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Abstract. Peer-to-Peer data structures (P2P data structures) let a large number
of anonymous peers share the data-management workload. A common assump-
tion behind such systems is that peers behave cooperatively. But as with many
distributed systems where participation is voluntary, andthe participants are not
clearly observable, unreliable behavior is the dominant strategy. This calls for
reputation systems that help peers choose reliable peers tointeract with. How-
ever, if peers exchange feedback on experiences with other peers, spoof feedback
becomes possible, compromising the reputation system. In this paper we propose
and evaluate measures against spoof feedback in P2P data structures. While oth-
ers have investigated mechanisms for truthtelling recently, we are not aware of
any studies in P2P environments. The problem is more difficult in our context
because detecting unreliable peers is more difficult as well. On the other hand, a
peer can observe the utility of feedback obtained from otherpeers, and our ap-
proach takes advantage of this. To assess the effectivenessof our approach, we
have conducted extensive analytical and experimental evaluations. As a result,
truthful feedback tends to have a much higher weight than spoof feedback, and
collaboration attacks are difficult to carry out under our approach.

1 Introduction

Peer-to-Peer systems (P2P systems) are distributed systems consisting of many nodes in
open, coordinator-free communities. Peers typically are known by pseudonyms, which
they can replace at little or no cost. P2P systems do not have acentral instance that could
observe the behavior of peers. Thus, reputation systems [1]to identify and penalize
misbehaving peers are crucial building blocks of all kinds of P2P systems.

Reputation systems assign each peer a reputation value, be it positive or negative. A
reputation value is an aggregate of positive feedback or complaints from other partici-
pants that have observed the behavior of the peer in the past.Clearly, we cannot expect
that nodes issue only truthful feedback. A peer may wish to discredit others which have
complained about it, or attackers could try to harm nodes by issuing spoof feedback.
For instance, [2] has observed similar behavioral patternsat eBay. However, while oth-
ers have investigated mechanisms for truthtelling recently [3–5], we are not aware of
any studies in P2P environments.

This paper proposes and evaluates measures for truthful feedback for one partic-
ular kind of P2P system, namely P2P data structures (a.k.a. P2P overlay networks,
distributed hash tables, etc. [6]). Such structures let a large number of peers share
the data-management and query-processing workload. Designing mechanisms against
spoof feedback in P2P data structures is challenging, more than for other P2P systems.



To lookup a data object, several peers must cooperate, and the lookup fails if only one of
them is not reliable. With other P2P systems in turn, there typically is only one peer that
carries out a service or a well-defined part of it. A related issue is that it is difficult to
identify the defector if a lookup request is not processed properly. Consequently, gener-
ating truthful feedback is more difficult as well. Further, alookup in P2P data structures
consists of operations that are relatively simple. This means that reputation manage-
ment must be relatively simple as well so that it does not become disproportionately
expensive. Another issue is that P2P data structures have good scalability characteris-
tics, and reputation management must not get in the way of this. In addition to these
complications specific to P2P data structures, there are further ’more general’ issues:
Each node may change its behavior at any time and can behave differently with dif-
ferent peers. Thus, negative feedback on cooperative nodesand positive feedback on
unreliable nodes typically exists. We cannot readily distinguish it from spoof feedback.

This paper makes the following contributions: First, we describe the particular re-
quirements that an approach against spoof feedback in reputation systems for P2P data
structures must fulfill. We then describe our approach. It isa characteristic of P2P data
structures that a peer can observe the utility of feedback obtained from other peers, and
our approach takes advantage of this. For instance, a peer which has forwarded a query
to a certain node and has obtained a proper query result may conclude that complaints
about that node were wrong and positive feedback was correct. With our approach,
each peer uses such clues to derive weighting factors both regarding the issuers of feed-
back items and the peer the feedback refers to. Second, we provide an evaluation of
our approach, both with an analytic model and by means of experiments. The analysis
confirms that the differentiation between useful and less useful feedback is effective.
We point out the analysis is rather general, i.e., leaves aside the details of the particu-
lar underlying reputation system. The experiments addressissues which are difficult to
examine analytically, such as collusion attacks and dynamicity issues. The experimen-
tal results are positive as well. For instance, our approachis effective against collusion
attacks in realistic settings. Third, the article featuresa discussion of the applicabil-
ity of our measures against spoof feedback to other reputation systems and application
scenarios.

The remainder of this article is organized as follows: Section 2 describes the tech-
nical background, followed by a description of our approachin Section 3. Section 4
will analyze the approach, Section 5 will evaluate it. Section 6 reviews related work. Fi-
nally, Section 7 provides a discussion of the applicabilityof our approach, and Section 8
concludes the paper.

2 Background

This section briefly reviews the characteristics of P2P datastructures and reputation
systems and provides a short description of a reputation system which we will use as a
basis for our experiments. The section also quantifies the damage spoof feedback may
cause in P2P data structures without any countermeasures.



Fig. 1.Two-dimensional CAN.

