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ABSTRACT 
Structured peer-to-peer systems allow to administer large volumes 
of data. Several peers collaborate to generate a query result. 
Analyses of unstructured peer-to-peer systems, namely of those 
for file-sharing, show that peers tend to shirk collaboration. We 
anticipate similar behavior in structured peer-to-peer systems. 
Recently, protocols to counter uncooperative behavior in such 
systems have been proposed. This article examines the behavior 
of peers under such protocols, using game theory. A first result of 
this paper is a set of hypotheses, e.g.: Peers answer queries if 
more than a certain percentage of their queries is answered. In 
many situations, free-riding does not lead to a break-down of the 
system. Trust, reciprocity and reputation building via a feedback 
mechanism are behavioral motives that increase cooperation. As a 
second step, we have conducted economic experiments with hu-
man participants to validate our predictions. Such experiments are 
important because we do not need to make any assumptions re-
garding the behavior of peers. It turns out that the predictions 
remain valid in these experiments. 

Categories and Subject Descriptors 
H.1.2 [Information Systems]: Models and principles – human 
factors, human information processing; H.3.4 [Information Sys-
tems]: Systems and Software – distributed systems, information 
networks; E.1 [Data]: Data structures – distributed data structures 

General Terms 
Measurement, Design, Economics, Reliability, Experimentation, 
Human Factors 

Keywords 
Economic Experiments, Free-Riding, Game Theory, Social Ex-
change, Structured Peer-to-Peer Networks. 

1. INTRODUCTION 
Peer-to-peer systems (P2P systems) are an alternative to traditio-
nal system architectures. They are distributed and do without any 
coordinator. Every peer takes part in the work. In return it can 
consume services, such as content provided by others. The P2P 
approach is superior to monolithic systems in several respects, 
such as reliability and scalability, at least in theory.  

Experiments with P2P file-sharing systems show �[2] that peers 
controlled by humans tend to free ride, i. e., they use the resources 
provided by the system while not contributing any resources of 
their own. We expect similar behavior in structured P2P systems: 
Queries in structured peer-to-peer networks, similar to other P2P 
systems, are processed by more than one peer. A query remains 
unevaluated if one of these peers defects. Identifying such peers is 
almost impossible – queries cannot be tracked. Hence a peer has 
to count on the cooperativeness of the other peers. This is also the 
case in Content-Addressable Networks (CAN), the variant of 
structured peer-to-peer networks considered here. A peer has in-
formation only about a small subset of all nodes, his neighbors. It 
cannot observe the behavior of other nodes. Hence, a peer does 
not know how reliable these other peers are.  

�[4] address free-riding in such structured P2P systems �[4], by ex-
tending the CAN protocol with an incentives mechanism: Each 
peer collects information on the interactions with neighboring 
peers that have satisfied it. They show �[4], both analytically and 
by simulation, that the protocol proposed discriminates well 
between cooperative and uncooperative peers. However, this re-
sult is based on several assumptions that are relatively stiff. The 
most rigid one is that the only kind of free-riding behavior 
considered is that peers do not forward or answer queries. 
Another reason why �[4] is not complete is that several questions 
remain unanswered: Which parameters do result in cooperation in 
structured peer-to-peer systems? Given this information, can we 
further improve the design of the system? Do the assumptions 
hide any situations which could lead to a collapse of the system? 

In this article, we analyze the behavior of peers in structured P2P 
systems from a strategic perspective. This will help us to answer 
these questions and to deepen our understanding of structured 
P2P networks. We represent certain aspects of structured P2P 
systems with idealized game-theoretic models. We perceive the 
equilibria of the game theoretic models as stable situations of P2P 
systems. Given these models, we derive our hypotheses:  First, we 
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expect cooperation between peers to be correlated with the degree 
of trust of peers in the system. Next we expect that a peer can 
identify individual peers, and it will play different strategies with 
different peers. We also expect that free-riding of a certain share 
of peers will not let the system break-down. When free-riding 
occurs, we expect the feedback mechanism to increase co-
operation and to reduce the impact of free-riding. Finally we ex-
pect the probability of participation in the system to depend on the 
fraction of queries that the system has answered in the past. 

It is well known from experimental economics that theoretic pre-
dictions often differ from actual behavior. Consequently, we con-
duct experiments with human peers in the laboratory. In these 
experiments, each human participant controls the behavior of one 
peer of a CAN. To our knowledge, this is the first evaluation of a 
protocol for peer-to-peer networks with human participants in the 
laboratory. There is one significant advantage of such an analysis: 
Simulations or other models rely on assumptions concerning the 
behavior of peers, e.g., the frequency of queries sent or the criteria 
for answering queries. Such assumptions depend on the expecta-
tions of the designers. With our approach in turn, one does not 
need to make any assumptions regarding the behavior of peers – it 
is observed during the experiments! 

With these experiments we want to identify the strategies humans 
might come up with. In addition, we are interested in their effect 
on robustness, efficiency and network traffic. We admit that the 
number of participants in our experiments is relatively small, 
compared to the number of peers in real-world P2P systems. 
However, the behavior of the participants – in qualitative terms – 
does not depend on their number in our experiments, as we will 
explain. On the other hand, we claim that our approach is superior 
to relying on the assumptions of protocol designers. Finally, our 
experiments confirm the hypotheses mentioned above. 

