊆ N is
the set of nodes that detect x at some time t.

D
x

t = {Si ∈ N | detect (Si,x, t)} (4)

Sensor nodes typically cannot determine their detection area.
However, the maximum detection range of the detection
mechanism is typically available prior to deployment.



Figure 5: Illustration
of the node model

Figure 6: Point set model
for zones

Detection Scenario Predicate Partition

DSN - Z
N

DSO Disjoint (x,Z) Z
O

DSI Inside (x,Z) Z
I

DSB Meet (x,Z) Z
B

Table 1: Mapping detection of an object x
to predicates/space partitions

Definition 4 (Maximum Detection Range): The
maximum detection range Dmax is the maximum distance
of an object to a node to be detected. 2

Definition 5 (Communication Area): The communi-
cation area of node Si is the set of points Ci ⊆ E2 where a
node Sj with i 6= j can receive messages sent by Si. 2

Communication areas may change over time and can have
any shape or size. We say that a node Si can directly com-
municate with another node Sj if pj ∈ Ci.

Definition 6 (Communication Neighbors): The com-
munication neighbors CNi of a node Si are the nodes that
Si can directly communicate with. 2

4.2 Spatio-Temporal Predicates for Zones
In line with our application example in Section 2, users

are interested in the spatio-temporal relationship between
objects and a zone, i.e., a set of nodes.

Definition 7 (Zone): A zone Z is a non-empty set of
nodes. We say a node Si is inside of Z if Si ∈ Z. Si is
outside of Z otherwise. 2

To process spatio-temporal predicates in WSN, one must
consider which nodes inside and outside of the zone detect
an object. I.e., we are interested in the intersections of Dx

t

with Z and Z. We refer to the different cases as detection
scenarios, and there are four of them:
DSO: Only nodes outside of Z currently detect x.
DSI: Only nodes inside of Z detect x.
DSB: D

x

t contains nodes from Z as well as Z.
DSN: D

x
t neither intersects with Z nor with Z, i.e., x is cur-

rently undetected.
See [5] for formal definitions of these detection scenarios and
proofs of all lemmas.

Lemma 1. For any point of time, exactly one detection
scenario holds.

Detection scenarios abstract from the details of object de-
tection, i.e., they are applicable to any detection hardware
or mechanism. Based on detection scenarios, we define the
semantics of spatio-temporal predicates as follows: When
an object x is undetected, the WSN cannot make any state-
ment on the topological relation of x and Z. Thus, when DSN

occurs, no predicate is true. DSO occurs if x is exclusively
detected by nodes outside of the zone. Likewise, DSI occurs
if x is exclusively detected by nodes in the zone.

Definition 8 (Inside (x,Z)): Object x conforms to the
predicate Inside (x,Z) if DSI occurs. 2

Definition 9 (Disjoint (x,Z)): Object x conforms to
the predicate Disjoint (x,Z) if DSO occurs. 2

If nodes from Z and Z detect an object, i.e., DSB occurs,

the WSN can derive that the object is between being inside
and outside of the zone. Hence, we define:

Definition 10 (Meet (x,Z)): The object x conforms to
Meet (x,Z) if DSB occurs. 2

Table 1 serves as a summary. ⊲ and other concepts from
MOD, e.g., lifting [17], are applicable to these predicates
as well. Thus, one can construct developments that query
the spatio-temporal relationship of objects and a zone. For
instance, one could define:

Enter (x,Z) = Disjoint (x,Z) ⊲Meet (x,Z) ⊲ Inside (x,Z)
(5)

4.3 Point-Set Topology for Zones
According to point-set topology, a region partitions the

(Euclidean) space into three subsets of points. By definition,
this partitioning is regular [32]: This means that a region
R does not contain holes, is continuous, and the border RB

encompasses the interior RI completely. The space parti-
tioning of zones in turn is not regular, as we will explain.
We show how this affects the semantics of spatio-temporal
queries in WSN and how to deal with this non-regularity.

First we derive a space partitioning based on the predicate
definitions and detection scenarios above using the following
idea: Without loss of generality, let x be detected according
to DSO, i.e., Disjoint (x,Z). From this, we infer that the
position of x is some p ∈ E2 exclusively observed by nodes
outside of Z, i.e., the exterior of the zone. For each predicate
we can derive such a subset of the space.

