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ABSTRACT
Person identification is of great interest for various kinds of
applications and interactive systems. In our system we use
face recognition and voice recognition from data recorded in
an interactive dialogue system. In such a system, sequential
images and sequential utterances can be used to improve
recognition accuracy over single hypotheses. The presented
approach uses confidence-based fusion for sequence hypothe-
ses, for multimodal fusion, and to provide a reliability mea-
sure of the classification quality that can be used to decide
when to trust and when to ignore classification results.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems

General Terms
Experimentation, Reliability

1. INTRODUCTION
In this paper we describe a confidence-based fusion ap-

proach for person identification during human-robot inter-
actions. Ekenel, Fischer, Jin and Stiefelhagen [1] have shown
that for fusion of audio and video for person identification,
adaptive weighting of modalities is one of the primary fac-
tors for better recognition results. Their adaptive CRCM
approach uses modality weights which are based on the dif-
ferences of the best two hypothesis scores of each modality.
On the other hand Könn, Holzapfel, Ekenel and Waibel [5]
had shown that logistic regression can be used to combine
different confidence features for good confidence estimation.
Our goals therefore were to extend this approach and inves-
tigate different confidence features in their suitability. The
resulting confidence measures are then integrated in the fu-
sion process, and used as reliability estimates for other sys-
tem components. The target scenario for this approach is a
dialogue system which poses additional requirements, such
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Figure 1: Structure of the multimodal classifier with
different classification layers.

as online computation of hypotheses instead of observing the
complete sequence before a first classification is made.

In contrast to previous work [5] this approach improves
classification accuracy by fusing n-best lists instead of single
hypotheses. Using n-best lists allows faster compensation of
incorrect hypotheses and facilitates new confidence features
from hypothesis lists. As experiments with different fea-
tures show, good confidence estimation is possible without
internal knowledge of the classifier, by just using features
that are computed on hypothesis lists. Furthermore, these
confidence measures can be used to reliably detect unknown
person, as experiments with open set person identification
have shown. Open set person identification means that the
set of persons includes ’unknown’ persons.

2. SYSTEM DESCRIPTION
The system setup conforms to the turn-based dialog sys-

tem architecture. Each turn corresponds to a dialog utter-
ance by the user during which a single audio file is recorded.
Video images are recorded continuously during the dialog.
In order to create an assumption about the person in front
of the robot several processes have to be passed. Figure 1
gives an overview over the system architecture and its com-
ponents. The system is divided into six separate subsystems
(illustrated through dashed lines): the single image layer (1),
the image sequence layer (2), the single turn layer (6), the
concat turn layer (5), the audio sequence layer (4) and finally
the central multimodal layer (3). Apart from the single turn
layer all other subsystems provide hypotheses in the form of
n-best hypothesis list and a corresponding confidence. The
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additional concat turn layer has been introduced to pro-
vide audio utterances adequate for voice ID. Since data col-
lected with the dialog system includes many short utterances
(< 1 second), a concat turn is simply the concatenation of
the single audio utterances, which have been recorded during
the dialog.

2.1 Confidence-Based Fusion
Like the title of our paper already indicates we use con-

fidence measures as basis of an adaptive weighting for fu-
sion, which includes fusion of different modalities and per-
modality fusion of single hypotheses to obtain sequence hy-
potheses. In each case, fusion is realized as summation over
n-best lists which are weighted by confidence values. This
approach is illustrated in figure 1 on several layers, fusion is
marked by ⊕. Mathematicly spoken the hypothesis of the
next higher layer is calculated through:

Hnew =

N∑
i=1

conf(Hi) ·Hi (1)

where H respectively denotes an n-best list, and conf(Hi)
represents the confidence for this hypothesis. N refers to
the sliding windows size, i.e. the number of accounted hy-
pothesis lists. In the multimodal case, this function pro-
duces a sensible result, even if only one modality is avail-
able. Normally, in the multimodal case, N is 2 (audido +
video) and each modality contributes a sequence hypothe-
sis n-best list with the respective confidence, which is then
merged to a new hypothesis list according to equation 1. For
the sequence hypothesis, N denotes the maximum number
of accounted single hypotheses. Since the classification ap-
proach is designed for a life system, the approach produces
a sequence hypothesis starting with the first two single hy-
potheses and grows the sequence length until N is reached.
From there on the sequence is shifted as a sliding window
over the single hypotheses with a fixed size.