This article has the following structure: In Section 2 we review 
related work. Section 3 gives a short introduction to CAN. In 
Section 4 we formalize structured P2P systems using idealized 
economic models and derive our hypotheses. Section 5 contains 
the experimental design. Section 6 presents and discusses the 
experimental results. Section 7 concludes. 

2. RELATED WORK 
Empirical studies on the usage of peer-to-peer file-sharing 
systems like Gnutella �[2] or Napster �[21] have shown that a 
majority of users prefers not to share any of their resources with 
other users. Such users prefer to consume the resources provided 
by others without contributing in return. Ramasamy and Liu �[16] 
show that this behavior, called free-riding, can even lead to a 
collapse of these systems or at least may have a severe negative 
effect. Hence, P2P systems need to be evaluated in this respect 
before deployment.  

In the literature several approaches deal with this problem. 
Schlosser and Kamvar �[22] compare different P2P algorithms 
using simulations. They model characteristics using observations 
from unstructured file-sharing networks. On the other hand 
mathematical models can be used to analyze the performance of 
peer-to-peer systems. Ge et al. �[11] use such a model to compare 
structured and unstructured peer-to-peer systems. The authors 
show that structured P2P systems outperform other P2P infra-
structures regarding the volume of data transferred. They do not 

investigate the influence of uncooperativeness on the system, but 
expect all participants to cooperate. 

Strategies to establish relationships within P2P systems are ana-
lyzed in �[9] and �[7]. They provide cost models for internet-like 
network structures. Each peer is seen as a non-cooperative player, 
which has a benefit from participating in the system, and it wants 
to minimize the price of participation. This work regards only the 
distance between nodes and the degree of connectivity. As an 
extension �[6], the load imposed on each peer is considered in 
addition. The authors analyze existing P2P structures using game-
theoretic concepts like social optima and Nash equilibria. 

Golle, Leyton-Brown and Mironov �[12] propose a simple game 
theoretic model to analyze the behavior of peers in a P2P system 
with central coordinator. To motivate sharing, they introduce 
several payment mechanisms. Experiments then confirm their 
theoretical results. A similar approach is described in �[17]. Here, 
peers are modeled as uncooperative players. This work applies 
reputation-based incentive mechanisms to unstructured P2P 
systems. The participating peers are expected to behave 
uncooperatively. It is shown that the mechanisms help to counter 
free-riding. �[10] extends this work by a more detailed analysis. 
Several reputation-based incentive mechanisms and simulations 
with different attack strategies are used to demonstrate the 
usability of the system. 

Another approach to eliminate free riders is taken in �[5]. Here a 
differential service-based incentive mechanism is used. It is 
shown that the strategy of a peer solely depends on the benefit it 
receives from the system. A peer joins the system if his expected 
benefit is above a certain threshold. 

�[23] is a preliminary version of this article that does not consider 
feedback mechanisms, which we deem one of the most intriguing 
aspects of this paper. The analysis in this paper also is broader 
and takes more models into account. 

3. CONTENT ADDRESSABLE NETWORK 
Structured P2P systems manage (key, value)-pairs. Each peer 
knows a subset of the peers participating in the system, and it 
administers a subset of the data. Data is distributed among the 
peers deterministically: Data objects are assigned to nodes ac-
cording to their keys. In the last years several such systems, like 
CHORD �[29], Tapestry �[30] and Pastry �[20], have been proposed. 
In this paper we focus on Content Addressable Networks (CAN) 
�[18]. In contrast to other approaches, CAN peers only know other 
peers “close” to it. With CAN one can guarantee that the data 
object for a given key is retrieved within a certain number of 
steps, under various model assumptions �[4]. We use CAN as a 
platform since its routing flexibility is relatively high �[13]. 
Participants in the experiments have a choice where to forward the 
query to.  

More specifically, CAN use a hash function to map keys to coor-
dinates in an n-dimensional space. This space is partitioned 
among the peers. Each peer stores all data objects whose mapped 
key lies in its partition. In addition, each peer knows its 
neighbors. Neighbors are the peers which administer a partition of 
the space that borders the partition of the current peer.  



Example. Think of a CAN storing information on movies. The 
information about the movie “The Crow” might be “Thriller”, 
information stored for “Pride & Prejudice” might be “Drama”, 
and the one of ”Chicken Little” might be “Animation”. Suppose 
that the hash function maps “The Crow” to the coordinates (0.3, 
0.3). The peer whose partition contains (0.3, 0.3) saves the (key, 
value)-pair (”The Crow”, “Thriller”). Figure 1 illustrates the parti-
tion of the coordinate space among the nodes. Each peer of the 
CAN corresponds to a rectangle, its partition in the coordinate 
space. The peer administering the data object/meta information 
corresponding to key “The Crow” is Peer 2.                  �  

 

Figure 1. Content Addressable Network 

3.1 Basic Routing Algorithm 
Each peer obtains positive utility by receiving data objects be-
longing to a key it is interested in. To evaluate a query, i.e., to find 
the data object corresponding to a key, the system uses a simple 
variant of greedy forward routing: A peer sends its query, the key 
of the object sought, to a neighbor whose partition is closer to the 
hash value of the key. The recipient checks whether it stores the 
object. If not, it forwards the query to one of its neighbors. I.e., 
the peers repeat this step until the query arrives at the peer who 
has the information desired. Finally, the query result is returned to 
the issuer of the query. 