Definition 11 (Unobserved Area): All points not con-
tained in a detection area form the unobserved area Z

N :

Z
N =

{
p ∈ E2 | ∄Si ∈ N : p ∈ Di

}
(6)

Definition 12 (Exterior): All points exclusively observed
by nodes in Z constitute the exterior of a zone Z

O:

Z
O =

{
p ∈ E2 | p /∈ Z

N ∧ ∄Si ∈ Z : p ∈ Di

}
(7)

Definition 13 (Interior): All points of space exclusively
observed by nodes in Z constitute the interior of a zone Z

I :

Z
I =

{
p ∈ E2 | p /∈ Z

N ∧ ∄Si ∈ Z : p ∈ Di

}
(8)

Definition 14 (Border): All points of space observed by
nodes in Z and Z form the border of a zone Z

B :

Z
B =

{
p ∈ E2|∃Si ∈ Z,∃Sj ∈ Z : p ∈ Di, p ∈ Dj

}
(9)

Lemma 2. The point sets Z
N , Z

O, Z
I and Z

B partition
the space.
Figure 6 illustrates the space partitioning for zones. Black-
colored circles or squares1 represent nodes in the zone. Ex-
1The difference between squares and circles is irrelevant here
and will be explained in Section 5.3.



ternal factors influence detection areas which in turn deter-
mine the partitions. This may result in situations where the
border does not encompass the zone or “holes” in the zone.
Hence, space partitioning based on zones is not regular.

Non-regularity has an impact on spatio-temporal devel-
opments, as we illustrate with Enter: MOD can assume
that point sets are regular, i.e., an object x has to cross the
border RB . This is not true for WSN: x may be detected
according to DSO first, move through an unobserved area and
then appear inside of Z. Users interested in objects moving
in this way cannot express this as follows:

P (x,Z) = Disjoint (x,Z) ⊲ Inside (x,Z) (10)

This sequence never occurs, because ⊲ requires Inside (x,Z)
to follow Disjoint (x,Z) immediately. On the other hand,
Enter (x,Z) excludes all objects that are unobserved while
moving into the zone. In other words, users cannot express
such a query given the three predicates and ⊲.

Definition 15 (Relaxed Concatenation): The relaxed
concatenation of two predicates, P ⊲̃Q, is true if P is true
for some interval [t0, t1[, and Q is true at t2 ≥ t1. 2

(11) expresses the query discussed above, and Example 3
shows that this new primitive increases the semantical depth:

WSNEnter (x,Z) = Disjoint (x,Z) ⊲̃ Inside (x,Z) (11)

Example 3: The area where the WSN in Figure 1 is
deployed contains a river with several bridges. Suppose that
nodes are deployed so that caribous moving over a bridge are
detected, but caribous swimming are not, i.e., the river itself
is unobserved. A user only interested in caribous c entering
Z by crossing bridges can use Enter (c,Z). A user interested
in all caribous can express this as WSNEnter (x,Z). �

Lemma 3. ⊲̃ is associative and can be combined with ⊲:

P1 ⊲ P2 ⇒ P1 ⊲̃ P2

P1 ⊲̃ (P2 ⊲̃ P3) = (P1 ⊲̃ P2) ⊲̃ P3

P1 ⊲ (P2 ⊲̃ P3) = (P1 ⊲ P2) ⊲̃ P3

Definition 16 (Spatio-Temporal Development): A
spatio-temporal development P (x,Z) is a sequence of predi-
cates P1 (x,Z) θ . . . θPq (x,Z) with θ ∈ { ⊲, ⊲̃ }, and Pi (x,Z) ∈
{Inside (x,Z), Meet (x,Z), Disjoint (x,Z)}. 2

This concludes our study regarding Q1. We have defined
the semantics of spatio-temporal predicates for SN that ex-
press the topological relation of an object and a zone. Fur-
thermore, we have shown how to take unobserved areas into
account when expressing spatio-temporal queries for SN and
provided a space partitioning for zones.

5. EFFICIENT PROCESSING OF SPATIO-
TEMPORAL QUERIES

In this section, we provide an answer to Q2, i.e., process
spatio-temporal queries efficiently: We propose two strate-
gies that reduce the number of messages exchanged between
nodes, compared to a straightforward approach that collects
all information at the base station. We present our approach
in the following steps: Section 5.1 describes data structures
needed and says how to compute detection scenarios from
them. The remainder of the section describes three strate-
gies for acquiring the necessary information. All informa-
tion either is collected at the base station (Section 5.2), or
collection is distributed among sensor nodes to compute de-
tection scenarios in-network (Section 5.3). Failures of nodes
may impact query results. Section 5.4 shows how to detect

these failures and determines if they might have an impact
on the query result.

