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ABSTRACT

Structured peer-to-peer systems allow to adminiatge volumes
of data. Several peers collaborate to generate eay qresult.
Analyses of unstructured peer-to-peer systems, Iyaofethose

for file-sharing, show that peers tend to shirklambration. We
anticipate similar behavior in structured peer-&ip systems.
Recently, protocols to counter uncooperative bedrain such
systems have been proposed. This article examiree®ehavior
of peers under such protocols, using game theofisresult of
this paper is a set of hypotheses, e.g.: Peerseangueries if
more than a certain percentage of their querieengvered. In
many situations, free-riding does not lead to akwown of the
system. Trust, reciprocity and reputation building a feedback
mechanism are behavioral motives that increaseeratipn. As a
second step, we have conducted economic experimétitshu-

man participants to validate our predictions. Sexpperiments are
important because we do not need to make any assunsipe-

garding the behavior of peers. It turns out tha finedictions
remain valid in these experiments.

Categoriesand Subject Descriptors

H.1.2 Information Systems]: Models and principles — human
factors, human information processing; H.3.Af¢rmation Sys-
tems]: Systems and Software — distributed systems,rindgion
networks; E.1[Data]: Data structures — distributed data structures

General Terms
Measurement, Design, Economics, Reliability, Expentation,
Human Factors
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Economic Experiments, Free-Riding, Game Theory,igbdex-
change, Structured Peer-to-Peer Networks.
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1. INTRODUCTION

Peer-to-peer systems (P2P systems) are an alterriatiraditio-
nal system architectures. They are distributed dmaithout any
coordinator. Every peer takes part in the workrdturn it can
consume services, such as content provided by tfitle P2P
approach is superior to monolithic systems in sdvegspects,
such as reliability and scalability, at least iedhy.

Experiments with P2P file-sharing systems sH@lthat peers
controlled by humans tend to free ride, i. e., theg the resources
provided by the system while not contributing aegaurces of
their own. We expect similar behavior in structuR2P systems:
Queries in structured peer-to-peer networks, smdaother P2P
systems, are processed by more than one peer. ¥ crraains
unevaluated if one of these peers defects. Idemgifpuch peers is
almost impossible — queries cannot be tracked. élenpeer has
to count on the cooperativeness of the other p&éis.is also the
case in Content-Addressable Networks (CAN), theiawarof
structured peer-to-peer networks considered hengeék has in-
formation only about a small subset of all nodés,neighbors. It
cannot observe the behavior of other nodes. Hemgm®er does
not know how reliable these other peers are.

[4] address free-riding in such structured P2Pesys{4], by ex-
tending the CAN protocol with an incentives meckami Each
peer collects information on the interactions witeighboring
peers that have satisfied it. They shighy both analytically and
by simulation, that the protocol proposed discrimbas well
between cooperative and uncooperative peers. Howthie re-
sult is based on several assumptions that arevediastiff. The
most rigid one is that the only kind of free-ridirgehavior
considered is that peers do not forward or answegries.
Another reason why4] is not complete is that several questions
remain unanswered: Which parameters do resultopeation in
structured peer-to-peer systems? Given this infoomacan we
further improve the design of the system? Do theumptions
hide any situations which could lead to a collapiséhe system?

In this article, we analyze the behavior of pearstiuctured P2P
systems from a strategic perspective. This wilphe$ to answer
these questions and to deepen our understandirgjrudtured
P2P networks. We represent certain aspects oftstad: P2P
systems with idealized game-theoretic models. Wegdee the
equilibria of the game theoretic models as staitlatons of P2P
systems. Given these models, we derive our hypesheBirst, we



expect cooperation between peers to be correlatbdhe degree
of trust of peers in the system. Next we expect thpeer can
identify individual peers, and it will play diffené strategies with
different peers. We also expect that free-ridingaafertain share
of peers will not let the system break-down. Whesge4riding
occurs, we expect the feedback mechanism to inereas
operation and to reduce the impact of free-ridifigally we ex-
pect the probability of participation in the systemdepend on the
fraction of queries that the system has answerdukeipast.

It is well known from experimental economics thagdretic pre-
dictions often differ from actual behavior. Conseaqtly, we con-
duct experiments with human peers in the laboratbrythese
experiments, each human participant controls tieder of one
peer of a CAN. To our knowledge, this is the fagtaluation of a
protocol for peer-to-peer networks with human pastints in the
laboratory. There is one significant advantageuchsan analysis:
Simulations or other models rely on assumptionscenring the
behavior of peers, e.g., the frequency of queees ar the criteria
for answering queries. Such assumptions depenth@expecta-
tions of the designers. With our approach in tume does not
need to make any assumptions regarding the behafvers — it
is observed during the experiments!

With these experiments we want to identify thetefgies humans
might come up with. In addition, we are interestedheir effect

on robustness, efficiency and network traffic. Winé that the
number of participants in our experiments is re&dgi small,

compared to the number of peers in real-world Pg&tems.

However, the behavior of the participants — in gatwe terms —
does not depend on their number in our experimestsye will

explain. On the other hand, we claim that our agginds superior
to relying on the assumptions of protocol designEmsally, our

experiments confirm the hypotheses mentioned above.

This article has the following structure: In Senti@ we review
related work. Section 3 gives a short introducttonCAN. In

Section 4 we formalize structured P2P systems uwsleglized
economic models and derive our hypotheses. SeBticontains
the experimental design. Section 6 presents ancushss the
experimental results. Section 7 concludes.