Example. Figure 1 illustrates the routing algorithm for a query 
“The Crow” issued by Peer 1. The 2-dimensional hash function 
maps key “The Crow” to the coordinates (0.3, 0.3). Peer 1 now 
identifies the neighbors which are closer to the coordinate (0.3, 
0.3) than itself and forwards the query to one of them. One possi-
ble approach is to use the peer with the smallest Euclidean dis-
tance to the mapped key. In our example, this is the Peer 3. The 
query is now forwarded to this peer (Arrow (1)). This peer does 
not have the desired query result. Hence, the query is forwarded 
until it finally reaches Peer 2 (Arrows (2) and (3)). This peer then 
answers the query by returning the query result to Peer 1.            � 

As in other P2P systems, all peers should contribute to the same 
extent. Hence, the key space forms a torus. There are no edges of 
the coordinate space. In consequence, the amount of incoming 
messages should be roughly equal for all participants, assuming 
that query points are evenly distributed as well. 

With the conventional design of CAN described here, it is as-
sumed that all peers forward or reply to all incoming queries. 

3.2 Feedback 
In the CAN protocol described in �[4], a peer may attach informa-
tion on the reliability of other peers, so called feedback, to out-
going messages. Each feedback object has a value and a subject, 
the peer described by the feedback. For the moment, let us assume 
that peers giving feedback behave as intended by the protocol 
designer. In this case, the feedback value is ‘+’ (positive) if the 
subject has been reliable and ‘–‘ (negative) otherwise. Since a 
peer cannot explicitly observe the behavior of other peers, it might 
give false feedback. 

Example. Consider again Figure 1. When Peer 1 sends its query 
to Peer 3 (Arrow 1), Peer 1 attaches information about neighbors 
of Peer 3, e.g., Peer 4. Suppose that Peer 1 has already interacted 
successfully with Peer 4 several times. Hence, it would attach 
positive feedback to the outgoing query.                                       � 

4. MODELS AND HYPOTHESES 
In this section we apply several existing game theoretic models to 
our scenario. Identifying and applying these models is a first con-
tribution of this paper. They help us to understand the strategic 
options of peers in structured peer-to-peer networks from an eco-
nomic perspective. Based on these models, we derive several hy-
potheses on structured peer-to-peer networks. A peer will not only 
have a choice between cooperating and free-riding in our setup. It 
is also free in individual decisions, e.g., whether to forward or 
answer an incoming message, and if it should issue a query or not. 

The utility of an actor determines his incentives in an economic 
modeling. He can obtain utility from money and other factors. 
Costs result in negative utility, while positive payoffs result in 
positive utility. Similarly, doing work results in negative utility.  

When modeling the CAN, we assign utility to any possible action 
of a peer as follows: If a query is answered the initial sender re-
ceives positive utility. Answering, forwarding or sending a query 
incurs negative utility. The utility of issuing feedback is zero in 
our experiments. This is because the effort of generating feedback 
is negligible for system peers, since they keep track of the behav-
ior of their neighbors anyhow. For simplicity we equate money 
with utility. This is in line with the fact that the utility of a person 
increases with the amount of money received. This holds even 
though the correlation is not necessarily linear. 

4.1 Investment Game 
We start by comparing a P2P structure to the investment game 
�[3], to better understand cooperation. In this game, two groups of 
participants (Groups A and B) exist. Participants of Group A 
obtain a fee of $10. Each of them may then send some of his 
money to an anonymous counterpart in B, aka. invest. A player in 
Group B obtains three times the amount of money sent to him, 
and participants in Group A know about this. The participants in 
Group B then decide which share of the money to return to their 
counterpart in A, and how much money to keep for themselves.  

The game is comparable to a P2P structure. If a peer sends a query 
it spends money, i.e., it invests. We interpret the costs for sending 
a query as allocation for storing data on behalf of others. Another 
peer can answer the query. This leads to a monetary return that 
overcompensates the investment. Answering and forwarding 
queries are investments. This is because answering and forwar-
ding are prerequisites for having queries processed by other peers. 
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As the game is not repeated, the game-theoretic solution of the 
investment game is the subgame perfect equilibrium. In equilib-
rium Player 2 does not return any money to Player 1. This is be-
cause he does not have any advantage from doing so. As the game 
ends after his action, he would only lower his payoff. The efficient 
solution of this game however is that Player 1 invests all of his 
money. Based on fairness considerations, Player 2 should return 
half of the investment of Player 1 times three and keep the other 
half. In experimental studies of this game, Berg, Dickhaut, 
McCabe show that the efficient outcome can be observed �[3]. This 
solution can be explained by trust and reciprocity: If Player 1 
invests he trusts in Player 2. If Player 2 returns money he shows 
reciprocal behavior. What is called cooperation in P2P structures 
can be subdivided into two motives: trust and reciprocity. 

From this model we derive the following hypotheses on trust and 
reciprocity in structured P2P networks: 

Hypothesis T (Trust): The query intensity in the system is posi-
tively correlated to the average payoff of the peers. 

This hypothesis covers the trust argument. The more peers trust in 
the system, the higher the cooperation. This leads to higher aver-
age payoffs of the peers. Trust should be measured as the number 
of queries sent by a peer, the query intensity. The more queries a 
peer sends, the higher its trust in the other players.  

Hypothesis R (Reciprocity): The strategies of a player are person-
alized, i.e., they depend on the identity/identification of a peer and 
not only on the actions of the system as a whole. 

Hypothesis R covers the reciprocity argument. Reciprocity should 
result in strategies that account for the past actions of another 
peer. If the queries of a peer have been answered by another peer, 
it will also answer queries of the other peer. Note that this 
hypothesis is different from observations concerning P2P file-
sharing. Our explanation is that behavior in file-sharing systems is 
based on factors absent from the protocol investigated here. In 
particular, personalized strategies are difficult to implement there. 