We assume that the following steps have been completed
before the WSN starts to process a query:

1. Definition of a zone Z.
2. Specification of the movement of interest as a spatio-

temporal development P (x,Z).
3. Dissemination of a list of nodes representing Z and the

query P (x,Z) to all nodes.

The query result returned to the user by the base station
includes every object whose movement conforms to P (x,Z).
To accomplish this, the WSN must compute the detection
scenario when an object is detected. Using Table 1, any node
can determine which predicate the detected object conforms
after the detection scenario has been computed.

An object x fulfills P (x,Z) if the WSN derives from the
detection scenarios of x that the predicates have occurred
in the correct order. The distributed strategies notify the
base station whenever a predicate P (x,Z) in P (x,Z) is sat-
isfied. Thus, the base station determines if x has fulfilled
P (x,Z). Note that a node Si may send several notifications
regarding a predicate to the base station because it detects
the same object more than once. This is intended, for two
reasons: First, the query may be a predicate sequence that
contains a predicate twice, e.g., Touch (x,Z) (cf. (2)). Sec-
ond, coordinating nodes such that they only send notifica-
tions regarding predicates that have not occurred on any
other node requires communication. A preliminary study
of ours has shown that the communication effort for such
coordination only pays off if the network is very small, the
zone is small, and if the object moves through detection ar-
eas of many nodes repeatedly. Thus, we do not intend to
prevent this. On the other hand, we show in Section 5.3 how
to exploit spatio-temporal semantics to reduce the number
of notifications, e.g., only few nodes send notifications for
queries like P (x,Z) = Enter (x,Z).

5.1 Data Structures and Algorithms
A relation Detections contains data on objects detected.

It depends on the strategy where Detections is stored: All
tuples are sent to the base station (centralized), or they are
distributed and/or replicated among the nodes in the WSN
(distributed). Detections has the following attributes:

• NodeID: Identifier of the node Si detecting the object
identified by attribute ObjectID.
• ObjectID: Identifier of the object detected by Si.
• tentry: t ∈ time when Si starts to detect the object.
• texit: This value is either ⊤ or a t > tentry. If it is⊤, Si

is still detecting the object. Otherwise, Si has detected
the object during the time interval [tentry; texit[.

We say that a tuple T originates from node Si if T.NodeID =
Si. We refer to the moment an object x moves into the de-
tection area of a node Si as entry event. When such an entry
occurs at time t, a tuple [Si,x, t,⊤] is added to Detections.
Then the object may be inside the detection area for an arbi-
trary interval of time. We refer to the moment when x leaves
the detection area as exit event. When x this happens at t′,
the existing tuple is updated, i.e., becomes [Si,x, t, t′].

To determine the detection scenario, the system must
compute how the detection set D

x

t intersects with Z and
Z at t based on Detections. We refer to this computation
as isDetecting(S∗,x,t), which is defined in (12).



isDetecting(S
∗

,x,t) =

{
T if ∃Si ∈ S

∗ : detect (Si,x, t)
F otherwise

(12)
The input parameter S∗ is either Z or Z. [5] provides an al-
gorithm that implements this function. We use this function
twice to compute the detection scenario: First to determine
isDetecting(Z,x,t) and then for isDetecting(Z,x,t).
Based on this, one can derive the detection scenario accord-
ing to Table 2. Each cell corresponds to a pair [isDe-
tecting(Z,x,t) , isDetecting(Z,x,t)] and contains the
corresponding detection scenario.

isDetecting(Z,x,t)
T F

isDetecting(Z,x,t)
T DSB DSI

F DSO DSN

Table 2: Deriving detection scenarios
from Detections

In the following, we deal with the collection of tuples in
Detections to ensure a correct computation of detection
scenarios.

Definition 17 (Correctness): The computation of the
detection scenario is correct if the space partition corre-
sponding to the detection scenario computed (cf. Table 1)
contains the position p ∈ E2 of the object detected. 2

Definition 18 (Completeness): Detections is com-
plete regarding an object x and a time t if it contains all
tuples {Si,x, t1, t2} with t1 ≤ t and t ≤ t2 or t2 = ⊤. 2

Lemma 4. If the relation Detections is complete, the de-
tection scenario computed according to Table 2 is correct.

Summing up, the base station or an arbitrary node must
store a complete set of tuples locally to compute a detection
scenario for an object x and a time t. In the following we
deal with acquiring these tuples.

