
Towards Efficient Processing
of General-Purpose Joins in Sensor Networks

Mirco Stern, Erik Buchmann, Klemens Böhm
Universität Karlsruhe (TH), Germany

{Mirco.Stern|Buchmann|Boehm}@ipd.uni-karlsruhe.de

Abstract— Join processing in wireless sensor networks is dif-
ficult: As the tuples can be arbitrarily distributed within the
network, matching pairs of tuples is communication intensive
and costly in terms of energy. Current solutions only work well
with specific placements of the nodes and/or make restrictive
assumptions. In this paper, we present SENS-Join, an efficient
general-purpose join method for sensor networks. To obtain
efficiency, SENS-Join does not ship tuples that do not join, based
on a filtering step. Our main contribution is the design of this
filtering step which is highly efficient in order not to exhaust the
potential savings. We demonstrate the performance of SENS-Join
experimentally: The overall energy consumption can be reduced
by more than 80%, as compared to the state-of-the-art approach.
The per node energy consumption of the most loaded nodes can
be reduced by more than an order of magnitude.

I. INTRODUCTION

Wireless sensor networks (WSN) as a measuring technology
have important applications ranging from environmental mon-
itoring to industrial maintenance. Such networks consist of a
large number of nodes that are equipped with sensors, allowing
for observations at a high spatial resolution. The nodes have
constrained communication and computation capabilities and
are usually battery operated. Therefore, energy-efficiency is
of utmost importance. Typically, sensing and communication
dominate the power consumption by orders of magnitude
compared to computation and accessing RAM [1], [2], [3].

Our concern is the performance of join queries in WSNs.
The join operator is important to acquire sensor data: It allows
to relate measurements taken at different nodes. At the same
time, the join acts as a filter, allowing any subsequent analysis
to concentrate on issues of interest.

Example 1: Think of a climate researcher who is interested
in the minimal distance between two points with a temperature
difference of more than ten degrees. This query is expressed
in SQL using a join:

SELECT MIN(distance(A.x, A.y, B.x, B.y))
FROM Sensors A, Sensors B (Q1)
WHERE A.temp - B.temp > 10.0
ONCE

�
Briefly, Relation Sensors serves as a database abstraction

of the WSN. Every node is represented by a tuple with one
attribute per sensor of that node (e.g., temperature, light).
ONCE specifies that the query refers to the current state of
the network ("snapshot query"), cf. Section III.

Example 2: The researcher is interested in the correlation of
humidity and pressure with the temperature. For his analysis,

he acquires the humidity (pressure) readings of pairs of nodes
which observe a similar temperature (difference < 0.3 degrees).
To exclude the influence of spatial correlation, he requires a
minimum distance of 100 m:

SELECT |A.hum - B.hum|, |A.pres - B.pres|
FROM Sensors A, Sensors B
WHERE |A.temp - B.temp| < 0.3 (Q2)
AND distance(A.x, A.y, B.x, B.y) > 100
ONCE

�
These queries will serve as our running examples.

As sensing costs are orthogonal to the join algorithm,
minimizing the communication is key for processing joins
energy-efficiently [1]. For query operators such as selection
and projection, communication can be minimized based on
the following key property: A node can decide locally that
some data is not required for the result and can refrain from
sending it [4], [5]. For the join, the picture is different: A
node does not know if there exists a join partner for a tuple
somewhere in the network. Most notably, tuples which have
to be joined can be arbitrarily distributed. Thus, matching two
tuples is very communication intensive.

Prior join approaches avoid the problem of matching arbi-
trarily distributed tuples by restricting the types of queries or
the tuple distributions. For instance, REED [1] supports the
comparison of sensor data to pre-defined patterns, given as a
static, external relation. [6] presents a join method for tracking
rare events, i.e., one of the relations must contain a few tuples
only. In addition, there are methods that restrict the placement
of the tuples involved. For instance, some require the tuples to
be located in small regions that are close to each other, e.g.,
[7], [8], [9] (cf. Section II). Such specific requirements restrict
applicability. In particular, no join method we are currently
aware of can efficiently process queries in the style of Q1
and Q2. Our focus in turn is on efficient general-purpose join
methods. We call a join method "general-purpose" if it fulfills
the following requirements:

Requirement 1 (Join Conditions)
A general-purpose join method must be able to handle any
number and any kind of join conditions and join attributes.

Requirement 2 (Tuple Distribution)
A general-purpose join method must be able to efficiently han-
dle queries with arbitrary placements of the tuples involved.