2. RELATED WORK

Empirical studies on the usage of peer-to-peer-sfiaring
systems like Gnutelld2] or Napster[21] have shown that a
majority of users prefers not to share any of thesources with
other users. Such users prefer to consume theroesoprovided
by others without contributing in return. Ramasaanyl Liu[16]
show that this behavior, called free-riding, carerevead to a
collapse of these systems or at least may haveaeeegative
effect. Hence, P2P systems need to be evaluatéusirrespect
before deployment.

In the literature several approaches deal with thisblem.
Schlosser and KamvdR2] compare different P2P algorithms
using simulations. They model characteristics usibgervations
from unstructured file-sharing networks. On the eotthand
mathematical models can be used to analyze therpahce of
peer-to-peer systems. Ge et[all] use such a model to compare
structured and unstructured peer-to-peer systerhs. authors
show that structured P2P systems outperform oti2& mRfra-
structures regarding the volume of data transferféey do not

investigate the influence of uncooperativenesshenstystem, but
expect all participants to cooperate.

Strategies to establish relationships within P28tesys are ana-
lyzed in [9] and [7]. They provide cost models for internet-like
network structures. Each peer is seen as a norecatye player,
which has a benefit from participating in the systand it wants
to minimize the price of participation. This worgards only the
distance between nodes and the degree of conngctAd an
extension[6], the load imposed on each peer is considered in
addition. The authors analyze existing P2P strestusing game-
theoretic concepts like social optima and Nash|#xgia.

Golle, Leyton-Brown and Mironoy12] propose a simple game
theoretic model to analyze the behavior of pees R2P system
with central coordinator. To motivate sharing, thieyroduce
several payment mechanisms. Experiments then oontfireir
theoretical results. A similar approach is desatibe[17]. Here,
peers are modeled as uncooperative players. Thik egplies
reputation-based incentive mechanisms to unstredtuP2P
systems. The participating peers are expected thavee
uncooperatively. It is shown that the mechanisnip teecounter
free-riding. [10] extends this work by a more detailed analysis.
Several reputation-based incentive mechanisms andlations
with different attack strategies are used to dernates the
usability of the system.

Another approach to eliminate free riders is takefb]. Here a
differential service-based incentive mechanism g&edu It is
shown that the strategy of a peer solely depend®hi@menefit it
receives from the system. A peer joins the sysfemsiexpected
benefit is above a certain threshold.

[23] is a preliminary version of this article thdies not consider
feedback mechanisms, which we deem one of the imipgjuing
aspects of this paper. The analysis in this pajser ia broader
and takes more models into account.

3. CONTENT ADDRESSABLE NETWORK
Structured P2P systems manage (key, value)-pamsh Epeer
knows a subset of the peers participating in thetesy, and it
administers a subset of the data. Data is disgtb@mong the
peers deterministically: Data objects are assigiwediodes ac-
cording to their keys. In the last years severahssystems, like
CHORD[29], Tapestry30] and Pastry20], have been proposed.
In this paper we focus on Content Addressable Nedsv¢CAN)
[18]. In contrast to other approaches, CAN peetg kmow other
peers “close” to it. With CAN one can guaranteet tthee data
object for a given key is retrieved within a camtaiumber of
steps, under various model assumptipdls We use CAN as a
platform since its routing flexibility is relativel high [13].
Participants in the experiments have a choice wtoeferward the
query to.

More specifically, CAN use a hash function to maykto coor-
dinates in an n-dimensional space. This space ittipaed

among the peers. Each peer stores all data ohjbase mapped
key lies in its partition. In addition, each peenolws its

neighbors. Neighbors are the peers which admingsgertition of

the space that borders the partition of the cupeet.



Example. Think of a CAN storing information on movies. The
information about the movie “The Crow” might be ‘filler”,
information stored for “Pride & Prejudice” might B®rama”,
and the one of "Chicken Little” might be “AnimatibnSuppose
that the hash function maps “The Crow” to the comates (0.3,
0.3). The peer whose partition contains (0.3, 8a8)es the (key,
value)-pair ("The Crow”, “Thriller”). Figure 1 illstrates the parti-
tion of the coordinate space among the nodes. Baeh of the
CAN corresponds to a rectangle, its partition ie ttoordinate
space. The peer administering the data object/inébamation
corresponding to key “The Crow” is Peer 2. [
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Figure 1. Content Addressable Network

3.1 Basic Routing Algorithm

Each peer obtains positive utility by receiving adatbjects be-
longing to a key it is interested in. To evaluatguary, i.e., to find
the data object corresponding to a key, the sysiees a simple
variant of greedy forward routing: A peer sendgjitery, the key
of the object sought, to a neighbor whose partitsocloser to the
hash value of the key. The recipient checks wheth&tores the
object. If not, it forwards the query to one of itsighbors. l.e.,
the peers repeat this step until the query arratethe peer who
has the information desired. Finally, the queryleis returned to
the issuer of the query.