5.2 Centralized Data Collection
A straightforward approach is that every node notifies the

base station whenever an object enters or leaves a detection
area. The base station then modifies Detections as shown
and computes a detection scenario. See Algorithm 5.1.

Algorithm 5.1: Centralized Data Collection

1 When x enters/leaves Di of Si at t do
2 Si sends corresponding notification to base station
3 end
4 When base station receives notification from Si do
5 Modify Detections at base station
6 Wait tdelay
7 Compute

[isDetecting(SR,x,t), isDetecting(SR,x,t)]

8 end

Arbitrary nodes detecting an object execute the first part
of Algorithm 5.1. Sending tuples from Si to the base station
requires routing protocols [27, 13]. These protocols forward
messages via multiple hops if Si is not a communication
neighbor of the base station.

The base station executes the second part. Line 5 mod-
ifies Detections as described previously. The base station
then has to wait a timeout tdelay before it computes the

detection scenario according to Table 2. The timeout en-
sures that notifications of nodes which simultaneously de-
tect an object have arrived before the detection scenario is
computed. tdelay is the maximum time a notification may
need to be forwarded to the base station. Its actual value
depends on factors such as communication hardware, WSN
size, routing protocol etc. For our reference implementation
we use a delay of 30 seconds.

Lemma 5. If tdelay is the maximum time a notification
needs to travel from a node Si to the base station, Detections
stored at the base station is complete at t+ tdelay.

Thus, the computation of the detection scenario based on
centralized data collection is correct.

5.3 Distributed Data Collection
In the following, we propose two strategies which dis-

tribute the relation Detections. The distribution is done
in such a way that any node Si detecting an object x can
compute the detection scenario. As we show, this reduces
communication for two reasons:
• Nodes only notify the base station on objects that pos-

sibly fulfill the query.
• There are fewer nodes from which data must be col-

lected, i.e., only some nodes communicate.
The latter point stems from the following idea: When a
node Si detects an object x, only nodes in its vicinity can
detect the object simultaneously. The problem is that de-
tection mechanisms in WSN typically do not allow precise
localization of the object detected. But in turn, Si can de-
rive that only nodes whose detection area overlaps with Di

could possibly detect x simultaneously.

Definition 19 (Detection Neighbor): Node Sj is a
detection neighbor of Si if the detection areas of both nodes
overlap. DNi is the set of detection neighbors of Si. 2

Section 5.3.1 shows how to approximate the detection
neighbors if detection areas are indeterminable. Since Z

is disseminated to all nodes, every Si can derive for each
detection neighbor Sj ∈ DNi if it is in Z or not.

Notation (Detection-Neighbor Subsets): We refer to
the subset of detection neighbors of Si in the zone Z as

DNi
Z. DNi

Z contains all detection neighbors of node Si that
are outside of Z.

Lemma 6. Detections stored at Si is complete regarding
x and t if Si detects x at t and obtains all tuples on x
originating from its detection neighbors DNi.

[5] provides proofs this and all other lemmas presented here.
By taking into account that Si is either in Z or Z we actually
can compute a correct detection scenario without Detections
being complete.

Definition 20 (Semi-Completeness): Detections re-
garding x and t stored at a node Si ∈ Z is semi-complete
if it contains all tuples [Sj,x, t1, t2] with t1 ≤ t ≤ t2 where

Sj ∈ DNi
Z.

Detections regarding x and t stored at a node Si ∈ Z

is semi-complete if it contains all tuples [Sj,x, t1, t2] with
t1 ≤ t ≤ t2 where Sj ∈ DNi

Z. 2

Lemma 7. Let Si detect x at t. Without loss of general-
ity, let Si ∈ Z. If Detections stored at Si is semi-complete
regarding x and t, the computation of the detection scenario
at Si according to Table 1 is correct.



Based on Lemma 7, a node can reduce the number of de-
tection neighbors it has to obtain tuples from even more by
using the following idea:

Definition 21 (Border Node): Si is a border node if

• Si ∈ Z and DNi
Z 6= ∅, or

• Si ∈ Z and DNi
Z 6= ∅. 2

Figure 6 illustrates a WSN, a zone Z and the resulting
space partitioning based on detection areas. Nodes are rep-
resented as squares or circles, and there are four kinds of
nodes: Non-border nodes inside Z are represented by black-
colored circles. Black-colored squares correspond to border
nodes inside Z. Similarly, grey-colored squares and circles
correspond to border and non-border nodes outside of Z, re-
spectively. A significant share of the nodes in this scenario
are non-border nodes. According to Lemma 8, non-border
nodes can compute detection scenarios without obtaining
tuples originating from any detection neighbor.