4.2 Helping Game 
If a peer cannot distinguish between peers, more indirect motives 
are important. Due to forwarding, it is difficult to attribute query 
results received to the behavior of one particular peer in structured 
P2P systems. Hence, indirect interactions are important. A model 
which considers this is the helping game. There is a population of 
players who may help each other or not. In each round of the 
game a pair of players is randomly matched. It is not likely that 
two players interact with each other frequently. One of the two 
players is given the chance to donate; the other one will receive 
the donation. The cost of donating c is lower than the benefit b of 
the recipient. If one does not donate, both participants receive no 
reward. Table 1 shows the corresponding payoff matrix. As the 
donor will not interact with the recipient later, his rational behav-
ior would be to defect. This is because his payoff for defecting is 
higher than the payoff of donating. Contrary to these theoretical 
predictions, in experiments with human participants one can ob-
serve investment and returning money, but much less than in the 
case in which partners are known. In these experiments, all peers 
show cooperative behavior �[8].  

Another key question in our scenario concerns the power of feed-
back. Does feedback increase cooperation and help to react to 

free-riding? The helping game has been extended by a mechanism 
that allows for reputation building �[27]. Here every player in the 
helping game has a global reputation value. This value increases 
whenever he donates and decreases if he does not. All participants 
in the system can see the value. In this way a peer can get an im-
pression of the past actions of another peer. In analogy to the 
standard helping game no investment should be observed, from 
the theoretic point of view. Experiments of this game with human 
participants show that the average payoff increases in the game 
with reputation, compared to the standard helping game �[8], �[24]. 
We derive the following hypothesis from these experiments:  

Hypothesis F (Feedback): The average payoff in a peer-to-peer 
structure with feedback is higher than in one without. 

Table 1. Payoff matrix helping game 

 Donor 
donate defect 

Recipient 
b / -c 0 / 0 

 

This hypothesis deals with the effectiveness of feedback. The 
experiments mentioned show that feedback increases the average 
payoff in the system. This can only happen due to more coopera-
tion and less free-riding. 

4.3 Service Model by Hens and Vogt 
The last model we consider is the service model by Hens and 
Vogt �[14]. Here agents can be in two different states: Either they 
are in a state where they can deliver a service (State A) or con-
sume a service (State B). Compared to our structured P2P system, 
delivering a service corresponds to answering or forwarding a 
query. When delivering a service, an agent looses utility. Consum-
ing a service on the other hand corresponds to receiving a query 
result in structured P2P systems. Consuming a service yields 
positive utility. The utility for consuming a service is higher than 
the one for delivering a service. 

Figure 2. Strategic options in the model of Hens and Vogt 

The model is round based. In each round the agents in State A can 
deliver a service (d) or not (n). An agent in State B does not have 
any action choices. After each round an agent in State A who 
offered a service is matched with an agent in State B. If enough 
agents in State A are willing to deliver a service, every agent in 
State B can consume one. The number of services offered never 
exceeds the one of services requested. This is because the number 
of agents in States A and B are equal, and agents in State B 
always want to consume the service. Otherwise, a fraction � of the 
agents in State B is randomly chosen. They receive the service, 
while the other agents in State B do not. The agents that have 
been matched then switch to the other state. Figure 2 illustrates 

B 

d 

� 

n A 1-� 



the game. The end of the game is not specified a priori as in many 
other economic problems. An agent assumes that the number of 
rounds is infinite. 

Between two rounds the utility of each actor is discounted: In 
consequence, the utility for consuming a service in the future is 
lower than the utility for consuming a service now. If discounting 
was not introduced, it would not matter when an agent received a 
service – the utility would always be the same. As the payoff for 
consuming a service is higher than the cost of offering a service, it 
would be rational to always offer a service when in State A. Co-
operation would be the dominant strategy. When discounting is 
introduced, the outcome of the game is less obvious: Think of an 
agent remaining in State B for several rounds, and the discount 
factor is high. Then the utility gained from consuming the service 
and changing to State A is low. It is lower than the utility lost for 
offering the service, in order to arrive in State B in the first place. 
Using economic methods one can show when exactly cooperation 
is rational �[14]: This is the case if the expected payoff in the fu-
ture exceeds the present costs. The standard approach to find 
equilibria for games with finite horizon is backward induction. 
Backward induction shows that only non-cooperative behavior is 
rational. When the horizon is infinite, as in structured P2P sy-
stems, a common method to identify strategies is based on statio-
nary equilibria. �[14] shows that the key parameter that makes the 
difference between cooperative and uncooperative behavior of an 
agent is the fraction of his service requests processed as desired. If 
the fraction exceeds a certain cut-off value, the agent cooperates. 

Another theoretical result is that free-riding of one peer does not 
lead to a break-down of the system. This is because the other 
peers have a positive payoff, even when one peer resorts to free-
riding. 

As each peer may forward or answer a query (provide a service) 
or receive a query result (receive a service), we see the model of 
Hens and Vogt as a simplification of the interactions in structured 
P2P systems. If the number of peers providing a service is below 
the one of peers receiving a service, this results in peers which do 
not receive results they have requested. We expect peers in our 
system to use the equilibrium strategies of the model. This yields 
the following hypotheses. 