Content-Addressable Networks P2P data structures (a.k.a. P2P overlay, distributed
hashtable) administer huge sets of (key, value)-pairs on top of a large physical net-
work. Content-Addressable Networks (CAN) [7] are a prominent variant of P2P data
structures. Other instances are P-Grid [8], Viceroy [9] or Chord [10] which differ pri-
marily with regard to contact selection and routing topology; cf. Section 6. We point
out that the presented measures are independent from the specific P2P data structure.
However, when presenting our results, we use a CAN for samplecalculations and ex-
periments.

A CAN is a distributed system that consists of many nodes (peers). Each peer can
issue queries for any data object stored in the CAN, but it is supposed to store data
and participate in the evaluation of queries as well. Each CAN node is responsible for
a certain zone of the key space, and it knows all neighbors, i.e., peers responsible for
adjacent zones of the key space. The key space is an n-dimensional torus of Cartesian
coordinates in the unit space. It is independent from the underlying physical network
topology. The assignment of zones of the key space to peers results from the CAN
construction protocol. A peer which wants to join the CAN finds a random node that
is already in the CAN. That node splits its zone, keeping one half and reassigning the
other half to the new node.

The key space of the CAN in Figure 1 is two-dimensional. Node P1 is responsible
for Zone ([0.5; 0.5), [0.625; 0.75)) of the key space, i.e., it knows all (key, value)-pairs
wherekey ∈ ([0.5; 0.5), [0.625; 0.75)). The neighbors in the contact list of Node P1 are
Nodes P2, P3, P4, P5. Since the key space is mapped on a torus, Node P2 is a neighbor
of Node P6.

Every data object maps to a point in the key space. Accordingly, each operation
(query, insert, update, delete) in the CAN refers to a point in the key space. For
example, a query is the key of a particular (key, value)-pair, and its result is the value of
the pair. Query processing in CAN is a variant ofgreedy forward routing. A node that
has issued a query first checks if it can answer the query from its zone. Otherwise, it
forwards the query to the neighbor in its contact list whose distance to the query key is
minimal. The procedure recurs until the query arrives at thepeer that can answer it. The



peer then sends the result back to the issuer. In ad-dimensional CAN withN peers, a
number ofl = d/4 · N1/d participate in the processing of a lookup on average.

Incentives Mechanisms for Cooperation in Structured P2P Systems Research on
P2P data structures has tacitly assumed that peers follow the protocol. But participa-
tion actually is voluntary, and uncooperative behavior is the dominant strategy (in the
economic sense of the word). An uncooperative peer does not follow the protocol of
the P2P data structure, e.g., it drops incoming messages. Incomparison to P2P systems
based on flooding, e.g., Kazaa1 or gnutella2, P2P data structures are more vulnerable
to uncooperative behavior. Few uncooperative peers can significantly reduce reliability
of a P2P data structure. For example, in a CAN consisting ofN = 10, 000 peers with
d = 4 dimensions,l = d/4 · N1/d = 10 peers on average forward a query (cf. [7]).
Now suppose that the CAN containsu = 500 peers which do not forward any incoming
query message. Then the probability to obtain a query resultis only(1−u/N)l ≈ 60%.

FairNet [11] is our proposal for a reputation system that renders uncooperative be-
havior unattractive. Peers in FairNet, thefeedback issuers, generate and distributefeed-
back items. Such items are the observations of the feedback issuers regarding a partic-
ular transaction. Thus, a feedback item consists of a positive or negative statement and
contains the identifiers of the issuer and the peer the feedback refers to (thefeedback
subject). Only peers with a number of positive feedback items above athreshold value
are allowed to participate in the P2P data structure. Peers can obtain positive feedback
in short time by carrying out proofs of work [12, 13]. A proof of work is a problem that
is easy to formulate, and the solution is easy to verify, but solving it requires a lot of
resources.

Each peer maintains a private localreputation repository for feedback on its neigh-
bors. The repository has a capacity ofs feedback items per subject. If an item is added
to a repository that is already full, one item in the repository will be replaced. Con-
sequently, as soon as a peer starts to behave unreliably, negative feedback items tend
to replace positive ones. Based on the feedback items in its local repository, each peer
can derive an individualreputation value for each feedback subject. Peers do share
feedback: A peer that has observed cooperative behavior of another peer generates a
feedback item and stores it in its local repository. The nexttime the peer sends out a
message, it attaches recent feedback items whose subject isa neighbor of the recipient
of the message. Therefore the repositories do not only contain feedback generated by
the maintainer of the repository, but also feedback forwarded by adjacent peers. In the
following, we refer to such intermediate peers asforwarders.

Note that the ratio of positive and negative feedback items in a repository on an
uncooperative peer does not exactly follow its failure probability. For example, if a peer
does not handle 50% of all incoming messages, it does not obtain 50% positive and
50% negative feedback as well. One reason for this is that notonly this peer, but also
any other peer later in the sequence of forwarders can drop the query. This results in
negative feedback on all peers in the sequence.