Example. Figure 1 illustrates the routing algorithm for aegy

“The Crow” issued by Peer 1. The 2-dimensional hastttion

maps key “The Crow” to the coordinates (0.3, OPer 1 now
identifies the neighbors which are closer to therdmate (0.3,
0.3) than itself and forwards the query to onehein. One possi-
ble approach is to use the peer with the smallestidean dis-
tance to the mapped key. In our example, thisésRber 3. The
query is now forwarded to this peer (Arrow (1)).ilpeer does
not have the desired query result. Hence, the gefyrwarded
until it finally reaches Peer 2 (Arrows (2) and)(3Jhis peer then
answers the query by returning the query resuftger 1. [ ]

As in other P2P systems, all peers should contitmitthe same
extent. Hence, the key space forms a torus. Thera@edges of
the coordinate space. In consequence, the amouimcoming
messages should be roughly equal for all parti¢gpaassuming
that query points are evenly distributed as well.

With the conventional design of CAN described hetds as-
sumed that all peers forward or reply to all incogngueries.

3.2 Feedback

In the CAN protocol described [d], a peer may attach informa-
tion on the reliability of other peers, so callegdback, to out-
going messages. Each feedback object has a vatlia anbject,
the peer described by the feedback. For the moregnts assume
that peers giving feedback behave as intended éyptbtocol
designer. In this case, the feedback value is positive) if the
subject has been reliable and ‘—* (negative) otie@wSince a
peer cannot explicitly observe the behavior of offers, it might
give false feedback.

Example. Consider again Figure 1. When Peer 1 sends its/que
to Peer 3 (Arrow 1), Peer 1 attaches informatioouameighbors
of Peer 3, e.g., Peer 4. Suppose that Peer 1 teaslplinteracted
successfully with Peer 4 several times. Hence, atld/ attach
positive feedback to the outgoing query. [

4, MODELSAND HYPOTHESES

In this section we apply several existing game It models to
our scenario. Identifying and applying these modéeks first con-
tribution of this paper. They help us to understamel strategic
options of peers in structured peer-to-peer netsifnam an eco-
nomic perspective. Based on these models, we dseiveral hy-
potheses on structured peer-to-peer networks. Avadenot only

have a choice between cooperating and free-ridiraui setup. It
is also free in individual decisions, e.g., whetherforward or
answer an incoming message, and if it should iasygery or not.

The utility of an actor determines his incentivasan economic
modeling. He can obtain utility from money and otligctors.
Costs result in negative utility, while positiveyp#fs result in
positive utility. Similarly, doing work results imegative utility.

When modeling the CAN, we assign utility to any gibke action
of a peer as follows: If a query is answered thiainsender re-
ceives positive utility. Answering, forwarding oergling a query
incurs negative utility. The utility of issuing féleack is zero in
our experiments. This is because the effort of geimgy feedback
is negligible for system peers, since they keegktaf the behav-
ior of their neighbors anyhow. For simplicity weuate money
with utility. This is in line with the fact that éhutility of a person
increases with the amount of money received. Tloisisheven
though the correlation is not necessarily linear.

4.1 Investment Game

We start by comparing a P2P structure to the imvesst game
[3], to better understand cooperation. In this gamwe groups of
participants (Groups A and B) exist. ParticipanfsGuoup A
obtain a fee of $10. Each of them may then sendesofrhis
money to an anonymous counterpart in B, aka. inveglayer in
Group B obtains three times the amount of money &ethim,
and participants in Group A know about this. Thetipgants in
Group B then decide which share of the money tormeto their
counterpart in A, and how much money to keep fentbelves.

The game is comparable to a P2P structure. If ageeels a query
it spends money, i.e., it invests. We interpretabsts for sending
a query as allocation for storing data on behalftbers. Another
peer can answer the query. This leads to a monettuyn that
overcompensates the investment. Answering and fdimg
queries are investments. This is because answaridgforwar-
ding are prerequisites for having queries procebgeather peers.



As the game is not repeated, the game-theoretigisnl of the
investment game is the subgame perfect equilibrirequilib-
rium Player 2 does not return any money to Playérhls is be-
cause he does not have any advantage from doisgbe game
ends after his action, he would only lower his ghythe efficient
solution of this game however is that Player 1 stsell of his
money. Based on fairness considerations, PlayédroRId return
half of the investment of Player 1 times three kedp the other
half. In experimental studies of this game, Bergckbaut,
McCabe show that the efficient outcome can be oksg8]. This
solution can be explained by trust and reciprocityPlayer 1
invests he trusts in Player 2. If Player 2 returmmey he shows
reciprocal behavior. What is called cooperatioP2P structures
can be subdivided into two motives: trust and nexity.

From this model we derive the following hypothesastrust and
reciprocity in structured P2P networks:

Hypothesis T (Trust)The query intensity in the system is posi-
tively correlated to the average payoff of the peer

This hypothesis covers the trust argument. The peegs trust in
the system, the higher the cooperation. This |éadsgher aver-
age payoffs of the peers. Trust should be measagete number
of queries sent by a peer, the query intensity. Mbee queries a
peer sends, the higher its trust in the other ptaye

Hypothesis R (ReciprocityThe strategies of a player are person-

alized, i.e., they depend on the identity/iderdifion of a peer and
not only on the actions of the system as a whole.

Hypothesis R covers the reciprocity argument. Recipy should
result in strategies that account for the pastoastiof another
peer. If the queries of a peer have been answeraddither peer,
it will also answer queries of the other peer. Nthtat this
hypothesis is different from observations concegniP2P file-
sharing. Our explanation is that behavior in fitessng systems is
based on factors absent from the protocol investibdere. In
particular, personalized strategies are difficolinhplement there.