Our approach complements the existing, specialized ones

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.27

126

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.27

126

which are geared towards a certain scenario. While their
performance is very good when they are applicable, the
underlying assumptions are strict and are frequently not met.

Currently, the only general-purpose join method is an ap-
proach which we refer to as external join: It sends the complete
tuples from the input relations to the base station where the
result is computed. This approach, albeit simple, is sometimes
optimal: If the join selectivity is low, the result is larger
than the input data. In this case, sending the result to the
base station will be more costly than sending the input tuples
and performing an external join – with any join method. But
otherwise, the external join requires sending many tuples that
do not contribute to the result, and efficiency is low. Q2 serves
as an illustration. If there are only few tuples with similar
temperature values that are more than 100m away from each
other, the external join is costly.

In this paper, we propose SENS-Join, an energy-efficient
general-purpose join method for sensor networks. Our goal is
to avoid shipping tuples through the network that do not join.
To do so, a well known idea from distributed databases is
the (N-way) semi-join [10]: A relation is filtered based on the
join-attribute values of the other relations. However, semi-join
algorithms as proposed earlier [11] are not applicable here:
Relations in sensor networks are highly distributed. Applying
a conventional semi-join algorithm requires consolidating the
relations at one or a few (2, 3) site(s). In sensor networks,
this is prohibitively expensive. Prior attempts to deploy the
semi-join idea in sensor networks [8], [9] have not resulted in
a general-purpose solution (cf. Section II). So far, it is unclear
how to efficiently deploy the filtering idea.

SENS-Join addresses this problem. While SENS-Join con-
sists of a pre-computation which identifies the tuples that join
and a subsequent final result computation, the challenge is
designing the pre-computation: Its costs can easily exhaust the
potential savings. Our design combines centralized computa-
tions at the base station with a distributed in-network filtering.
At a high level, the pre-computation consists of two steps:
(a) The join-attribute values of both relations are sent to the
base station where they are joined in order to create a filter.
The filter specifies which values will be in the result. (b) The
filter is disseminated in the network. Subsequently, all tuples
that match the filter are sent to the base station where the
result is computed. SENS-Join can process any kind of join
query (e.g., equi-joins, similarity-joins, or theta-joins) over any
number of join conditions and input relations.

Our main innovations are the following features, which are
key to an efficient pre-computation, despite the need to match
each pair of join-attribute values:

Information flow: SENS-Join comprises two mechanisms
that keep the volume of data small: "Treecut" sometimes sends
complete tuples instead of join-attribute values to avoid their
transmission in a later step. "Selective Filter Forwarding"
is pruning the filter progressively during its dissemination,
depending on the data distribution.

Quadtree representation of pre-computation data: We
propose a new compact representation of the join-attribute

values sent during the pre-computation. Since in SENS-Join
this data is independent of the tuples used for the final result
computation, we can reduce their accuracy without sacrificing
correctness of the final result. In addition, our mechanism
exploits spatially correlated sensor values by encoding join
attributes using a spatial index. Compact representations like
Bloom Filters cannot be applied here since they do not allow
for evaluating arbitrary join conditions.

We extensively evaluate the performance of SENS-Join. Our
results indicate that SENS-Join can reduce the overall energy
consumption by more than 80% compared to the state-of-the-
art. It can reduce the per node energy consumption of the most
loaded nodes by more than an order of magnitude.

II. RELATED WORK

The energy consumption of operations like projection, selec-
tion, and aggregation (e.g., [4], [12]) are well studied. Efficient
implementations exist in data management systems for WSNs
such as TinyDB [4] or Cougar [5]. In contrast, existing systems
do not support join operations well: Cougar does not feature
an in-network implementation of joins. The authors argue that
an in-network join can sometimes be beneficial [2]. However,
no details are provided. TinyDB allows to join tuples that are
located on the same node only. Each node can materialize its
sensor data for a specified interval. TinyDB provides a join
operation between two materializations or a materialization
and the current data. Besides these general query processors,
there is some work on join processing in specific scenarios.
Currently, no efficient general-purpose join method exists.