1 http://www.kazaa.com
2 http://www.gnutella.com



The Impact of Spoof FeedbackWe know from previous work [11] that the measures
outlined in the previous subsection are effective even against peers which process mes-
sages properly at a variable rate. For example, a peer which does not work off 10% of
all incoming queries ends up with more than the double effortcompared to a peer that
handles all queries properly. (The additional effort is theresult of a higher number of
proofs of work, in order to remain in the CAN.) However, the experiments show also
that dishonest peers issuing spoof feedback can impair the effectiveness of the reputa-
tion system significantly.

Suppose that a peer maintains a repository of sizes that consists of feedback on only
one peer. If feedback is truthful,ppos is the probability that an arbitrary feedback item
in the repository is positive. The peer assigned to the repository is deemed reliable if the
repository contains at leastt positive feedback items, i.e., ifs · ppos ≥ t. Any feedback
item has been issued by one ofa peers. Now we wonder: How many dishonest peers
are necessary to affect the reputation of one peer? Letx ≤ a be a number of dishonest
peers issuing spoof positive feedback. The overall probability for positive feedback now
changes tôppos = a−x

a · ppos + x
a · 1. Equating this withs · p̂pos ≥ t, we obtain an

estimate of the rate ofxa dishonest peers required to induce positive feedback into the
repository such that an uncooperative peer is above the threshold:

x

a
≥

t
s − ppos

1 − ppos
(1)

For example, consider a FairNet instance with a repository size of s = 10 and a
thresholdt = 6. In this setup each uncooperative peer does not forward or answer
50% of all incoming messages. We know from previous work [11]that this results in
a probability ofppos ≈ 0.13 for uncooperative peers. Equation 1 now tells us that an
uncooperative peer is deemed cooperative if at least 54% of the peers it has interacted
with issue spoof positive feedback.

3 Measures Against Spoof Feedback

This section motivates the requirements that an approach against spoof feedback in
reputation systems for P2P data structures must fulfill. Thesection also describes our
approach with its measures and data structures. We stress that the presented approach
does not depend on particular implementations of reputation systems or P2P data struc-
tures. Instead, the peers just need to know the nodes which forwarded the feedback,
the feedback subjects and the correlation between the feedback and the transaction out-
comes; no matter how the implementation handle this. Section 7 provides a discussion
on the applicability of our approach.

Approaches Against Spoof Feedback – RequirementsMeasures to detect and avoid
spoof feedback in a reputation system for P2P data structures must meet the following
requirements:

EffectivenessObviously, the most urgent issue is the effectiveness of thedetection of
spoof feedback. Effectiveness means that it does not pay offto issue spoof feedback



in any case. There are two worst-case scenarios that might impair the effectiveness:
First, there are situations where the distinction between spoof feedback and truthful
feedback is not feasible. If a transaction fails with a probability of 50%, any feed-
back is correct with a probability of 50% as well. Second, peers may run collusion
attacks to feed spoof feedback into the repositories of others. When such an at-
tack takes place, it can be the case that the majority of the peers displays dishonest
behavior.

Short response timesThe time required to adapt to new situations is an important
criterion in any P2P system where peers can change their behavior at any time.
Peers can gain advantages during the period of time requiredto detect such changes.
This period of time needs to be as small as possible.

Filtering ’wrong’ feedback There are several reasons why honest peers can some-
times generate wrong feedback. For instance, a cooperativepeer may forward a
message to an uncooperative neighbor only once, because it does not know any
better as yet. If the peer obtains negative feedback but doesnot forward to the
uncooperative neighbor again, the feedback could be seen asspoof. Thus, our ap-
proach should differentiate between spoof feedback and feedback that is wrong in
spite of best intentions.

Tamper-resistant design The measures must not introduce new ’holes’ which dishon-
est and/or unreliable peers can exploit. Therefore the measures should rely on local
operations as much as possible, in contrast to other peers, which could be dishonest.

Preserving trust relationships that already exist The idea that a peer either gener-
ates spoof feedback all the time or not at all is too undifferentiated. For instance,
a peer can generate spoof feedback on selected neighbors only, or wrong feedback
could be the result of successful attacks. Thus, we strive for an approach that does
not break existing trust relationships after having observed wrong feedback items
from one forwarder. Instead, it differentiates between useful and spoof feedback
from the same forwarder.

Low resource consumption P2P data structures aim to process large numbers of small
transactions. It is acceptable that a few transactions get lost due to unreliable peers.
On the other hand, a measure against spoof feedback must not slow down the pro-
cessing of transactions due to excessive resource consumption.

Overview With our approach, each peer individually determines the weight of the
feedback. In particular, a peer can assign different weights to each combination of sub-
ject and forwarder. The weights depend on the differences orsimilarities between the
transaction outcomes observed and the outcomes predicted by the feedback. In P2P
data structures, the feedback is used to identify a reliablepeer to forward a query to.
Here, the weights ensure that messages go to reliable peers only, even in the presence
of dishonest peers issuing positive spoof feedback.