4.2 Helping Game

If a peer cannot distinguish between peers, mati&dat motives
are important. Due to forwarding, it is difficulh &ttribute query
results received to the behavior of one particpéer in structured
P2P systems. Hence, indirect interactions are itaptrA model
which considers this is the helping game. Theeep®pulation of
players who may help each other or not. In eacimdoof the
game a pair of players is randomly matched. Itaslikely that
two players interact with each other frequently.eQuf the two
players is given the chance to donate; the otherwvati receive
the donation. The cost of donatings lower than the benetfit of
the recipient. If one does not donate, both paicts receive no
reward. Table 1 shows the corresponding payoff imafts the
donor will not interact with the recipient lateisrational behav-
ior would be to defect. This is because his pajmfidefecting is
higher than the payoff of donating. Contrary tos#hé¢heoretical
predictions, in experiments with human participamtg can ob-
serve investment and returning money, but muchtless in the
case in which partners are known. In these expetisneall peers
show cooperative behavif8].

Another key question in our scenario concerns theep of feed-
back. Does feedback increase cooperation and leelgédct to

free-riding? The helping game has been extendeairhgchanism
that allows for reputation buildin@7]. Here every player in the
helping game has a global reputation value. Thigevncreases
whenever he donates and decreases if he doeslhpar#cipants
in the system can see the value. In this way a geeiget an im-
pression of the past actions of another peer. klogy to the
standard helping game no investment should be wbdefrom
the theoretic point of view. Experiments of thisrgawith human
participants show that the average payoff increasdbe game
with reputation, compared to the standard helpagef8], [24].
We derive the following hypothesis from these ekpents:

Hypothesis F (Feedback)lhe average payoff in a peer-to-peer
structure with feedback is higher than in one witho

Table 1. Payoff matrix helping game

Donor
donate
b/-c

defect
0/0

Recipient

This hypothesis deals with the effectiveness ofilfeek. The
experiments mentioned show that feedback increhseaverage
payoff in the system. This can only happen due éoentoopera-
tion and less free-riding.

4.3 Service Model by Hensand Vogt

The last model we consider is the service modeHeys and
Vogt [14]. Here agents can be in two different state#dt they

are in a state where they can deliver a servicat¢Sk) or con-
sume a service (State B). Compared to our struttl@P system,
delivering a service corresponds to answering owdoding a

query. When delivering a service, an agent loosiés/uConsum-

ing a service on the other hand corresponds taviegea query
result in structured P2P systems. Consuming a cgeryields

positive utility. The utility for consuming a secei is higher than
the one for delivering a service.

n

o (A)

1

d
Figure 2. Strategic optionsin the model of Hens and Vogt

The model is round based. In each round the age&kate A can
deliver a service (d) or not (n). An agent in Stdoes not have
any action choices. After each round an agent a&teSA who

offered a service is matched with an agent in SRaté enough

agents in State A are willing to deliver a servieeery agent in
State B can consume one. The number of servicesedffnever
exceeds the one of services requested. This isibethe number
of agents in States A and B are equal, and agentStdate B
always want to consume the service. Otherwiseaaiémp of the

agents in State B is randomly chosen. They rectigeservice,
while the other agents in State B do not. The ay#mit have
been matched then switch to the other state. Figuikistrates



the game. The end of the game is not specifiedosi pis in many
other economic problems. An agent assumes thahuheer of
rounds is infinite.

Between two rounds the utility of each actor iscdisted: In
consequence, the utility for consuming a servicéhi future is
lower than the utility for consuming a service ndfadiscounting
was not introduced, it would not matter when améageceived a
service — the utility would always be the same.tides payoff for
consuming a service is higher than the cost ofioffea service, it
would be rational to always offer a service wherState A. Co-
operation would be the dominant strategy. Whenadisting is
introduced, the outcome of the game is less obvidhmk of an

agent remaining in State B for several rounds, #eddiscount
factor is high. Then the utility gained from consogithe service
and changing to State A is low. It is lower thaa thility lost for

offering the service, in order to arrive in StaténBhe first place.
Using economic methods one can show when exactiperation
is rational[14]: This is the case if the expected payoff ie th-

ture exceeds the present costs. The standard ahptoafind

equilibria for games with finite horizon is backwainduction.

Backward induction shows that only non-cooperabebavior is
rational. When the horizon is infinite, as in stured P2P sy-
stems, a common method to identify strategies seth@n statio-

nary equilibria.[14] shows that the key parameter that makes the

difference between cooperative and uncooperatihaer of an
agent is the fraction of his service requests Eeee as desired. If
the fraction exceeds a certain cut-off value, tené cooperates.

Another theoretical result is that free-riding ofeopeer does not
lead to a break-down of the system. This is becdligeother

peers have a positive payoff, even when one paertseto free-

riding.

As each peer may forward or answer a query (proaidervice)
or receive a query result (receive a service), @ethe model of
Hens and Vogt as a simplification of the interagsion structured
P2P systems. If the number of peers providing eiceis below
the one of peers receiving a service, this resulfeers which do
not receive results they have requested. We expests in our
system to use the equilibrium strategies of the ehothis yields
the following hypotheses.