Each fusion step requires that hypothesis lists are normal-
ized. This is especially important for the multimodal fusion
since the hypotheses to be fused originate from different clas-
sification methods (k-Nearest-Neighbour and GMMs). We
use the following normalization method:

s̄i =
si −min∑n

i=1 (si −min)

where si denotes the score of the i-th best hypothesis, min
denotes the smallest score within the n-best list and n de-
notes the length of the hypothesis list, in our case n was
set to ten. Here, the smallest value is lost, and only influ-
ences normalization, because for si = min the score gets
normalized to zero.

2.2 Confidence Estimation
The term confidence in this paper refers to the reliability

of the classification. In contrast to the scores of the hypothe-
ses it is calculated on separate features and is a probability
value.

Depending on the classification the features which can be
used as confidence features are different. For example there
are confidence features like the mean gray value (Image) or
the approx. distance between the subject and the camera
(Dist). Both features are only applicable to face ID classifi-
cation. Other confidence features like the agreement (Agre)
and stability (Stab) can only be used for sequence hypothe-
ses [5]. However, some confidence features could be used

throughout the whole system, since they are based on the
structure of n-best lists, which are available for both modali-
ties. Those confidence features are the entropy of the n-best
list (Ent), the difference between the two highest scores of
the n-best list (Diff0), as well as two further difference-based
features (Diff1, Diff2).

Like already mentioned the confidence features ‘Image’
and ‘Dist’ are image-specific features, for both are - more or
less - directly derived from the image data. Both have been
shown to be effective for confidence estimation [5].

The two sequence specific confidence features are calcu-
lated through correlation of each best hypothesis within the
considered sequence. They are suitable for the confidence
calculation since they are directly related to the common-
ness of the agreement (Agre), and respectively to the al-
ternation of the hypotheses (Stab). More precisely ‘Agre’
denotes the number of single image hypotheses, which are
equal to the best hypothesis, divided by the total number
of accounted hypotheses (corresponding to the sliding win-
dow size). Whereas ‘Stab’ denotes the number of hypotheses
changes relative to the total number of accounted hypothe-
ses within the sequence.

The four n-best list based features (Ent, Diff0, Diff1 and
Diff2) are suitable as confidence features because they are
directly related to the structure of the n-best list and there-
fore reflect the probability of confusion. They are calculated
as follows:

Ent = −
∑N

i=1 ki · log2(ki) Diff1 =
∑N

i=1

ki−ki+1
i

Diff0 = k1 − k2 Diff2 =
∑N

i=1

ki−ki+1
ei−1

where ki denotes the score of the i-th best hypothesis, and
N denotes the length of the n-best list. It can be seen that
the two confidence features ‘Diff1’ and ‘Diff2’ are closely
related and therefore their values are not statistically inde-
pendent.

To obtain confidence values in the sense of probability
estimates, we use logistic regression [4], to train so-called
logit-coefficients. These logit-coefficients are then used to
weight the different (confidence) features in the classifier.

3. EXPERIMENTS AND RESULTS

3.1 Data Corpus
Data used for the experiments was collected during dia-

log experiments in a corridor robot scenario [3], including
audio data and video data for multimodal person identifica-
tion, with the tracking library arthur1. For single image face
identification and voice identification we use the approaches
from Ekenel and Jin, also referenced in [1].

The data has been recorded from a dialog corpus of 38
subjects in 85 sessions. It comprises a collection of single
images (recorded at 8 to 15 frames per second) and single
audio utterances. The length of recorded sessions varies de-
pending on the dialog length. A session on average contains
1019 single images with 378 face detections and 14 single
turns, with a total audio length of 14 seconds. From the
perspective of our proposed multimodal system a session on
average generated 378 single image hypotheses, 377 image
sequence hypotheses, 14 concat turn hypotheses, 13 audio
sequence hypotheses and 390 multimodal hypotheses.

1http://isl.ira.uka.de/˜nickel/arthur/
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Experiments with voice identification have shown that ses-
sions that contain only short audio segments, such as ’yes’
and ’no’ utterances, didn’t contain enough discriminative
information to distinguish between speakers with realistic
recognition rates. We therefore recorded new audio data for
11 speakers and replaced the original audio data with the
new recordings. The new data differs in one important as-
pect. Though the audio length for voice ID training was
just 10 seconds, the recorded utterances were full sentences
instead of short utterances.