Lemma 8. If a non-border node Si detects x at t and
modifies Detections accordingly, Detections stored at Si

is semi-complete.

Lemma 9. Let P (x,Z) = P1 (x,Z) ⊲ P2 (x,Z). Tuples
originating from non-border nodes are not necessary to pro-
cess P (x,Z).

Lemma 9 refers to developments constructed using ⊲ exclu-
sively. Sensor nodes typically have a deep-sleep modus [30]
which reduces their energy consumption significantly. This
is important since non-border nodes can use deep-sleep while
developments like Enter (x,Z) are processed.

5.3.1 Approximation of Detection Neighbors
As stated in Section 4.1, there exist detection mechanisms

where the detection area is indeterminable. In this case,
nodes cannot determine their detection neighbors. To solve
this problem, we use a superset DNi

approx which contains
at least all detection neighbors DNi, i.e., DNi ⊆ DNi

approx.
Using DNi

approx instead of DNi obviously still yields a cor-
rect result, because those nodes in DNi

approx that are not
detection neighbors of Si cannot detect an object simulta-
neously. Several approaches to derive such a superset are
conceivable, and we outline two of them:
Communication Neighbors: If the communication range

can be assumed to be much larger than the maxi-
mum detection range, a valid superset is CNi, i.e.,
DNi

approx = CNi. In this case, all detection neighbors
are communication neighbors as well. This approach
is applicable to most detection mechanisms used in
WSN, and we use it for our evaluation.

Node Positions: Another approach is applicable if nodes
know their position: The set DNi

approx contains all
nodes with a distance of at most 2· Dmax to Si.

Next, we propose two strategies which allow a node Si that
detects x to obtain tuples originating from detection neigh-
bors efficiently to compute the detection scenario.

5.3.2 Reactive Strategy
The core idea of the reactive strategy is as follows: At

query-dissemination time, each node has received P (x,Z).
Each predicate of the development is related to a detection
scenario according to Table 1. For instance, for WSNEn-
ter (x,Z) each node knows that only DSO and DSI are rele-
vant. When an object x enters or leaves the detection area of
Si at time t, Si checks if this possibly results in a predicate
P (x,Z) of the query being true. If so, Si requests tuples

on x from some or all of its detection neighbors. Si stores
each such tuple and computes the detection scenario after
the tuples requested have arrived. If the detection scenario
computed results in one predicate of P (x,Z) being true, the
base station is notified. A core question is: “When Si de-
tects x, which detection neighbors could have tuples that are
relevant to compute the detection scenario?” This depends
on three points:
• The predicates P (x,Z) that form P (x,Z).
• Whether Si ∈ Z or Si ∈ Z.
• Whether x has entered or left the detection area Di.

Table 3 summarizes from which detection neighbors a node
has to request tuples to check if a given detection scenario
has occurred when it detects x. In the following, we explain
these cells, using Figure 7 as an illustration. Figure 7 shows
two nodes and their detection areas as well as two objects
that enter/leave these detection areas at different times ti.

The first row of Table 3 is related to DSI, i.e., P (x,Z) con-
tains Inside (x,Z). There are two cases that can lead to DSI:
(1) an object enters the detection area Di of a node Si ∈ Z

or (2) an object leaves Dj of Sj ∈ Z. For all other detection
events, no communication is required, as reflected by the
’∅’ entries. Case (1) occurs at t2 and t5 in Figure 7 since
S2 ∈ Z. Applying Lemma 7, S2 only requires tuples from

DNi
Z to compute the detection scenario. The corresponding

DNi
Z entry in Table 3 reflects this. For t2, S1 ∈ DNi

Z re-
turns a tuple [S1,x1, t1,⊤]. From this, S2 can derive that
S1 and S2 detect x1 simultaneously, i.e., DSI did not occur.
Contrary to this, S2 derives DSI for x2 for t5. Case (2) is dif-
ferent, because objects leave Dj of Sj ∈ Z, i.e., Sj does not
detect the object any more and thus cannot apply Lemma 7.
Hence, Detections stored at Sj has to be complete, i.e., Sj
must request tuples from all detection neighbors. This is
reflected by the DNi entry in the first row of Table 3. This
case occurs at t3 and t8 in Figure 7 since S2 ∈ Z. In both
cases, S1 must verify that no other node outside of Z still
detects the object, and that there is at least one node in the
zone detecting it. Hence, DSI occurs at t3 but not at t8.