We now explain briefly the rationale behind our design decisions. A peer needs to
associate feedback items with the forwarder they have come from. The assignment helps
the peer to reduce the impact of spoof feedback and to determine the weight of future
feedback coming from that peer. At first sight, we could have associated feedback with
the issuer instead of the forwarder. Namely, the issuer is responsible for the feedback it



has generated. However, the forwarder is able to manipulateincoming feedback items,
and it can decide which feedback is forwarded and which one isnot, i.e., apply some
kind of censorship. In other words, the receiver of a feedback item can only pin down
the last forwarder of the item with certainty, but not the issuer. Further, one might ask
why there are separate weights for each forwarder and each feedback subject. This is
because a peer which forwards useful feedback on one feedback subject might forward
spoof feedback on another one.

Data Structures We now specify the data structures required to implement ourap-
proach against spoof feedback on top of an existing reputation system. Our approach
introduces two variables individually maintained by each peer,weighting factors and
transaction logs. The log is the history of all recent transactions handled bythe peer,
i.e., it contains the identifier of a transaction and the peerthe query was forwarded to.
A peer also maintains a weighting factorwσ,φ in the interval[0; 1] for each feedback
subjectσ and forwarderφ.

In addition, two data structures implement the reputation system as described in
Section 2, namelyfeedback items andreputation repositories. Assuming the presence
of such data structures does not restrict the applicabilityof our approach: [14] indicates
that the referred structures are common for most of the P2P reputation systems.

How to Weight Reputation Values When a peer wants to compute the reputation value
of a particular node, it first calculates several auxiliary reputation values, based on the
feedback from the different forwarders. It then aggregatesthese auxiliary values using
the weighted average. LetPσ denote the set of all peers that have forwarded feedback
for subjectσ, and letr(σ, i) be a function that computes the auxiliary reputation value
for peerσ based on feedback from peeri.3 The reputation valuev then is as follows:

vσ =

∑

i∈Pσ

r(σ, i) · wσ,i

∑

i∈Pσ

wσ,i
(2)

Equation 2 ensures that feedback with a low weight does not affect the reputation
value significantly. Thus, in P2P data structures the messages go to reliable peers only,
even in the presence of dishonest peers issuing positive spoof feedback.

Updating the Weighting Factors Having observed the outcome of a transaction, each
node can determine the utility of the feedback available to it. For example, negative
feedback on a node that has handled the transaction properlyhas been less informative,
therefore the weight assigned to the corresponding (forwarder, subject)-pair shall be
decreased.

P2P data structures are dynamic systems where the peers are free to change their
behavior at any time. Thus, there should be weights that allow to focus on recent trans-
actions. In addition, single stochastic occurrences should not impact the weights. This –

3 In FairNet, the reputation value is the number of positive feedback items in the repository that
refers to the peer in question.



and the fact that it does without additional data structures– motivates the use of the ex-
ponential moving average over time to adapt the weights to new observations. Factorz
with 0 ≤ z ≤ 1 specifies the importance of recent information, i.e., larger values ofz
prefer new values. Leta(Fσ,φ, θ) be a function to express the correlation between the
transaction resultθ and the set of feedback itemsFσ,φ with Subjectσ forwarded from
Peerφ. The new weightw′ is derived from the old weightw as shown in Equation 3.

w′

σ,φ = (1 − z) · wσ,φ + z · a(Fσ,φ, θ) (3)

In FairNet the transaction results and the feedback items are binary: a query is either
answered or not, and the number of positive feedback items about a particular peer can
only be above the thresholdt or below. LetT pos, T neg be the sets of all successful and
unsuccessful transactions, respectively. We now can develop the following correlation
functiona(Fσ,φ, θ):

a(Fσ,φ, θ) =

{

1 if (θ ∈ T pos ∧ |Fσ,φ| ≥ t) ∨ (θ ∈ T neg ∧ |Fσ,φ| < t)
0 if (θ ∈ T pos ∧ |Fσ,φ| < t) ∨ (θ ∈ T neg ∧ |Fσ,φ| ≥ t)

(4)

Other reputation systems may depend on measures that express more sophisticated
correlations between the transaction outcomes observed and the feedback. However, our
experiments in Section 5 will show that a relatively simple solution leads to remarkably
positive results already.

4 Analysis

This section provides an analysis of the measures proposed.The analysis is indepen-
dent from the underlying reputation system and data structures. On the other hand, the
analysis (not the experimental evaluation) is based on various assumptions. We will
discuss the impact of these assumptions later in the paper. First, transaction processing
takes place in rounds. In every round, each node issues one query and forwards or an-
swersl queries on average. In addition, we assume that the system isin steady state,
and the load of query processing and message forwarding is equally distributed among
all nodes. Our formal analysis further assumes that uncooperative and dishonest peers
are evenly distributed over the key space, i.e., there is notany cluster of neighboring
peers that are unreliable and/or dishonest. Finally, we assume that the underlying rep-
utation system handles the creation and distribution of feedback as follows: At the end
of a transaction, each forwarder will be informed about its outcome. If a query remains
unanswered, each forwarder generates negative feedback with the next forwarder in the
sequence as feedback subject. In the other case, these peersgenerate positive feedback.
The generated feedback will then be forwarded to all neighbors of the feedback subject.