Given the requirement of independent training and evalu-
ation sets to train the face and voice ID as well as to obtain
logit-coefficients for each layer of our system, we echeloned
the sets (see figure 2) in such a manner that the used eval-
uation sets were independent of the corresponding training
sets, but never the less could be used another time to train
the next higher layer of the system.

Set 1 Set 2 Set 3 Set 4 Set 5

face ID
training

multimodal logit-coeff.
training        evaluation

image sequence logit-coeff.
training           evaluation

single image logit-coeff.
training       evaluation

concatturn logit-coeff.
training       evaluation

voice ID
training

audio sequence logit-coeff.
training           evaluation

Figure 2: Use of sets for training and evaluation.

So in total five separate sets of data are needed, which are
obtained by dispersing the video and audio sessions among
the sets. Set 1 was used for face ID and voice ID training,
where the face ID was trained on 25 persons and the voice
ID was trained on 8 persons. All other sets are used as
evaluation data for face ID and voice ID and existed in two
versions. The first version, denoted by ‘A’, contains only
those sessions, where all subjects are also contained within
set 1 and thus belong to the training set. The second version
of the sets, denoted by ‘B’, contains all sessions from ‘A’ plus
further sessions with ‘unknown’ persons. For training and
evaluating logit-coefficients we used the ‘B’ versions, since
the recognition rate is fairly high and we wanted our system
to cope with unknown persons as well. As shown in figure 2,
set 2 is used to train logit-coefficients for single image face
ID and voice ID. Set 3 is used to train logit-coefficients of
sequence hypotheses, set 4 is used to train logit-coefficients
of multimodal person ID and set 5 finally is used to evaluate
person ID classification on unseen data.

3.2 Selection of Confidence Features
To be able to provide confidences within each layer of

our proposed system, we had to select suitable confidence
features and calculate logit-coefficients for each of its sub-
systems. Given the restricted space of this paper we show
our approach exemplary on the single image and the image
sequence layer.

To obtain suitable confidence features for the single image
layer, we calculated single image hypothesis lists for sets 2B
and 3B and stored them with all relevant confidence fea-
tures (Diff0, Diff1, Diff2, Ent, Image and Dist). Afterwards
we trained for a wide range of possible confidence feature
combinations logit-coefficients based on set 2B and evalu-

ated them on set 3B. Figure 3 shows a detailed section of
the corresponding ROC graph. ROC graphs are suitable to
compare classifiers which can be evaluated with true positive
and false positive rates [2].

Figure 3: ROC graph showing different confidence
features for single image hypotheses (face ID) eval-
uated on set 3B.

Most confidence features are clustered within the same
TP-/FP-Area2, with a rather low FP-rate (<0.1) and a
rather high TP-rate (>0.8), except Entropy alone which has
a true positive rate of 0.71. Among the minor differences
between the feature combinations, ‘Diff0Ent’ produces the
lowest FP-rate, while being only slightly worse than the best
feature combination regarding TP-rate, and thus was used
in the final setup. The combination of ‘Diff0’ and ‘Ent’ also
shows slightly better results than ‘Diff0’ alone (which was
used for the CRCM approach in [1]). The features used in [5]
could not fully be transferred to this approach since tracking
and face identification methods differ.

To choose suitable confidence features for the image se-
quence hypotheses we calculated image sequence hypotheses
for sets 3B and 4B and stored them together with all rele-
vant confidence features (Agre, Stab, Diff0, Diff1, Diff2, Ent)
and again compared different feature combinations within a
ROC graph. In this comparison those feature combinations,
which took ‘Agre’ and ‘Stab’ into account performed best.
Before deciding on the best feature combination one has to
consider different sequence lengths which is an important
aspect of the online system. While it is obvious that with
increasing sequence length, the quality of the hypotheses
increase, this is not necessarily true for confidence classifi-
cation. We have calculated possible confidence feature com-
binations according to the sequence length of 4, 15, 50, 100
and 200, whereof 200 was used in the evaluation. On the
given data, ‘AgreStabDiff0Ent’ shows the highest stability
concerning different sequence lengths.