Algorithm 5.2: Reactive Strategy

1 When x enters or leaves the detection area of Si do
2 Modify Detections as described in Section 5.1;
3 DN

∗ ← Set of detection neighbors that must be
queried according to Table 3;

4 Request tuples on x from every node in DN
∗;

5 Wait for response from every node in DN
∗;

6 Determine detection scenario d according to Table 2;
7 Compute predicate result from d based on Table 1;
8 Notify base station if x fulfills a predicate of the

query;

9 end

The second row of Table 3 is related to DSB, i.e., Meet (x,Z)
is part of P (x,Z). DSB requires simultaneous detection of x
by nodes inside and outside of the zone. Thus, when an ob-
ject leaves a detection area, DSB either already has occurred
or does not occur at all, i.e., no communication is required.
Contrary to that, objects entering a detection area can re-
sult in DSB. This allows applying Lemma 7. Thus, if Si ∈ Z,

only tuples from DNi
Z are required and vice versa.

The entries for DSO, i.e., P (x,Z) contains Disjoint (x,Z),
are derived analogously to those for DSI.



Figure 7: Detection Events
(S1 ∈ Z, S2 ∈ Z)

Reactive Si ∈ Z Si ∈ Z

DSI
Entry DNi

Z ∅
Exit ∅ DNi

DSB
Entry DNi

Z
DNi

Z

Exit ∅ ∅

DSO
Entry ∅ DNi

Z

Exit DNi ∅

Table 3: Detection-neighbor parti-
tions for the reactive strategy

Proactive Si ∈ Z Si ∈ Z

DSI
Entry ∅ DNi

Z

Exit ∅ DNi
Z

DSB
Entry DNi

Z
DNi

Z

Exit DNi
Z

DNi
Z

DSO
Entry DNi

Z ∅

Exit DNi
Z ∅

Table 4: Detection-neighbor parti-
tions for the proactive strategy

5.3.3 Proactive Strategy
As illustrated in Algorithm 5.2, the reactive strategy re-

quires communication for requesting tuples and for respond-
ing to these requests. The proactive strategy tries to avoid
responses. Algorithm 5.3 outlines the strategy, and the core
idea is as follows: When x enters or leaves at t the detec-
tion area of Si, Detections stored at Si is modified. This
modification is either an insertion of a tuple [Si,x, t,⊤] or
an update of a tuple [Si,x, t′ < t,⊤] to [Si,x, t′, t] (cf. Sec-
tion 5.1). Afterwards, Si immediately sends the modified
tuple to a subset DN

∗ of its detection neighbors. Each de-
tection neighbor Sj ∈ DN

∗ stores the modified tuple. This
ensures that Detections stored at Si and each Sj is semi-
complete. According to Lemma 7, Si and any Sj ∈ DN

∗

that currently detects x can compute the detection sce-
nario. Again, the important step is determining the set
DN

∗ in Line 3 since it determines the number of messages.
Analogously to the reactive strategy, Table 4 lists which de-
tection neighbors must receive an update to ensure semi-
completeness, for each detection scenario. We explain each
cell in the following using Figure 7.

Algorithm 5.3: Proactive Strategy

1 When x enters/leaves detection area of Si do
2 Modify Detections as described in Section 5.1;
3 DN

∗ ← Set of detection neighbors whose
information must be updated according to Table 4;

4 Send updated tuple(s) to every node in DN
∗;

5 Goto Line 9;

6 end
7 When Si receives updated tuples about x do
8 Insert updated tuples into Detections;
9 Determine detection scenario d according to Table 2;

10 Compute predicate result from d based on Table 1;
11 Notify base station if x fulfills a predicate of the

query;

12 end

Recall that DSI can either occur (1) when an object enters
the detection area of a node inside the region or (2) when
the detection area of a node outside of the region is left. An
object detection conforming to DSI requires at least one node
Si ∈ Z to detect the object. If such a detection occurs, Si
must determine if there exists a simultaneous detection by
another node Sj ∈ Z. Using Figure 7 again, Case (1) occurs
at t2 and t5. To compute the detection scenario correctly at
t2, S2 must know that S1 ∈ Z currently detects x1. Case (2)
occurs when x1 leaves the detection area of S1 at t3. In this
case, the information at S2 is updated, and S1 then correctly
determines DSI for x1. Regarding x2, S2 computes DSI at
t5, because there do not exist any relevant detections by any
Si ∈ Z. Thus, if the query requires DSI, nodes outside of the

zone must send updates to their detection neighbors inside
the zone when objects enter/leave their detection areas.
DSB requires simultaneous detection by nodes in Z as well

as Z. Thus, every Si ∈ Z must be informed about detections
of detection neighbors in Z and vice versa.