The analysis only refers to the measures against untruthfulfeedback, not to the P2P
data structure and the reputation system together with these measures. Hence, the anal-
ysis uses the quality of the feedback available, the frequency of successful transactions
in the P2P data structure etc. as external parameters. In particular, the characteristics of
P2P data structures are represented by two values: A query will not be processed suc-
cessfully with probabilityg, and the processing of each query requires the cooperation



Parameters of the data structure Symbol

Probability of an unsuccessful transaction g

Number of peers that have to cooperate to process one transaction l

Parameters of the reputation system Symbol

Probability of positive feedback ppos

Number of feedback items in the repository of one peer s

Threshold for the number of positive feedback items for a reliable peer t

Parameters of the countermeasure Symbol

Ratio of spoof feedback provided by dishonest peers b

Smoothing factor of the Exponential Moving Average z

Table 1.Parameters used in the analysis

of l peers that are not observable from the outside. In order to model the reputation
system we use the following parameters: A peer forwards and handles transactions of
another one only if it has at leastt positive feedback items in its repository whose sub-
ject is the peer in question. The repository has the capacityto stores feedback items per
subject. As a result of feedback generation in the reputation system,ppos is defined to
be the probability that an arbitrary feedback item issued bya honest peer on a reliable
subject is positive. The values ofppos then depend on the reputation system.4

The rate of spoof feedbackb in the reputation system is the input variable of our
analysis. A value ofb = 0 denotes an honest peer that disseminates truthful feedback
only, while dishonest peers forward spoof feedback at a rateof b > 0. Finally, the
factorz specifies the smoothness factor of the Exponential Moving Average and can be
customized according to the preference for newer values. Table 1 lists all parameters
used in the analysis.

To examine the impact of spoof feedback, we first determine the expected average
values of the weights. A dishonest peer issues spoof feedback with a rate ofb and
accurate feedback with a rate of(1−b) that is positive with probabilityppos. Equation 5
gives the probability that an arbitrary feedback item generated by a dishonest node is
positive.

pdis
pos =

{

b · 1 + (1 − b) · ppos for spoofed positive feedback
b · 0 + (1 − b) · ppos for spoofed negative feedback

(5)

If at leastt feedback items in a repository withs items are positive, the maintainer
of the repository deems the peer reliable. Each honest peer (characterized byb = 0)

4 See [11] where the value ofppos is derived in one specific reputation system.



generates positive feedback with probabilityppos. Therefore, it happens with a certain
probability pt that an honest peer generates less thant positive feedback items on a
reliable node. In consequence, other nodes could suspect the peer to disseminate spoof
feedback and reduce the weight of its feedback. The share of positive feedback items in
a repository follows a binomial distribution. Equation 6 now calculates the probability
pt for a repository containing less thant positive feedback items:

pt = P (Number of positive feedback in the repository< t)

=
t−1
∑

i=0

(

s
i

)

· (ppos)
i · (1 − ppos)

s−i (6)

In order to determine the same probability for dishonest peers, we change the value
in Equation 6 fromppos to pdis

pos, as shown in Equation 7:

pdis
t =

t−1
∑

i=0

(

s

i

)

· (pdis
pos)

i · (1 − pdis
pos)

s−i (7)

The expected average weight now is the probability that a transaction is not success-
ful and that a repository contains less thant positive feedback items plus the probability
of the opposite case. Equation 8 determines the weight of feedback issued by honest
peers, Equation 9 does so for dishonest ones.

whon = pt · g +(1 − pt) · (1 − g) (8)

wdis = pdis
t · g +(1 − pdis

t ) · (1 − g) (9)

A participant in a P2P system is free to change its behavior atany time and with
any frequency. For example, one peer might work hard to obtain a high standing in the
eyes of others and try to disseminate spoof feedback afterwards. Thus, the time needed
to adapt to new behavior is crucial. This time can be quantified as the numberk of
repository updates needed to adaptw to a new ratio of spoof feedbackb. The weights
are updated according to Equation 3. Therefore,k is a function of the smoothing factor
z of the exponential moving average. Letak be the correlationa(Fσ,φ, θ) between the
transaction result and the set of feedback items at timek. We can now rewrite Equation 3
to Equation 10.

wk = z · ak + z · (1 − z)1 · ak−1 + z · (1 − z)2 · ak−2 + · · · + (1 − z)k · a0

= z · ak + a0 · (1 − z)k + z ·
k−1
∑

i=1

ak−i · (1 − z)i (10)

The initial parametera0 is the value ofw before the change in the behavior. To ease
the calculation, the number of positive and negative feedback items in the repository
and the rate of unsuccessful transactions after the change is assumed as constant, i.e.,
a1, a2, · · · , ak are equal. Now Equation 10 is a geometric sequence and can be solved
and rewritten to obtain the value ofk, as shown in Equation 11.

k =









log(wk − ak
a0 − ak

)

log(1 − z)









(11)



5 Evaluation

Having described the fundamentals of our approach independent from a concrete imple-
mentation of a P2P data structure or a reputation system, we will now evaluate the ef-
fectiveness with numeric methods and by means of experiments. Our intention with this
section is to confirm that truthful feedback tends to have higher weight than spoof feed-
back even in worst-case settings, that the reputation system adapts quickly to changes
in the behavior of nodes, and that it is effective against collaboration attacks. In order
to obtain expressive results, the evaluation is based on FairNet.