Hypothesis S (Cut-off strategies): If the number of queries an-
swered divided by the number of queries issued by a player in the 
past (past success frequency) exceeds a threshold (cut-off value), 
the player will cooperate in the P2P system. Otherwise, the player 
will not answer, forward or send queries. 

The model of Hens and Vogt also predicts that free-riding does 
not lead to a break-down of the system in equilibrium. This leads 
to Hypothesis FR for structured peer-to-peer systems. 

Hypothesis FR (Free-Riding without break-down): Free-riding of 
1/k of all peers in a structured P2P system will not lead to a break-
down of the system.  

Here, k is the number of peers in the system. Our experiments 
show that this holds for k=6. We expect this result to hold for a 
fraction of 1/6 of free riders in larger P2P systems as well. How-
ever, experiments with more participants are extremely expensive 
both in terms of organization effort and compensation for the 
participants. This is in the way of a broader validation of this hy-
pothesis. We intend to carry out further experiments with both 

system peers and human peers in the future, but this is beyond the 
scope of this article. 

5. EXPERIMENT DESIGN 
We have implemented a simulation environment for CAN using 
Java. It allows human participants to control peers. More specifi-
cally, a participant in the experiment controls the strategy of one 
peer. I.e., he decides whether to answer or forward a query, 
whether to send one, and which feedback to generate. In other 
words, the participants played against each other. The simulation 
environment ensures that peers interact properly. It performs the 
bookkeeping for each peer, as we will explain, so that the human 
participants can focus on their strategic decisions.  

The number of participants in each experiment is based on a claim 
by Selten �[25]. He postulates that “four are few and six are many”. 
In other words, a small group of more than five persons shows the 
same behavior as a large group. Section �6.1 will also comment on 
this issue. Hence, we conducted our experiments with six players. 
The experiments were played in ten groups, using computer ter-
minals to control the peers. The terminals were separated from 
each other to prevent communication between participants. 

The theoretical models behind our hypotheses are based on utility. 
Since we cannot directly observe utility, we have paid the partici-
pants depending on their behavior in the experiments. During the 
experiments the participants received points and paid with points. 
After the game, we computed their monetary reward based on 
their balance in points. Here, 100 points have resulted in 2 €. The 
average payoff per participant was 11.05 €. 

5.1 Experiment Structure 
In the beginning of each experiment the participants were ran-
domly assigned to seats in the laboratory. The experiments lasted 
approximately 120 minutes. The first 20 minutes were used for 
orientation and to understand the instructions, given out in written 
form. After this first phase the participants have been asked to 
play several rounds to get used to the experiment. Afterwards 
three games were played. We will refer to these games as 
treatments. 

Each treatment started with 20 rounds which were played without 
discounting. Afterwards a discounting rate was introduced. In 
economic experiments, a discounting rate ß corresponds to the 
probability that the game continues after the current period. It is 
known from economic theory that the interpretation of ß as a con-
tinuation probability or a discounting rate does not affect the re-
sults of an economic experiment. We used a discounting rate of 
0.1 in our experiments. I.e., we rolled a 10-sided dice, and the 
treatment ended if the dice showed 1.  

After the treatments we conducted a so-called strategy game. The 
concept of strategy game has been originally introduced in �[26]. 
By then, it has become a common method to identify strategies in 
game settings, cf. �[27]. A strategy game is one where participants 
are simply asked to write down their strategies. In economic ex-
periments strategy games are typically played after the participants 
have taken part in several treatments. This allows to extract strate-
gies of experienced players: Participants learn during treatments 
and refine their strategies, and they tend to have a thorough un-
derstanding of the experiment afterwards. In a strategy game 



Figure 3. Experiment client 

participants describe the strategies they have used during the treat-
ments. Participants base their strategies on the payoff structure. 
Strategies may also depend on treatment parameters as well as on 
the history of a treatment. From a theoretic point of view, partici-
pants face the same task in the strategy game as in ’real’ plays of 
the game. The difference is that participants have to decide for all 
possible situations in a strategy game, compared to one situation 
in the play of the game. A strategy game reveals a complete strat-
egy from a game-theoretic point of view. This is typically not the 
case in individual plays of the game. 

Finally, each participant was paid depending on his performance. 

5.2 Treatment Implementation 
In the beginning of each treatment all participants received a list 
of 200 strings representing keys in a structured P2P network 
(List A). For every key from one of the lists the system stored one 
data object. The data objects were distributed such that every 
participant had to store 200 of them (List B). Even though the 
system consisted of ‘human’ peers, the human participants did not 
have to remember the (key, value) pairs themselves; the simula-
tion environment took care of this issue. In every round each par-
ticipant was allowed to issue a query, i.e., ask for the value corre-
sponding to one of the keys on his List A. More specifically, the 
simulation environment chose the string. This is because first test 
experiments had shown that human participants had difficulties to 
do so. All this reflects the behavior of peers in structured P2P 

systems: They keep asking other peers for query results. A partici-
pant had to decide whether to process an incoming query or not. If 
he decided to do so, he was informed whether he could answer the 
query or he had to forward it, i.e., whether the value requested 
was on the list of the 200 strings he knew. If the query had to be 
forwarded, the next participant had the same action choices. When 
sending or forwarding a query, the simulation environment pro-
posed to the participant up to three peers as potential addressees. 
These peers are neighbors of the current peer. The environment 
displayed them ordered by their Euclidean distance to the hash 
value of the query. The participant could then select one of these 
neighbors. The environment then forwarded the query to this par-
ticipant. The environment lets the user choose the addressee. This 
is because the choice of the next participant is a strategic decision, 
which may not only depend on the probability that the peer had 
the information, but also on the past behavior of the peer. One 
reason why we have carried out the experiments is that we wanted 
to force the participants to develop respective strategies, and to 
observe them, in different treatments. 