Join methods for specific types of queries. The fol-
lowing approaches are tailored to specific scenarios or types
of queries. The most general among them is REED [1]. It
facilitates the join of a static external relation and sensor data,
to detect pre-specified patterns, given as a static relation. The
idea is to distribute the static relation such that each node
can access it at little cost. In contrast, we focus on joins over
sensor relations. Yang et al. [6] investigate the tracking of
rare events. Due to the tracking aspect, the tuples to be joined
stem from different points in time. Similarly to REED, one of
the relations is distributed to serve as a filter. The authors
show how to suppress distributing the filter relation if the
condition is already contained (in part) in an earlier filter. This
approach differs from ours in several key aspects. Yang et al.
address scenarios where one of the relations is very small (a
few tuples). This is reasonable for the tracking of rare events,
but is in contrast to a general-purpose join method. Moreover,
their approach is restricted to one join attribute besides the
mandatory temporal one. We do not impose such constraints.
The approach by Yiu et al. [13] joins tuples from neighboring
nodes, i.e., the join condition is distance(A,B) ≤ d where
d is less than the communication range. SENS-Join in turn
allows for arbitrary join conditions and tuple distributions.

Join methods for specific node distributions. Bonfils et
al. [7] study long-running join queries in WSN. They reduce
the problem to a variant of the task-assignment problem and
adaptively relocate the operator. [14] processes the join on the

127127

path between the input data and the query issuer. [15] extends
the approach for range queries. Coman et al. [8] present
(among other methods) a "mediated join" which computes the
result at a central location inside the network. [16] refines this
join variant by saying how to handle the data flow in order to
meet the memory constraints of the nodes. The applicability
of all of these approaches is limited. They are only efficient
if the input relations are distributed over two small regions.
In addition, these regions need to be close to each other,
compared to their distance to the base station. Finally, the
selectivity needs to be very high.

Semi-join based filtering. With respect to join processing,
the filtering idea has been explored originally in the context
of distributed databases [11]: The semi-join filters one of the
relations based on the join-attribute values of the other relation.
This idea has been extended to filtering all of the relations
("N-way semi-join") [10], which corresponds to the goal of
SENS-Join. However, the algorithms are not applicable in
WSNs, where the relations are highly distributed. Deploying
a conventional algorithm requires consolidating the relations.
This is exactly what makes the evaluation expensive.

For WSNs, there are two approaches that apply a filtering.
Both are restricted to join small regions and require a high
selectivity. Besides the mediated join, Coman et al. present a
semi-join approach [8]. The design is close to the semi-join in
distributed databases. The join-attribute values of one of the
relations is broadcast over the nodes of the other relation. Yu et
al. propose to construct a histogram synopsis per relation [9]
to determine which tuples join and where to optimally join
them. However, [9] does not say how to construct a compact
histogram to compute a multi-dimensional join. In addition,
this design only yields energy savings if two small regions
are joined and if the query is highly selective. The design
of SENS-Join is different, for various reasons: Computing
optimal join locations requires collecting location information
if the coordinates are not part of the join attributes. This is
a huge overhead. In addition, the optimal locations also have
to be disseminated. We justify our design which can process
general-purpose join queries with arbitrarily distributed tuples
efficiently in Section IV .

III. PRELIMINARIES

Network architecture. Our work is based on a network
architecture consisting of hundreds to thousands of stationary
sensor nodes. Each node is equipped with several sensors,
a processor, a small RAM (e.g., SunSPOTs contain 512 KB
RAM), a wireless radio, and it is battery operated. A powered
base station serves as an access point. Each node is aware
of the nodes within its wireless range, which form its neigh-
borhood. It communicates with nodes other than its neighbors
using multi-hop routing.

Declarative Queries. Declarative queries are an attractive
interface for collecting data in sensor networks, as they hide
technical details [4], [5]. To facilitate such queries, the network
is seen as a (sensor) relation. For homogeneous networks there
is one relation. One can think of it as a relation with one

attribute per sensor (e.g., temperature) of the nodes and one
tuple per node. If the network is heterogeneous, groups of
nodes form different relations.

Queries can be snapshot queries or continuous queries: A
snapshot query asks for the current sensor readings ("snap-
shot"). A typical usage is an interactive exploration. A contin-
uous query reports the current sensor readings periodically.

Parallelism. All sensor networks we are aware of are
dedicated to a specific task. The number of users tends to
be limited, e.g., one or two researchers. Therefore, we assume
a small number of parallel queries.

Query Processing. A query is input at the base station. The
network then disseminates the query by a simple broadcast
flooding. Query results are propagated to the base station
along a routing tree, with the base station as the root. A
routing tree is maintained in a distributed fashion: Based on a
periodic beaconing mechanism, each node maintains a parent
that minimizes the hop count to the base station (for details
cf. TinyOS, collection-tree protocol [17]).

Terminology. We say that a node belongs to a sensor
relation R if it contributes a tuple T to R.