Weights for Truthful and Spoof Feedback The first question is whether spoof feed-
back may obtain a higher weight than honest feedback. We accomplish this by interpret-
ing the formulae of the analysis. To do so, we use realistic values taken from a FairNet
instance consisting of10, 000 peers organized in a four-dimensional keyspace. In this
setup,u is the rate of uncooperative peers. Each uncooperative peerdoes not forward
or answer 50% of all incoming query. The rationale behind a failure rate of 50% is to
analyze a ’more difficult’ setting – even in the presence of spoof feedback, a completely
uncooperative peer would be quickly discovered. In contrast, a failure rate of 50% is a
worst-case scenario for settings with a small number of uncooperative peersu, because
any feedback item is wrong with probability 50%. In this settingthe probability for
each uncooperative node to obtain positive feedback isppos ≈ 0.13.5 I.e., it is less than
its failure probability of 50%. This is because FairNet generates more negative than
positive feedback.

In settings with a large fractionu of uncooperative peers, the number of truthful pos-
itive feedback in the repositories goes against zero, as do the probabilities of successful
transactions. Thus, it is easy to detect spoof positive feedback. On the other hand, if the
probability of a successful transaction is about 50%, spooffeedback cannot be detected.
Therefore, in a setting with few queries properly processedand a smallppos, we expect
the weighting factors to be smaller on spoof feedback, compared to a setting whereppos

is smaller than the probability of successful queries. However, we can already declare
success if the weights of spoof feedbacknever are above the ones of nodes following
the protocol.

We now determine the weight of a dishonest peer for a ratio ofb = 0 to b = 1 spoof
positive feedback generated on an uncooperative feedback subject. Figure 2 graphs the
result of our analysis. The figure confirms our expectations:For values such asu = 10%
or below, i.e., in our worst-case scenario with 50% successful transactions, the weight
of honest feedback (b = 0) is only slightly larger than the one of a peer issuing spoof
positive feedback only (b = 1). In contrast, in settings with a large number of uncooper-
ative peers and a high rate of unsuccessful transactions, i.e., with high certainty regard-
ing the accuracy of feedback, the weight of honest feedback is significantly larger than
the weight of spoof feedback. Summing up, the analysis so farhas shown that our ap-
proach assigns higher weights to honest feedback in any case. However, the difference
between truthful feedback and spoof feedback might be smallin worst-case settings. In

5 Determining the probabilityppos in FairNet requires a complex algebraic model which we
omit here for the lack of space. See [11].



 0
 0.2

 0.4
 0.6

 0.8
 1 0 0.2 0.4 0.6 0.8 1 b

 0

 0.2

 0.4

 0.6

 0.8

 1

w

u

Fig. 2. Average weights for different shares of dishonest peers andspoof feedback.

these settings however, truthful and spoof feedback would lead to the same decisions.
We will address the applicability of our measures under worst-case conditions by means
of realistic experiments later on.

Dynamicity As a next step, we want to determine the number of updatesk needed
to adapt a weightw to a new ratio of spoof feedbackb. The setup of our simulation
is similar to the one used for Figure 2, i.e., the system consists of 10,000 peers in a
four-dimensional topology. In order to have expressive results, the setup contains 50
uncooperative peers which do not handle 80% of incoming transactions.
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Fig. 3.Number of interactions to update the weight depending on thesmoothing factorz.

Equation 9 provides an estimate ofw, depending on the ratio of spoof feedbackb.
Figure 3 graphs the number of updatesk needed to decrease the weight of a truthful



repository (b = 0) to 99% of the weight of a dishonest repository.6 The number of up-
dates is shown in comparison to the smoothing factorz and for three different ratios of
spoof feedback. The exponential moving average replaces old information at a constant
ratez. This explains why it requires more updatesk to adapt to a repository withb = 1
in comparison to one withb = 0.25, as shown in Figure 3. However, in P2P data struc-
tures a peer usually interacts with its neighbors frequently. The example calculation of
Section 2 has shown that it requires around 10 interactions between neighboring peers
to forward one query from the issuer to the peer that can actually answer it in a setting
with 10,000 peers and a four-dimensional key space. Thus, even though the value of
k = 35 atz = 0.1 andb = 1 might seem to be large, it actually tells us that the weights
are adjusted within less than four rounds. Larger smoothingfactors shorten this period
of time even more.

Robustness Against Collaboration AttacksThe last question that we have to address
is: How useful is our approach in the presence of peers running a collaboration attack?
In particular, does it pay off for a group of dishonest peers to ’boost’ the reputation of an
uncooperative peer by issuing and forwarding spoof feedback? A series of experiments
addresses these questions. Our experimental setup consists of 1,000 peers in a setup
where each peer has 26 neighbors. 50 uncooperative peers ignore 50% of the incoming
queries.x dishonest peers surround each uncooperative peer. Thesex peers try to push
the standing of the uncooperative one by disseminating spoof positive feedback items
at a rateb. In other words, they generate honest feedback at a rate(1− b). In a series of
625 experiments, we varied the number of attackers fromx = 0 to 25 and changed the
ratio of spoof feedback fromb = 0 to 1. As outlined in Section 2, only the neighbors
can observe the behavior and generate feedback on a peer. Thus, the experiments with
x = 25 identify extreme settings where dishonest nodes almost completely surround
the uncooperative peer.
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Fig. 4. Unhandled transactions in FairNet.