The balance of a participant at the beginning of a treatment was 
100 points. Answering a query costs 5 points, issuing one costs 2 
points, and forwarding costs 1 point. A participant received 20 
points for obtaining a data object requested. See Table 2. 

Figure 3 is a screenshot of the experiment client. It contains infor-
mation on a participant with identifier 0. This player has sent one 



query to Player 1 and one to Player 4. The information in the 
bottom-left area of the screenshot indicates this. The query sent to 
Player 1 is already answered, not necessarily by Player 1 himself. 
The value “(received)” in column ‘reply’ shows this. The query 
sent to Player 4 is not answered yet. Player 0 has received one 
request from Player 5 he can answer himself and one from Player 
4 he can only forward. This information is displayed in the upper-
left area of the screen. The center-right area is a summary of all 
neighbors of Player 0. It tells us that Player 0 has sent one query 
to Player 1 and one to Player 4. (This piece of information is also 
available in the bottom-left area.) The rate of messages processed 
is “100.00 %”. This indicates that Player 1 has already answered 
the query. Similarly this area indicates that Player 1 has sent one 
query to Player 0. The value “100.00 %” in the column labeled 
‘handled’ indicates that this query is already answered. This piece 
of information is actually redundant, it can also be seen in the 
lower-left area of the screen. The value “Account” in the upper-
right of the screenshot is the payoff of Player 0.  

Table 2. Payoff depending on actions 

Action Payoff 
Initial balance 100 
Answering a query -5 
Sending a query -2 
Forwarding a query -1 
Receiving a query result 20 

 

At the end of each round, the participants were informed about 
their payoff in the last round, their total payoff and the result of 
the chance move (whether the game continues). The properties of 
other participants, such as their score or their action choices, were 
kept secret. It was impossible for participants to find out the real-
world identity of other participants. In addition to the information 
on their screen, the participants obtained no further information. 

We carried out three kinds of treatments. In Treatment 1 we tested 
for the strategies of human participants in a structured P2P system 
without feedback. Treatment 2 was a variation of Treatment 1 – 
we introduced a free rider. In Treatment 3 we let the participants 
exchange feedback. Leaving this point aside, this treatment has 
been identical to Treatment 2. 

Summing up, each participant had several action choices during 
the treatments: He could issue a query or not. He could for-
ward/answer an incoming query or not. When forwarding or send-
ing a query, he could choose the addressee. In Treatment 3 each 
participant could append one feedback object to a query sent. The 
participant could decide on the nature of the feedback (positive or 
negative) and freely choose the feedback subject. 

We used Treatment 1 and 2 to test all hypotheses except Hypo-
thesis F (the feedback mechanism). Treatment 3 should validate it. 

6. RESULTS 
This section summarizes the results of our economic experiments 
with human participants and relates them to our hypotheses. Dur-
ing nine months, we have conducted experiments with 60 students 
from various disciplines in our experiment laboratories in the 
University of Magdeburg. The participants were recruited by an-
nouncements in the university.  

6.1 Hypothesis S (Cut-off Strategies) 
To test whether cut-off strategies were used (Hypothesis S), we 
turned to the strategy game. Experience from other economic 
experiments shows that players tend to play modified strategies in 
the beginning and in the end of a treatment. It is difficult to de-
termine the rounds during which this effect occurs. Hence, we 
resorted to the strategy game to validate the hypothesis. Another 
argument for the strategy game is that cut-off strategies may only 
be observed from experienced players. The effects of learning 
should be excluded as far as possible. Furthermore, we wanted to 
relate the behavior of the participants to their assessment of other 
players. This relationship is best detected with strategy games. 

The strategy game showed that the strategies of the participants 
did not differ between Treatment 1 and 2. For the detailed results 
see �[19]. Most strategies consisted of a start phase and a main 
phase. During the start phase, which ended after a few periods, the 
participants showed very diverse behavior. As participants have 
only participated in few interactions in the beginning of the game, 
their behavior in the start phase could not depend on the past suc-
cess frequency. Since economic theory only allows analyzing the 
behavior of peers in equilibrium, and our hypothesis is based on 
economic theory, we concentrate on the strategies played during 
the main phase. Table 3 shows the results of our analysis. 

The strategies can be classified in the following three classes: 

a) action choices depend only on the past success fre-
quency of own queries independent from the sender 
(with different cut-offs), 

b) action choices depend on the past success frequency of 
own queries and on other factors,  

c) the strategies are not in line with Hypothesis S. 

Three of the sixty participants in the experiments played strategies 
which depend on the absolute number of unanswered queries and 
not on their rate. Five participants used strategies neither de-
pending on the success frequency nor on the absolute number of 
unanswered queries. The 52 other participants played strategies 
depending on the past success frequency. 41 of them were in line 
with Hypothesis S. Eleven participants played slight modifications 
of a strategy according to Hypothesis S. Three of them tried to 
anticipate the end of the treatment. Three additionally introduced 
the condition of doing less than the others (a kind of free-riding). 
The other five participants played strategies which show differ-
ences to cut-off strategies.  