5.4 Node Failures
When a node fails, there are two possible consequences:

(1) An object x that would have been detected is not de-
tected. (2) Nodes detect x, but the detection-scenario com-
putation is possibly incorrect because it is based on an in-
complete relation Detections. We have shown how users
can express queries if they are interested in objects that are
temporarily unobserved in Section 4.3. Therefore we focus
on (2), i.e., we notify the user if query results returned could
be incorrect due to node failures. We discuss the detection
of failures first and continue with failure handling.

5.4.1 Failure Detection
It depends on the strategy used for data collection how

failures are detected. A node Si using the reactive strategy
requests tuples from its detection neighbors DN

∗ and ex-
pects a response from each of them. If no such response has
been received after a timeout, Si derives that the detection
neighbors whose responses are missing have failed.

The drawback of the proactive strategy is that nodes can-
not detect failures of detection neighbors using missing re-
sponses. Without further measures, a failed node might not
send updates to detection neighbors and thus affect query
results. A practical approach to solve this is sending beacon
messages periodically to detection neighbors and assuming
node failure if beacons are missing. Our evaluation includes
the additional messages induced by this. Note that this
problem also occurs with the centralized strategy, i.e., addi-
tional messages are required to detect node failures.

5.4.2 Failure Handling
The user must be notified of a node failure if it could have

an impact on the query result, i.e., if the computation of
the detection scenario is incorrect. In the following, we refer
to the node whose failure has been detected as Sf. When
Si detects the failure of Sf ∈ DNi and computes a detection
scenario later, the result is possibly incorrect. We denote the
detection scenario computed based on an incomplete relation
Detections with DSfail.

Lemma 10. If DSfail = DSB, the failure of Sf did not
affect the computation of the detection scenario.

Lemma 11. If DSfail = DSI and Sf ∈ Z or DSfail = DSO

and Sf ∈ Z, the failure of Sf did not affect the computation
of the detection scenario.

Summing up, the base station must be notified of node fail-
ures in the following two cases:
• DSfail = DSI, and Sf ∈ Z



• DSfail = DSO, and Sf ∈ Z

This notification is a message that contains DSfail and an
identifier of Sf.

6. EVALUATION
We have evaluated our approach thoroughly using simu-

lations and a Sun SPOT deployment to investigate the fol-
lowing hypotheses:
H1 Both distributed strategies scale better with the num-

ber of nodes than the centralized strategy.
H2 The proactive strategy is the most energy-efficient for

Inside (x,Z) and Disjoint (x,Z).
H3 The reactive strategy is the most energy-efficient for

Meet (x,Z).
H4 The centralized strategy is energy-efficient for small

networks and nodes around the base station.
H5 Distributed strategies reduce communication required

for processing spatio-temporal developments like En-
ter (x,Z) or WSNEnter (x,Z).

6.1 Simulation Setup
To run exactly the same software for simulations and case

study, we used the Sun SPOT simulator of the KSN project [3].
Each simulation run consists of the following steps:

1. Generate a WSN of 100-300 nodes that are randomly
deployed over an area. The size of the area is constant
to account for different node densities, i.e., varying
numbers of detection and communication neighbors.

2. Define a zone of varying size. Zones contain between
2 and 30 nodes.

3. Generate 50 different object paths using a random
walk model with starting points randomly chosen.

4. For each object path evaluate each detection scenario
using each strategy.

5. Count the number of messages sent and received.
Overall, the results presented here are based on more than
100.000 simulation runs.

Since detection areas tend to be indeterminable, we have
approximated the set of detection neighbors with the set of
communication neighbors: To do so, a node sends a bea-
con message periodically. Each node receiving it adds the
sender to the list of detection neighbors. We graph the com-
munication required for these beacons for distributed strate-
gies separately. For the proactive approach, these periodic
beacon messages would allow the detection of failures and
notification of the base station as well.
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Figure 8: Scalability of data-collection strategies

6.2 Simulation Results
Figure 8 shows the average number of messages per simu-

lation run for WSN of 100-300 nodes to compute DSI. Graphs
for other detection scenarios are similar and omitted here.
As expected, the number of messages required by the cen-
tralized strategy increases linearly with network size. Con-
trary to this, network size only affects both distributed strate-
gies marginally. The reason for this is the increasing node
density, i.e., more detection neighbors per node. Even the
added overhead for the approximation of detection neighbors
does not change this. The large share of communication
related to detection-neighbor approximation suggests that
more sophisticated mechanisms for this could reduce energy-
consumption even further. Thus, we conclude that H1 is
true. Detection-neighbor approximation should be investi-
gated in future work.
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Figure 9: Communication per detection-scenario