6 Because of the exponential moving average, the weights asymptotically converge to the ex-
pected value. Hence, we are satisfied with a conformance of atleast 99%.



Each experiment consists of 200,000 queries. The numbers are taken after an initial-
ization period that allows the reputation system to reach a steady state. We measured
the numberc of queries dropped per round by all uncooperative peers, i.e., the total
number of unanswered queries caused by 50 uncooperative peers, ’supported’ by up to
950 dishonest peers issuing spoof positive feedback. Figure 4 shows the results of our
experiments without our measures. It indicates that uncooperative peers drop a small
fraction of queries even without the involvement of any dishonest peers (x = 0). This is
because our experimental setup does not include data replication, and queries referring
to keys in the zones of uncooperative peers are answered witha probability of 50% only.
Except for this phenomenon, the reputation system does wellwithout countermeasures
against spoof feedback, even in the presence of dishonest peers. Only collaboration
attacks where more than one third of the neighbors of an uncooperative node issue sig-
nificantly more than 70% spoof feedback increase the number of unanswered queries.
On the other hand, there have already been distributed attacks on the Internet with thou-
sands of ’zombie computers’ compromised by viruses and directed by a single attacker.
Similar attacks on P2P data structures are conceivable as well. Thus, measures against
spoof feedback are still necessary.
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Fig. 5. Unhandled transactions in FairNet with weights.

But how do the experimental results change with our approach? To investigate this,
we replayed our series of experiments with our measures activated. Figure 5 contains
the results. The figure shows two findings: The impact of the attacks has been largely
reduced, and the number of collaborators required for a successful attack has increased
considerably. At least 17 attackers have to disseminate more than 80% spoof positive
feedback to increase the number of unanswered queries significantly. Moreover, the
maximal number of messages lost resulting fromx = 25 absolutely dishonest collabo-
rators is approximately one third of the one observed in the experimental setup without
our approach. Other experiments with spoof negative feedback on cooperative feedback
subjects (omitted here for lack of space) yield similar results. Summing up, repository
weights are an effective countermeasure against collaboration attacks in reputation sys-
tems for P2P data structures.



6 Related Work

This section reviews approaches that are related to our measure against spoof feedback
in reputation systems for P2P data structures. The section starts with a (very) short
outline of related P2P data structures, followed by a reviewof P2P reputation systems.
An overview on truthtelling mechanisms that are not specificto P2P systems concludes.

P2P Data Structures. P2P data structures address a core issue in data management:
administering of huge sets of (key, value)-pairs under a high rate of parallel transac-
tions. The various approaches [7–10] differ primarily withregard tocontact selection
andpath selection, i.e., which are the peers a node can communicate with and forward
messages to. The topology of the key space is closely relatedto contact selection and
path selection. Common topologies include hypercubes (e.g., CAN [7]), rings (Chord
[10] ), virtual search trees (P-Grid [8]), and butterfly networks (Viceroy [9]); see [6] for
an analysis of the impact of the topology on the characteristics of the data structures.

P2P Reputation Systems.All of these approaches assume that nodes readily follow
the protocol. We think that this is not realistic. Reputation systems allow the peers to
deal with unreliable nodes by collecting, distributing andaggregating feedback on the
behavior of the participants in the past. One of the first reputation systems based on
P2P data structures is [15]. The approach is based on complaints, i.e., negative feed-
back. Each peer stores the feedback it has generated in a global repository that is ac-
cessible by all peers. A peer assigned with more negative feedback than the global
average is deemed unreliable. As a measure against spoof feedback, the approach pro-
poses to check not only the number of complaints on the peer inquestion, but also the
reputation of the peers which issued the complaints. But this does not help against a
compromised global repository and comes with a large overhead.EigenTrust [16] is an
approach to reputation systems that is based on a distributed eigenvector computation.
The approach uses a P2P data structure to store a global trustvector. For each pair of
peers, the trust vector contains a normalized reputation value, based on the number of
satisfying and unsatisfying transactions. In order to avoid spoof feedback the reputation
value of each peer is recursively weighted with the reputation of its ’observers’. How-
ever, cooperative peers are not forced to provide truthful feedback in settings such as
ours. Another assumption that does not hold in P2P data structures is that an initial set
of users is known to be trustworthy.PeerTrust [17] derives trust values from the satis-
faction earned by each transaction, the credibility of the participating peers, the context
of the transactions and community-specific issues. Similarto the other approaches, the
trust model of PeerTrust depends on a secure, global data structure that stores feedback.
Spoof feedback is addressed with a credibility factor derived from the assumptions that
uncooperative peers tend to disseminate spoof feedback andcooperative peers usually
issue truthful feedback. These assumptions may fail in the presence of groups of collud-
ing peers which strive for ’strategic’ goals, e.g., discrediting other nodes. A comparison
of other P2P-based reputation systems is shown in [14].