Hypothesis S (Cut-off strategiedj the number of queries an-
swered divided by the number of queries issued phager in the
past (past success frequency) exceeds a threshatdf{ value),
the player will cooperate in the P2P system. Otiesrwthe player
will not answer, forward or send queries.

The model of Hens and Vogt also predicts that fieierg does
not lead to a break-down of the system in equilitori This leads
to Hypothesis FR for structured peer-to-peer system

Hypothesis FR (Free-Riding without break-dowrjee-riding of
1/k of all peers in a structured P2P system will eadlto a break-
down of the system.

Here, k is the number of peers in the system. Our experisne
show that this holds fok=6. We expect this result to hold for a
fraction of 1/6 of free riders in larger P2P systems well. How-
ever, experiments with more participants are exg¢tgraxpensive
both in terms of organization effort and compemsatfor the
participants. This is in the way of a broader \atiion of this hy-
pothesis. We intend to carry out further experirmenith both

system peers and human peers in the future, wiisthieyond the
scope of this article.

5. EXPERIMENT DESIGN

We have implemented a simulation environment folNO4sing
Java. It allows human participants to control pebfsre specifi-
cally, a participant in the experiment controls teategy of one
peer. l.e., he decides whether to answer or forvarduery,
whether to send one, and which feedback to gendratether
words, the participants played against each offtes. simulation
environment ensures that peers interact propdrigeiforms the
bookkeeping for each peer, as we will explain,hsd the human
participants can focus on their strategic decisions

The number of participants in each experiment gellan a claim
by Selten[25]. He postulates that “four are few and six rany”.
In other words, a small group of more than fivespes shows the
same behavior as a large group. Sediidnwill also comment on
this issue. Hence, we conducted our experiments sit players.
The experiments were played in ten groups, usingpecer ter-
minals to control the peers. The terminals wereasgpd from
each other to prevent communication between ppatids.

The theoretical models behind our hypotheses aecban utility.
Since we cannot directly observe utility, we haeéghe partici-
pants depending on their behavior in the experimddtiring the
experiments the participants received points arnd wah points.
After the game, we computed their monetary rewaaded on
their balance in points. Here, 100 points haveltedun 2 €. The
average payoff per participant was 11.05 €.

5.1 Experiment Structure

In the beginning of each experiment the participanere ran-
domly assigned to seats in the laboratory. The raxgets lasted
approximately 120 minutes. The first 20 minutesevesed for
orientation and to understand the instructionsemiout in written
form. After this first phase the participants haaveen asked to
play several rounds to get used to the experimafierwards
three games were played. We will refer to these ezaras
treatments.

Each treatment started with 20 rounds which weageqa without
discounting. Afterwards a discounting rate was adtrced. In
economic experiments, a discounting rate 3 corredpdo the
probability that the game continues after the aurperiod. It is
known from economic theory that the interpretatidifR as a con-
tinuation probability or a discounting rate does affect the re-
sults of an economic experiment. We used a discoyimate of
0.1 in our experiments. l.e., we rolled a 10-sidéce, and the
treatment ended if the dice showed 1.

After the treatments we conducted a so-calledegyajame. The
concept of strategy game has been originally iniced in[26].

By then, it has become a common method to idestifjtegies in
game settings, cf27]. A strategy game is one where participants
are simply asked to write down their strategiese¢onomic ex-
periments strategy games are typically played #feparticipants
have taken part in several treatments. This alkovextract strate-
gies of experienced players: Participants learrindutreatments
and refine their strategies, and they tend to feteorough un-
derstanding of the experiment afterwards. In atesggsa game
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participants describe the strategies they have disedg the treat-
ments. Participants base their strategies on tlyeffpatructure.
Strategies may also depend on treatment paranstexell as on
the history of a treatment. From a theoretic pointiew, partici-
pants face the same task in the strategy game’esalhplays of
the game. The difference is that participants heawecide for all
possible situations in a strategy game, comparezh&situation
in the play of the game. A strategy game reveaismaplete strat-
egy from a game-theoretic point of view. This ipitglly not the
case in individual plays of the game.

Finally, each participant was paid depending orpki$ormance

5.2 Treatment Implementation

In the beginning of each treatment all participamteived a list
of 200 strings representing keys in a structured® P2twork
(List A). For every key from one of the lists thestem stored one
data object. The data objects were distributed dhel every
participant had to store 200 of them (List B). Ewéough the
system consisted of ‘human’ peers, the human f@atits did not
have to remember the (key, value) pairs themsebessimula-
tion environment took care of this issue. In everynd each par-
ticipant was allowed to issue a query, i.e., asklie value corre-
sponding to one of the keys on his List A. Morecsfieally, the
simulation environment chose the string. This isaose first test
experiments had shown that human participants ifdudties to
do so. All this reflects the behavior of peers frustured P2P

systems: They keep asking other peers for quenjtse\ partici-
pant had to decide whether to process an incomiegycpr not. If
he decided to do so, he was informed whether hiel@mswer the
query or he had to forward it, i.e., whether théugarequested
was on the list of the 200 strings he knew. If goery had to be
forwarded, the next participant had the same actinices. When
sending or forwarding a query, the simulation emwment pro-
posed to the participant up to three peers as patemdressees.
These peers are neighbors of the current peer.emiieonment
displayed them ordered by their Euclidean distatocéhe hash
value of the query. The participant could then tetme of these
neighbors. The environment then forwarded the qteithis par-
ticipant. The environment lets the user chooseattiressee. This
is because the choice of the next participantsisadegic decision,
which may not only depend on the probability the peer had
the information, but also on the past behaviorha peer. One
reason why we have carried out the experimentsisvte wanted
to force the participants to develop respectivatsgies, and to
observe them, in different treatments.