Definition 1 (Join-Attribute Tuple)
Let Q be a join query. A join-attribute tuple T’ is a tuple that
results from the projection of a tuple T on the join attributes
of Q, i.e., T ′ = πJoinAttr(T).

As an example, a join-attribute tuple of Q2 contains the X-
and Y-coordinates and the temperature.

Problem statement. In general, SENS-Join can handle
queries conforming to the following structure:

SELECT R1.attrs, ..., Rn.attrs
FROM Relation_1 R1, ..., Relation_n Rn
WHERE preds(R1) AND ... AND preds(Rn)
AND join-exprs(R1.join-attrs, ..., Rn.join-attrs)
{SAMPLE PERIOD x | ONCE}

We require two or more sensor relations and join conditions
that are arbitrary expressions over the join attributes. That is,
we do not restrict the kind or number of join conditions. In the
special case of a self-join, the FROM clause contains the same
relation multiple times. Optionally, the WHERE-clauses can
narrow down the scope of the query. After executing SENS-
Join, the join result is available at the base station.

The semantics is the standard SQL semantics with exten-
sions for temporal aspects of sensor data. In particular, we
adopt the non-SQL clauses SAMPLE PERIOD or ONCE from
TinyDB [18]: ONCE computes the result based on the current
snapshot. Thus, SELECT * FROM Relation_1 ONCE re-
turns a single tuple from each node that belongs to
Relation_1. SAMPLE PERIOD yields a continuous moni-
toring. It defines the time interval between independent execu-
tions of the query. The user receives a result every x seconds
based on the most recent snapshot.

IV. SENS-JOIN

The goal of SENS-Join is to avoid shipping tuples through
the network that do not join by discarding these tuples inside

128128

the network. The challenge is designing such a filtering step:
Its costs could easily exhaust the potential savings.

A. Overview

To fulfill Requirements 1 and 2 ("general-purpose"), our
design combines centralized computations with a distributed
filtering. We substantiate this design after describing the algo-
rithm (Section IV-E). To separate concerns, we present SENS-
Join presuming a robust operation of the network and address
node failures and network-related problems in Section IV-F.

Suppose that the query has already been distributed. Then,
at a high level, SENS-Join comprises the following steps:
1. Pre-Computation:

a. Join-Attribute-Collection: Collect the join-attribute tu-
ples of all relations at the base station and join them.

b. Filter-Dissemination: Distribute a filter specifying which
tuples join.

2. Final-Result-Computation:
The nodes in question send their complete tuples to the base
station where the final result is computed.

Finding out which nodes contribute to the result requires
the join-attribute tuple of each node. The base station collects
them and joins them (Step 1a). The join-attribute tuples that
have a partner form the "join filter", i.e., the filter is a set
of join-attribute tuples. It lets a node decide if it contributes
to the result by checking whether the filter contains its join-
attribute tuple. Therefore, we need to disseminate the filter in
the network (Step 1b). Finally, the base station collects those
tuples that actually join and computes the result.

So far, the only savings of SENS-Join result from not
sending non-join attributes. To illustrate, with Query Q2 [Q1],
the volume of data shipped to the base station in Step 1a
is 60% [33%] of the data that is shipped with the external
join. However, due to Steps 1b and 2, the total savings
would be less than 40% [66%]. As our main contribution,
SENS-Join features several mechanisms that further reduce
the data volume significantly: Treecut (Sec. IV-B), Selective
Filter Forwarding (Sec. IV-C) and a compact representation of
the join-attribute tuples (Sec. V) used in Steps 1a and b.

We now provide a top-down description of SENS-Join. To
ease presentation, we describe our approach for two relations
in the query, referred to as A and B. We will say how SENS-
Join handles more relations whenever this is not obvious.

SENS-Join is a distributed process. Its implementation is
event-driven, as explained below. Figure 1 presents SENS-Join
from the point of view of a single node.