In the following the results of the system and its subsys-
tems are subsumed based on the evaluations of set 5. Figure
4 shows the recognition rates for the different layers and dif-
ferent subsets. Set 5.1A contains only known persons and
has been recorded with similar light conditions. Set 5.2A
contains only known persons and includes sessions recorded
at different points in the building with varying directions of
light. Set 5.2B is an extension of set 5.2A, and includes un-
known persons, but no unknown classification. Set 5.2B+T
is the same data set as 5.2B. Here, a threshold approach has

2TP: true positive, FP: false positive
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been tested for unknown person detection based on confi-
dences.

Figure 4: Recognition rates on set 5.1 and 5.2.

The figure shows significant improvements at several lay-
ers for known person identification (1st and 2nd bars). Clas-
sification of the sequence face ID benefits from competing
hypotheses, which in case of false classifications are spread
in the Nearest-Neighbor features space. In case of voice ID,
the GMM-based classifier tends to produce similar (incor-
rect) hypotheses. This can also be seen by the best con-
fidence feature which is ‘Diff0’ and doesn’t include ‘Agre’
and ‘Stab’. Thus, sequence voice ID doesn’t produce better
hypotheses than the concatenated voice ID, but produces
better confidence estimation, which is of great importance
to the multimodal fusion.

Improvement of the multimodal ID can be seen best on set
5.2A, which has been recorded at more difficult conditions
for face identification. Detailed numbers are shown in table
1. On average, the confidences distinguish between correct
and incorrect classifications. An exception is seqFaceID,
were too few incorrect hypotheses have been seen during
confidence training (>99% correct). It can also be seen that
unkown persons receive very low confidences, which suggests
that unknown classification is possible. The challenge here
is to distinguish unknown form incorrect recognition, which
can be adressed e.g. by calculating average confidences over
a sequence of hypotheses and then applying a threshold.
The numbers in figure 4 have been computed with an opti-
mal threshold of 0.3 for the multimodal ID. At this threshold
level, 70% unknown was detected correctly, and <0.8% new
errors (known vs unknown) are made.

4. CONCLUSIONS
We have presented an approach for confidence based fu-

sion in a multimodal ID classification task. Different fea-
tures and feature combinations have been investigated re-
garding their suitability for probability estimation with lo-
gistic regression.

All confidence classifiers for the final system make use of
distributions of the n-best hypothesis lists. A major bene-
fit of such features is that they can solely be computed on
classifier output, without using ’internal’ information. The
same is true for the features ‘Agre’ and ‘Stab’ which cover
sequence characteristics. As the experimental results show,
the confidence-based fusion approach significantly improves
the overall recognition rate.

Together with multimodal hypotheses, on the highest layer,
confidences are calculated that can be passed on to other dia-

face ID (Diff0Ent)
number mean std. deviation

Set 5.2A hypothesis true 4540 0.487 0.36
Set 5.2A hypothesis false 2416 0.154 0.212

Unknown 1993 0.119 0.166
sequence face ID (AgreStabDiff0Ent)

number mean std. deviation
Set 5.2A hypothesis true 6261 0.491 0.396
Set 5.2A hypothesis false 684 0.432 0.254

Unknown 1988 0.029 0.046
voice ID (Diff0)

number mean std. deviation
Set 5.2A hypothesis true 214 0.452 0.164
Set 5.2A hypothesis false 30 0.336 0.073

Unknown 100 0.315 0.049
sequence voice ID (Diff0)

number mean std. deviation
Set 5.2A hypothesis true 197 0.601 0.284
Set 5.2A hypothesis false 35 0.167 0.145

Unknown 95 0.265 0.196
multimodal ID (AgreStabDiff0Ent)

number mean std. deviation
Set 5.2A hypothesis true 7006 0.804 0.32
Set 5.2A hypothesis false 171 0.326 0.452

Unknown 2083 0.094 0.274

Table 1: Overview of different confidence classifiers.

log system components. Looking at a sequence of those con-
fidences furthermore allows us to reliably detect unknown
persons, even though a single incorrectly classified hypoth-
esis may have a low confidence value as well.

All confidence approaches generally perform better for
face ID than for voice ID on the given data. In the fu-
ture we think it can be valuable to observe if this is due to
different distribution of the generated hypothesis lists or if
other ’internal’ features of the voice ID should be exploited.
Also it would be interesting to explore in which way this
approach can be combined with other approaches that ex-
plicitly classify unknown persons.
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