It is challenging to secure global data structures against dishonest peers. A peer
which wants to influence the reputation system could try to insert spoof feedback, tam-
per with feedback items it is supposed to forward and manipulate feedback in its local



zone. FairNet [11], our reputation system for P2P data structures, avoids these vulnera-
bilities by introducing mechanisms that work on local data structures. In particular, the
peers maintain local repositories and exchange feedback with every message that is sent
out to another peer. With local repositories, an attacker that wants to modify a certain
reputation value is forced to compromise the repositories of many peers. However, local
repositories without further countermeasures may still fall prey to spoof feedback.

Truthtelling Mechanisms. In addition to mechanisms designed for certain reputation
systems, others have investigated approaches to incentivize truthtelling. The approaches
do not depend on a specific implementation.CONFESS [3] aims at eliciting truthful
feedback in buyer-seller situations. The idea is that buyers who appear repeatedly will
build a reputation for truthtelling in equilibrium. The authors formally prove the effec-
tiveness of the mechanism under the given assumptions. However, their solution is not
readily applicable to our setting, for two reasons. First, CONFESS requires a central
instance that all participants deem trustworthy. This is different from P2P architectures.
Another issue is that uncertainty/subjectivism is not partof the model, at least currently:
If a seller behaves cooperatively, the buyer will always notice this. If the seller does not,
the buyer will notice this as well. Our approach in turn does without this assumption.
The rate of such errors is an endogenous parameter of our approach.

Other proposals, e.g.,Bayesian Truth Serum [5] andPeer-Prediction [4], pursue a
different (i.e., not reputation-based) approach to the same problem, albeit in a slightly
different setting. They compare the probability distribution of truthful answers to other
probability distributions (the one of the answers of all participants in the case of Peer-
Prediction, and the one predicted to be the distribution of the answers of all participants
in the case of the Bayesian Truth Serum). This comparison allows to maximize the
expected payoff of truthful answers, as formally shown in the respective publications.
Unlike CONFESS, it does so without requiring repeated interactions. However, both
approaches are not applicable to our setting as well. First,Peer-Prediction requires that
the probability distributions of answers (of truthful feedback, to translate this to our
setting) is known; Bayesian Truth Serum in turn requires that peers come up with an
estimate of this distribution. Another issue is that, in spite of the name of one of the
approaches, they are not Peer-to-Peer. More specifically, it is unclear how to implement
them in an environment consisting of only the peers (and no other instances that could
act as coordinators etc.). Finally, to the best of our knowledge, there have only been few
experiments evaluating these approaches [18].

7 Discussion

The experiments presented so far have acknowledged that ourcountermeasure can be
used with CAN and FairNet. But it remains to be discussed if our countermeasure are
applicable to other reputation systems and application scenarios as mentioned in Sec-
tion 6. Unlike many other approaches, FairNet does not depend on global data struc-
tures. Instead, the peers manage and exchange feedback locally with each interaction.
However, our approach does not depend on the location where the feedback is stored.



Instead, the peers just assign weights to the nodes which forward the feedback, accord-
ing to the correlation between that feedback and the transaction outcomes observed.
Thus, our approach is applicable to each reputation system where nodes exchange feed-
back items, e.g., [15, 19] or (with some changes in the architecture) [17].

Our approach relies on mechanisms to detect spoof feedback with little resource
consumption. The downside is that the approach requires several interactions before
adapting to the behavior of a node, according to our evaluation. Thus, our approach
requires reputation systems characterized by a high throughput of feedback. However,
this is generally the case in systems such as P2P data structures, and it is an attribute of
many fields of application, e.g., semantic web or distributed search engines.

The experiment on collaboration attacks has indicated a significant improvement of
the reliability in the presence of many peers issuing spoof feedback at a high rate. But
the experiment has also shown that the countermeasure cannot prevent any transaction
from being forwarded to unreliable peers. Therefore, our approach is only applicable in
settings with many ’inexpensive’ transactions where a few messages may get lost.

8 Conclusions

Spoof feedback is an important issue in any kind of reputation systems. Dishonest par-
ticipants may wish to discredit others or try to take advantages from disseminating spoof
feedback. The problem becomes even more difficult in distributed reputation systems
for P2P data structures. Such settings are characterized bya high throughput of feed-
back and complex collaboration models with peers that cannot be observed from one
instance. In this paper we describe the requirements that a reputation system for P2P
data structures must fulfill and propose our new approach fortruthful feedback. The
approach takes advantage of the fact that each peer can observe the utility of feedback
obtained from others after having observed the outcome of a transaction. The peers
derive weighing factors of (feedback forwarder, feedback subject)-pairs.

We evaluate our approach with an analytic model and by means of extensive ex-
periments. The analysis confirms that the differentiation between useful and less useful
feedback is effective, irrespective of the particular implementation of the reputation
system. The experimental evaluation demonstrates the applicability of our approach
in realistic settings. It shows a significant reduction of the impact of collusion attacks
where more than 90% of the peers issue spoof feedback.
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