Figure 9 shows the average number of messages per de-
tection-scenario computation. The result is that distributed
strategies require between 45%−85% less messages than the
centralized strategy. Comparing both distributed strategies
shows that the proactive strategy is advantageous for DSI

and DSO. This is expected, because S
∗ is smaller for the

proactive strategy when objects leave the detection area of
a node (cf. Tables 3 and 4). These roles are reversed for DSB,
because the proactive strategy is triggered more often than
the reactive one. Summing up, these results confirm H2
and H3.

Strategy
Number of Messages per Object for
Enter (x,Z) WSNEnter (x,Z)

centralized 334 334
proactive 44,3 123,8
reactive 39,1 163,1

Table 5: Avg. number of messages for Enter (x,Z)
and WSNEnter (x,Z)

The distributed strategies reduce communication to pro-
cess spatio-temporal developments as well. Table 5 shows
the average number of messages to determine that x con-
forms toEnter (x,Z) orWSNEnter (x,Z) (cf. (5) and (11)),
respectively. As expected, the centralized strategy requires
at least twice as much communication since every detection
event must be forwarded to the base station. For WSN-
Enter (x,Z), the proactive strategy is most efficient. This is
because this development does not contain Meet (x,Z). The
difference between Enter (x,Z) andWSNEnter (x,Z) must
be attributed to Lemma 9 because all non-border nodes are
basically inactive for Enter (x,Z). Compared to the cen-
tralized strategy the savings of distributed strategies are be-
tween 51% and 89%. This confirms H5.



6.3 Sun SPOT Case Study
Since simulations always abstract from certain real-world

phenomena and these may impact performance, e.g., inter-
ferences or collisions, we conducted a case study using real
sensor nodes. For our case study, we have deployed 26 Sun
SPOT sensor nodes and a base station on our office floors.
[5] provides exact node positions, the object trajectory and
further information on the case study. The query was In-
side (x,Z). In analogy to the simulations, we assumed that
nodes cannot determine their detection areas by themselves.
Thus, a node periodically sent beacons to approximate the
set of its detection neighbors, i.e., DNi = CNi.

Strategy
Number of Messages

Collect Result Forward. Total
centralized 137 0 137
proactive 115 42 157
reactive 145 33 178

Table 6: Case study results

Table 6 shows the result of the case study: The rightmost
column contains the total number of messages sent, i.e., the
sum of the two columns in the middle which reflect messages
for data collection (left) and result forwarding (right). Since
the centralized strategy computes all results at the base sta-
tion, the number of messages sent to forward the result is
0. A simulation that replicated the node setup and object
movement of the case study had the same results. This in-
dicates that real-world phenomena from which simulations
have abstracted would not significantly change the findings
based on simulations.

The centralized strategy required 137 messages, the dis-
tributed approaches 20 respectively 41 more. This is ex-
pected because the network was relatively small, i.e., mes-
sages were forwarded 5 hops at most to reach the base sta-
tion. Considering the simulation results and the result of
the case study, we conclude that H4 is true. Summing up,
our evaluation confirms all of our hypotheses.

7. CONCLUSIONS
For many applications, WSN are used to track moving ob-

jects. Research has shown that accessing WSN declaratively
is important. But research so far has focused on relational
queries which are insufficient to express spatio-temporal se-
mantics inherently required by these applications. This pa-
per is the first that addresses the processing of declara-
tive queries interested in the spatio-temporal relationship
of objects detected by WSN and zones. First, we have de-
fined the fundamental concepts of spatio-temporal queries
in WSN and the semantics of spatio-temporal predicates
for zones. Second, we have provided a space partitioning
for zones which allows the application of the 9-intersection
model and other existing research results to WSN. Process-
ing of spatio-temporal queries requires nodes to exchange
information on objects detected. We have shown how to
reduce the respective communication significantly by con-
sidering detection neighbors and have proposed two execu-
tion strategies for processing predicates in-network. Our
strategies can deal with node failures that could affect the
query result. We have evaluated our approach using both
simulations and a Sun SPOT deployment. Our evaluation
shows that distributed strategies perform well, particularly
for WSN consisting of hundreds of nodes.
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