To test whether the experiments confirm Hypothesis S, we intro-
duced the Null-hypothesis that the participants select a strategy 
different from a cut-off strategy. We use a binomial test to test this 
hypothesis. 41 cut-off strategies (out of 60) contradict the Null 
hypothesis. The Null hypothesis can be rejected on a significance 
level of 1%. This test result confirms Hypothesis S. 

Consequently, we claim that most players pursue cut-off strategies 
in structured P2P systems. Only very few participants realized the 
chance of stopping cooperation in the end of the treatments. Our 
conclusion is that this calls for countermeasures against defection 
in the end phase. One possible approach is the introduction of so-
called proofs of work �[15]. Using such proofs, we could force the 
peers to donate the system resources whose value exceeds the 
damage of defection in the end phase. 



Table 3. Types of strategies in strategy game 

Strategy Category # persons 
Cut-off strategy only depending on past 
success frequency 

a) 41 

Cut-off strategy depending on past suc-
cess frequency plus end phase 

b) 3 

Cut-off strategy depending on past suc-
cess frequency plus the condition to 
answer less queries than own queries are 
answered 

b) 3 

Cut-off strategy depending on past suc-
cess frequency for queries initially sent, 
random behavior when answering 
queries randomly on behalf of others 

b) 4 

Cut-off strategy depending on past suc-
cess frequency for queries initially sent, 
answering queries on behalf of others 
after several non answered queries were 
received 

b) 1 

Cut-off strategy depending on the ab-
solute number of own queries not an-
swered 

c) 3 

Different types of strategies c) 5 
 

Clearly, six participants are few, compared to thousand of peers. 
Nevertheless, we expect the behavior of the human participants in 
our experiments to be independent from the number of partici-
pants, at least in qualitative terms: The outcome of the strategy 
game is that users will play a cut-off strategy, irrespective of the 
size of the system. On the other hand, a larger system might be 
less stable: This is because it is now easier to exceed the threshold 
value of the cut-off strategies.  

6.2 Hypothesis R (Reciprocity) 
The results so far show that participants use cut-off strategies. We 
now analyze whether they are individualized. To do so, we look 
again at the strategies from the strategy game. We calculated the 
percentage of strategies which depended directly on the identi-
fication of a peer, at least partially. All cut-off strategies observed 
are individualized (for details see �[19]). 55 strategies confirm 
Hypothesis R, while 5 other strategies do not. Again a binomial 
test confirms the hypothesis on the 1% level. 

On the one hand, this shows that peers tend to cooperate with the 
players they deem cooperative. On the other hand they will expect 
cooperation from others if they have been cooperative in the past. 
Hence it is important to ensure that the system treats cooperative 
players better than uncooperative ones. 

6.3 Hypothesis T (Trust) 
We now evaluate the game with regard to the degree of trust. Ac-
cording to Hypothesis T the intensity+in a game quantifies the 
trust in the system. Intensity is the number of queries that were 
sent by the peers divided by the maximum number of queries that 
could have been sent. The number of maximum queries that can 
be sent is the number of rounds of a treatment multiplied with the 
number of peers. The average payoff is the sum of payoffs of all 
participants divided by the number of periods played and the 

number of peers. Figure 4 shows the correlation between intensity 
and average payoff for all groups, averaged over all 3 treatments. 

A linear regression shows a positive correlation between these 
factors, see the regression line in Figure 4. The slope of the line 
relating intensity to average payoff is significantly different (on 
the 1%-level) from zero. We conclude that Hypothesis T is sup-
ported. In other words, we show that trust increases efficiency.  

If we look at the strategies in the strategy game every participant 
started sending queries without knowing anything about the past 
of other peers (see �[19] for details). It also holds that all players 
react reciprocally and do not free ride. These two facts show that 
all participants cooperate in a structured P2P network.  

Because of this conclusion, we had to introduce free-riding peers 
to study the impact of free-riding according to Hypothesis FR. 

 
Figure 4. Correlation between average payoff and intensity 

 

This hypothesis has one important implication on P2P data struc-
tures: We can expect cooperation between the participating peers. 

6.4 Hypothesis FR (Free-Riding without 
Break-down) 
In Treatment 2 a free rider or destructive player was introduced. 
This participant was instructed to ask for query results and to 
never process any incoming queries.  

Table 4. Average payoff per round 

 Treatment 1 Treatment 2 
Group all 

peers 
destructive 
peer in 
Treatment 2 

all 
peers 

destructive 
peer 

other 
peers 

1 5.85 7.71 4.11 3.45 4.25 
2 2.63 5.90 0.89 1.27 0.82 
3 4.40 6.52 1.85 2.35 1.75 
4 6.79 10.20 2.81 8.00 1.78 
5 7.78 7.36 4.47 3.83 4.59 
6 2.31 5.95 0.99 3.67 0.46 
7 4.31 -0.50 1.47 2.17 1.33 
8 5.30 0.45 0.93 0.50 1.02 
9 5.01 7.95 4.61 5.20 4.50 
10 2.10 0.09 1.27 3.56 0.81 

Mean 4.65 5.16 2.34 3.40 2.13 
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To test whether free-riding can lead to a break-down of the system 
(Hypothesis FR), we compare the results of Treatments 1 and 2 in 
Table 4. In all ten groups the payoff in Treatment 2 with a free 
rider is smaller than in Treatment 1. A binomial test shows that 
this result is significant on the 1% level. The efficiency of the 
system is correlated to the average payoff per round. Hence we 
conclude that the efficiency decreases. The payoff in Treatment 2 
is about half as high as the one in Treatment 1, but it is still posi-
tive. If the end of a treatment is known, a P2P system might break 
down, according to many results in experimental economics, see 
for example �[1], and according to the prediction of the subgame 
perfect equilibrium. During the first 10 rounds of the treatments 
cooperation tends to be the strongest. Even if the analysis ignores 
the first 10 rounds of the treatments, we obtain the same results 
(see Table 5). This confirms Hypothesis FR. 