The balance of a participant at the beginning tfeatment was
100 points. Answering a query costs 5 points, Esane costs 2
points, and forwarding costs 1 point. A participaeteived 20
points for obtaining a data object requested. Sd®eT2.

Figure 3 is a screenshot of the experiment cli¢éwontains infor-
mation on a participant with identifier 0. This yéa has sent one



query to Player 1 and one to Player 4. The infoignain the
bottom-left area of the screenshot indicates ffi® query sent to
Player 1 is already answered, not necessarily ayePIl himself.
The value “(received)” in column ‘reply’ shows thiShe query
sent to Player 4 is not answered yet. Player Orbesived one
request from Player 5 he can answer himself androne Player
4 he can only forward. This information is displdye the upper-
left area of the screen. The center-right areassramary of all
neighbors of Player 0. It tells us that Player 8 kant one query
to Player 1 and one to Player 4. (This piece ajrimition is also
available in the bottom-left area.) The rate of sages processed
is “100.00 %". This indicates that Player 1 hagadty answered
the query. Similarly this area indicates that Playdas sent one
query to Player 0. The value “100.00 %" in the ocotulabeled
‘handled’ indicates that this query is already agr®d. This piece
of information is actually redundant, it can alse $een in the
lower-left area of the screen. The value “Accountthe upper-
right of the screenshot is the payoff of Player 0.

Table 2. Payoff depending on actions

Action Payoff
Initial balance 100
Answering a query -5
Sending a query -2
Forwarding a query -1
Receiving a query result 20

At the end of each round, the participants wererméd about
their payoff in the last round, their total payaffd the result of
the chance move (whether the game continues). dpegies of
other participants, such as their score or theioachoices, were
kept secret. It was impossible for participantdinid out the real-
world identity of other participants. In additiom the information
on their screen, the participants obtained no &urihformation.

We carried out three kinds of treatments. In Treand we tested
for the strategies of human participants in a stmed P2P system
without feedback. Treatment 2 was a variation afaiment 1 —
we introduced a free rider. In Treatment 3 we het participants
exchange feedback. Leaving this point aside, th@attent has
been identical to Treatment 2.

Summing up, each participant had several actioriceBoduring
the treatments: He could issue a query or not. blddcfor-

ward/answer an incoming query or not. When forwagdir send-
ing a query, he could choose the addressee. Irtriieea 3 each
participant could append one feedback object taeaygsent. The
participant could decide on the nature of the faell{positive or
negative) and freely choose the feedback subject.

We used Treatment 1 and 2 to test all hypothesespé-ypo-
thesis F (the feedback mechanism). Treatment 3idvalidate it.

6. RESULTS

This section summarizes the results of our econ@xperiments
with human participants and relates them to ourwttygses. Dur-
ing nine months, we have conducted experiments &dthtudents
from various disciplines in our experiment laboras in the
University of Magdeburg. The participants were uged by an-
nouncements in the university.

6.1 Hypothesis S (Cut-off Strategies)

To test whether cut-off strategies were used (Hygsis S), we
turned to the strategy game. Experience from o#eamomic
experiments shows that players tend to play matisieategies in
the beginning and in the end of a treatment. Hifficult to de-
termine the rounds during which this effect occuignce, we
resorted to the strategy game to validate the lngsig. Another
argument for the strategy game is that cut-offtegi@s may only
be observed from experienced players. The effettearning
should be excluded as far as possible. Furthermareyanted to
relate the behavior of the participants to thegeasment of other
players. This relationship is best detected witatsgy games.

The strategy game showed that the strategies opdhticipants

did not differ between Treatment 1 and 2. For thmited results
see[19]. Most strategies consisted of a start phask amain

phase. During the start phase, which ended aftaw @eriods, the
participants showed very diverse behavior. As padints have
only participated in few interactions in the beghgnof the game,
their behavior in the start phase could not depenthe past suc-
cess frequency. Since economic theory only allomayaing the

behavior of peers in equilibrium, and our hypothésibased on
economic theory, we concentrate on the stratedase@ during

the main phase. Table 3 shows the results of calysis.

The strategies can be classified in the followimgé¢ classes:

a) action choices depend only on the past success fre-
quency of own queries independent from the sender
(with different cut-offs),

b) action choices depend on the past success frequéncy
own queries and on other factors,

c) the strategies are not in line with Hypothesis S.

Three of the sixty participants in the experimepitg/ed strategies
which depend on the absolute number of unansweredes and
not on their rate. Five participants used strategieither de-
pending on the success frequency nor on the alesolunber of
unanswered queries. The 52 other participants glayategies
depending on the past success frequency. 41 of Werm in line
with Hypothesis S. Eleven participants played sligbdifications
of a strategy according to Hypothesis S. Threehefit tried to
anticipate the end of the treatment. Three additlgrintroduced
the condition of doing less than the others (a lahéree-riding).
The other five participants played strategies whiblow differ-
ences to cut-off strategies.

To test whether the experiments confirm Hypoth&sisve intro-

duced the Null-hypothesis that the participantedeb strategy
different from a cut-off strategy. We use a bindrtgst to test this
hypothesis. 41 cut-off strategies (out of 60) cadict the Null

hypothesis. The Null hypothesis can be rejected significance
level of 1%. This test result confirms Hypothesis S

Consequently, we claim that most players pursueffigtrategies
in structured P2P systems. Only very few participaealized the
chance of stopping cooperation in the end of thattnents. Our
conclusion is that this calls for countermeasugssrest defection
in the end phase. One possible approach is thaedinttion of so-
called proofs of work15]. Using such proofs, we could force the
peers to donate the system resources whose vabteedx the
damage of defection in the end phase.



Table 3. Types of strategiesin strategy game

Strategy Category# persons
Cut-off strategy only depending on past a) 41
success frequency

Cut-off strategy depending on past sug- b) 3
cess frequency plus end phase

Cut-off strategy depending on past sug- b) 3

cess frequency plus the condition to
answer less queries than own queries|are
answered
Cut-off strategy depending on past sug- b) 4
cess frequency for queries initially sen
random behavior when answering
queries randomly on behalf of others
Cut-off strategy depending on past sug- b) 1
cess frequency for queries initially sen
answering queries on behalf of others
after several non answered queries were
received
Cut-off strategy depending on the ab- C) 3
solute number of own queries not an-
swered

Different types of strategies C) 5

—

—

Clearly, six participants are few, compared to sand of peers.
Nevertheless, we expect the behavior of the huraaticjpants in
our experiments to be independent from the numibgradici-
pants, at least in qualitative terms: The outcorh¢he strategy
game is that users will play a cut-off strategyespective of the
size of the system. On the other hand, a largdesysnight be
less stable: This is because it is now easier ¢eexkthe threshold
value of the cut-off strategies.

6.2 Hypothesis R (Reciprocity)

The results so far show that participants use tflstategies. We
now analyze whether they are individualized. Tosdo we look
again at the strategies from the strategy gameca\milated the
percentage of strategies which depended directlyhenidenti-
fication of a peer, at least partially. All cut-cffrategies observed
are individualized (for details se€fd9]). 55 strategies confirm
Hypothesis R, while 5 other strategies do not. Agaibinomial
test confirms the hypothesis on the 1% level.

On the one hand, this shows that peers tend toecatgpwith the
players they deem cooperative. On the other hagywlhil expect
cooperation from others if they have been coopearati the past.
Hence it is important to ensure that the systemitgreooperative
players better than uncooperative ones.

6.3 HypothesisT (Trust)

We now evaluate the game with regard to the degfrémist. Ac-
cording to Hypothesis T the intensiip a game quantifies the
trust in the system. Intensity is the number ofrgpsethat were
sent by the peers divided by the maximum numbejuefies that
could have been sent. The number of maximum quénagscan
be sent is the number of rounds of a treatmentiptield with the
number of peers. The average payoff is the sumapbffs of all
participants divided by the number of periods pthyend the

number of peers. Figure 4 shows the correlatiowde intensity
and average payoff for all groups, averaged ove¥ tbatments.

A linear regression shows a positive correlatiotween these
factors, see the regression line in Figure 4. Topesof the line
relating intensity to average payoff is signifidgndifferent (on
the 1%-level) from zero. We conclude that Hypothesiis sup-
ported. In other words, we show that trust increasgciency.

If we look at the strategies in the strategy ganeryeparticipant
started sending queries without knowing anythingualdthe past
of other peers (sgd9] for details). It also holds that all players
react reciprocally and do not free ride. These faats show that
all participants cooperate in a structured P2P ordtw

Because of this conclusion, we had to introduce-fiéing peers
to study the impact of free-riding according to idfpesis FR.
Intensity/Averge gains per round
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Figure 4. Correlation between aver age payoff and intensity

This hypothesis has one important implication of® Biata struc-
tures: We can expect cooperation between the fpeaticg peers.

6.4 Hypothesis FR (Free-Riding without

Break-down)

In Treatment 2 a free rider or destructive playaswntroduced.
This participant was instructed to ask for querguties and to
never process any incoming queries.

Table 4. Average payoff per round

Treatment 1 Treatment 2
Group | all destructive | all destructive | other
peers | peerin peers | peer peers
Treatment 2

1 5.85 771 411 3.45| 4.25
2 2.63 5.90| 0.89 1.27| 0.82
3 4.40 6.52| 1.85 2.35| 1.75
4 6.79 10.20| 2.81 8.00| 1.78
5 7.78 7.36| 4.47 3.83| 4.59
6 2.31 5.95| 0.99 3.67| 0.46
7 4.31 -0.50| 1.47 2.17| 1.33
8 5.30 0.45| 0.93 0.50| 1.02
9 5.01 7.95| 4.61 5.20| 4.50
10 2.10 0.09| 1.27 3.56| 0.81
Mean | 4.65 5.16| 2.34 3.40| 2.13




To test whether free-riding can lead to a break+dofthe system
(Hypothesis FR), we compare the results of Treatsngérand 2 in
Table 4. In all ten groups the payoff in Treatm2nuith a free
rider is smaller than in Treatment 1. A binomiatteshows that
this result is significant on the 1% level. Thei@éncy of the
system is correlated to the average payoff perdolitence we
conclude that the efficiency decreases. The pagoffeatment 2
is about half as high as the one in Treatment tLjths still posi-

tive. If the end of a treatment is known, a P2Resypsmight break
down, according to many results in experimentaheotcs, see

for example[1], and according to the prediction of the subgame

perfect equilibrium. During the first 10 rounds tbe treatments
cooperation tends to be the strongest. Even iattaysis ignores
the first 10 rounds of the treatments, we obta® shme results
(see Table 5). This confirms Hypothesis FR.