When comparing the payoff of the destructive player to the aver-
age payoff of the remaining peers in Treatment 2, we see that the 
payoff of the destructive participant is slightly higher than the 
payoff of the other ones: In 8 out of 10 groups he performs better. 
However, the average payoff of the destructive player in Treat-
ment 2 is lower than his payoff in Treatment 1. In 7 of 10 groups 
the destructive participant performs better in Treatment 1. This 
observation is important: it shows that free-riding does not pay for 
any participant. 

Table 5. Average payoff after round 10 

 Treatment 1 Treatment 2 
Group all 

peers 
destructive 
peer in 
Treatment 2 

all 
peers 

destructive 
peer 

other 
peers 

1 5.77 8.29 5.07 4.67 5.15 
2 3.58 7.80 0.83 0.09 0.97 
3 4.61 8.00 0.97 -0.46 1.26 
4 7.43 9.73 2.74 5.14 2.26 
5 8.40 7.67 4.74 1.86 5.31 
6 2.50 1.90 1.07 3.14 0.66 
7 4.29 0.21 0.99 -0.57 1.30 
8 6.01 2.92 0.68 -2.00 1.21 
9 5.71 7.50 4.98 2.00 5.57 
10 2.31 -1.23 0.95 4.94 0.15 

Mean 5.06 5.28 2.30 1.88 2.39 
 

Participants might not always be interested in obtaining the 
maximal payoff for themselves. Rather, they just might want to 
obtain more than others. This is a special form of competition. 
Hence we calculate the relative payoff. The relative payoff is the 
quotient of one’s own payoff and the average payoff of the re-
maining participants. If one participant was motivated by his rela-
tive payoff, free-riding would be attractive. This is because he 
earns more than all other participants. For participants who are 
motivated by their own payoff in absolute terms, free-riding does 
not pay. This is because the destructive participant receives a 
lower payoff than in the treatments where he cooperated. Fortu-
nately, in most scenarios, including structured P2P systems, rela-
tive payoffs are a notion that is only virtual. In other words, free-
riding is not attractive. During our experiments no participant 
defects, unless he has been instructed to do so. The P2P protocol 
under investigation protects from free-riding.  

6.5 Hypothesis F (Feedback) 
If all players were able to differentiate between cooperative play-
ers and free riders, free riders should not obtain any payoff. This 
is the ultimate design objective behind the mechanisms examined 
in this paper. To ease differentiation between cooperative and 
uncooperative players we suggest the use of feedback to have 
more information about other players available.  

For a test of Hypothesis F (i.e., whether feedback performs well) 
we compare the average payoff in Treatment 2 to the average 
payoff in Treatment 3. Both treatments are with a free-rider. In 
Treatment 3 feedback was possible. Table 6 shows the result.  

As can be seen in Table 6, the payoff of the participants increases 
on average. This shows the advantage of a feedback mechanism if 
a free-rider is in the system. This result is in line with our 
Hypothesis F.  If we test Hypothesis F by means of a binomial test 
we calculate as a result a tendency (significance level 18%) that 
supports Hypothesis F.  

Table 6. Average payoffs in Treatments 2 and 3 

 Average payoff in 
Treatment 2 

Average payoff in 
Treatment 3 

Group 1 4.11 3.01 
Group 2 0.89 0.90 
Group 3 1.85 2.95 
Group 4 2.82 4.66 
Group 5 4.47 6.14 
Group 6 0.99 4.3 
Group 7 1.47 0.43 
Group 8 0.93 -0.20 
Group 9 4.61 6.88 
Group 10 1.27 2.17 
Average 2.34 3.12 

 

An implication of this result is that a feedback mechanism im-
proves the working of the system. Since our system already works 
very well, the impact of a feedback mechanism is not as big as it 
might be in other systems. 

7. CONCLUSIONS 
Structured P2P networks are useful in a broad range of applica-
tion scenarios. Protocols for structured P2P systems have to en-
sure the stability of the system and the cooperation of peers. The 
system design must rule out free-riding. In this paper we used 
economic and computer tools to analyze the strategic aspects of 
structured P2P networks. With the help of game theoretic models 
we derived several hypotheses on the strategic behavior of peers. 
The models predict that cooperation between peers is correlated to 
the trust of peers in the system. They also predict that the 
strategies of the participants are individualized. Another ex-
pectation is that free-riding of some of the peers does not cause a 
break-down of the whole system. Based on the models we also 
predict that a feedback mechanism increases cooperation and 
reduces the impact of free-riding. A final prediction is that the 
probability of participation in the system depends on the fraction 
of positive interactions with other peers in the past. We then 
tested our hypotheses with economic experiments with human 
peers. The experiments confirm our theoretical predictions.  



Economic experiments with humans allow to test which behavior 
does not occur in structured P2P systems, and which behavior the 
designers of P2P systems must take into account. As far as we 
know, we are the first to investigate the behavior of humans who 
mimick the role of peers in P2P structures. Compared to simu-
lations, this approach can do without any assumptions regarding 
the behavior of peers. Their behavior is simply observed. 
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