When comparing the payoff of the destructive plagethe aver-

age payoff of the remaining peers in Treatment® see that the
payoff of the destructive participant is slightlygher than the
payoff of the other ones: In 8 out of 10 groupgpbgorms better.
However, the average payoff of the destructive gilap Treat-

ment 2 is lower than his payoff in Treatment 171of 10 groups
the destructive participant performs better in Tremnt 1. This

observation is important: it shows that free-riddt@es not pay for
any participant.

Table5. Average payoff after round 10

Treatment 1 Treatment 2
Group | all destructive | all destructive | other
peers| peerin peers| peer peers
Treatment 2

1 5.77 8.29| 5.07 4.67| 5.15
2 3.58 7.80| 0.83 0.09] 0.97
3 4.61 8.00{ 0.97 -0.46| 1.26
4 7.43 9.73| 2.74 5.14| 2.26
5 8.40 7.67| 4.74 1.86| 5.31
6 2.50 1.90| 1.07 3.14| 0.66
7 4.29 0.21] 0.99 -0.57] 1.30
8 6.01 2.92| 0.68 -2.00] 1.21
9 5.71 7.50| 4.98 2.00| 5.57
10 2.31 -1.23| 0.95 4.94| 0.15
Mean | 5.06 5.28| 2.30 1.88] 2.39

Participants might not always be interested in iobtg the

maximal payoff for themselves. Rather, they jusghmiwant to

obtain more than others. This is a special forncahpetition.

Hence we calculate the relative payoff. The retatpayoff is the
quotient of one’s own payoff and the average papdfthe re-

maining participants. If one participant was matehby his rela-
tive payoff, free-riding would be attractive. This because he
earns more than all other participants. For pgadicfs who are
motivated by their own payoff in absolute termeggfriding does
not pay. This is because the destructive partitipaneives a
lower payoff than in the treatments where he coateer Fortu-
nately, in most scenarios, including structured Bg&ems, rela-
tive payoffs are a notion that is only virtual.dther words, free-
riding is not attractive. During our experiments participant

defects, unless he has been instructed to do P2PR protocol
under investigation protects from free-riding.

6.5 Hypothesis F (Feedback)

If all players were able to differentiate betweemoperative play-
ers and free riders, free riders should not obdaiy payoff. This
is the ultimate design objective behind the medrasiexamined
in this paper. To ease differentiation between eoafive and
uncooperative players we suggest the use of fekdtmdave
more information about other players available.

For a test of Hypothesis F (i.e., whether feedhazaiorms well)
we compare the average payoff in Treatment 2 toaterage
payoff in Treatment 3. Both treatments are withreerider. In
Treatment 3 feedback was possible. Table 6 shosveegult.

As can be seen in Table 6, the payoff of the padits increases
on average. This shows the advantage of a feedhackanism if

a free-rider is in the system. This result is ineliwith our

Hypothesis F. If we test Hypothesis F by mears lohomial test
we calculate as a result a tendency (significaregell18%) that
supports Hypothesis F.

Table 6. Average payoffsin Treatments2 and 3

Average payoff in | Average payoff in

Treatment 2 Treatment 3
Group 1 4.11 3.01
Group 2 0.89 0.90
Group 3 1.85 2.95
Group 4 2.82 4.66
Group 5 4.47 6.14
Group 6 0.99 4.3
Group 7 1.47 0.43
Group 8 0.93 -0.20
Group 9 4.6] 6.88
Group 10 1.27 2.17
Average 2.34 3.12

An implication of this result is that a feedback amanism im-
proves the working of the system. Since our systkeady works
very well, the impact of a feedback mechanism isasobig as it
might be in other systems.

7. CONCLUSIONS

Structured P2P networks are useful in a broad rafiggpplica-
tion scenarios. Protocols for structured P2P systeave to en-
sure the stability of the system and the cooperatiopeers. The
system design must rule out free-riding. In thipgrawe used
economic and computer tools to analyze the stmatagpects of
structured P2P networks. With the help of gamerétemmodels
we derived several hypotheses on the strategicvimhaf peers.
The models predict that cooperation between psersrrelated to
the trust of peers in the system. They also prethiet the
strategies of the participants are individualizéhother ex-
pectation is that free-riding of some of the pades not cause a
break-down of the whole system. Based on the modelslso
predict that a feedback mechanism increases caoperand
reduces the impact of free-riding. A final predictiis that the
probability of participation in the system depemasthe fraction
of positive interactions with other peers in thestpaVe then
tested our hypotheses with economic experimenth Wwitman
peers. The experiments confirm our theoretical iptiohs.



Economic experiments with humans allow to test Whiehavior
does not occur in structured P2P systems, and vidg@blavior the
designers of P2P systems must take into accounfaas we
know, we are the first to investigate the behawibhumans who
mimick the role of peers in P2P structures. Congpace simu-
lations, this approach can do without any assumpti@garding
the behavior of peers. Their behavior is simplyestsd.
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