The node wakes up three times altogether, at the beginning
of each step. Since a node knows when its children will send
their data for the Join-Attribute-Collection (cf. [18]), it sets
the wakeup-time accordingly and goes to sleep (Lines 3, 4).
When waking up the first time (Line 6), a node receives
the join-attribute tuples of its children (Line 7). It then uses
its own sensor readings to generate the Tuple T (Line 8).
The procedure returns NULL if the node does not belong
to either of the Relations A and B, or if T does not meet

1 SENS-Join
2

3 //At the end of the query’s dissemination:
4 sleepUntilNextStep(); //wait for beginning of SENS−Join
5

6 Join-Attribute-Collection:
7 ReceivedData = collectMessagesFromChildren();
8 T = constructTupleFromLocalSensorData();
9 //returns T = NULL if (T /∈ A) and (T /∈ B)

10 ForwardJoinAttrValues(ReceivedData, T); //cf. IV-B
11 sleepUntilNextStep();
12

13 Filter-Dissemination:
14 JoinFilter = receiveFromParent();
15 ForwardJoinFilter(JoinFilter); //cf. IV-C
16 sleepUntilNextStep();
17

18 Final-Result-Computation:
19 ReceivedData = collectMessagesFromChildren();
20 ForwardCompleteTuples(ReceivedData, T); //cf. IV-D

Fig. 1. SENS-Join, at each node

the selection predicates in the WHERE-clauses. Finally, the
node forwards the join-attribute tuples received along with
its own join-attribute tuple to its parent (Line 10, cf. IV-B).
This requires projecting its tuple T onto the join attributes.
The projection is part of the forwarding procedure and is not
shown in Figure 1. A node then sleeps until the beginning of
the Filter-Dissemination step (Line 13). Now the join filter is
disseminated in the network along the routing tree. A node
simply receives (Line 14) and forwards the filter (Line 15,
cf. IV-C). As a final step (Line 18), the complete tuples are
forwarded along the routing tree (Line 20, cf. IV-D) to the
base station. There the query result is computed.

B. Collecting Join-Attribute Tuples

Which data does a node send in this step? In case of two
Relations A and B, the tuple of a node might belong to either
A, B, or none of the relations. Thus, a node contributes a
join-attribute tuple or nothing. For self-joins it is also possible
that the node belongs to both relations. However, it still sends
one join-attribute tuple only, consisting of the join-attribute
values from both relations. The reason is that the join attributes
usually overlap (e.g., they are identical in Q1 and Q2). So we
avoid sending attribute values redundantly. In summary, each
node contributes at most one tuple.

To assess the design of the Join-Attribute-Collection step,
suppose that join-attribute tuples are collected in a straight-
forward way. Each node, starting at the leaves of the routing
tree, collects these tuples from its children and forwards them
to its parent along with its own tuple. A leaf node solely
sends its join-attribute tuple T’. However, the difference to
sending the complete tuple is only a few bytes. For instance,
the difference of T - T’ in Q2 is two attributes. Assuming that
each attribute requires two bytes, this corresponds to sending
only four bytes less. The important observation is that the
energy savings due to sending T’ instead of T are negligible1.

1For instance, removing about 10 bytes from a packet incurs a saving in the
order of 5% for SunSPOTs or MicaZ. The reason is the huge overhead due
to networking-related issues like channel acquisition, synchronization ([19]).

129129

Depending on the number of children, this remains true at the
next level of the tree. The problem with these minor savings
near the leaves is that at the same time we risk the costs of
sending an additional packet in the Final-Result-Computation
phase if a tuple actually contributes to the result.

Treecut. We avoid this inefficiency as follows: Starting at
the leaves of the tree, we send complete tuples for the pre-
computation as long as the volume of data that has to be
sent is less than a predefined threshold Dmax. This applies
near the leaves of the tree where the forwarding load is small.
We use Dmax = 30 bytes (cf. discussion in Sec. IV-E). If
the sum of the data that needs to be sent exceeds Dmax at
some node, this node stores the complete tuples of its subtree
and switches to sending join-attribute tuples. In the subsequent
steps, the node serves as a proxy for its children, i.e., it handles
the Final-Result-Computation without requesting data from the
children. Intuitively, Treecut reduces the depth of the tree for
the following steps. This improves the efficiency of SENS-
Join: We do not have to forward the join filter to those parts
of the tree that were "cut off". In addition, if there are tuples
that join, we have already forwarded them one or two levels
up in the tree. Figure 2 presents the forwarding procedure.

1 ForwardJoinAttrValues(Set {S1, ..., Sn}, Tuple T)
2 //Si: data received from child i
3

4 Set_Of_Full_Tuples FullTuples = ∅;
5 Join_Attr_Structure JoinAttTuples = ∅;
6 for all Si ∈ {S1, ..., Sn}
7 if (Si is Set_Of_Full_Tuples)
8 FullTuples = UnionFull_Tuples(FullTuples, Si);
9 else

10 JoinAttTuples = UnionJoin_Atts(JoinAttTuples, Si);
11

12 if (Size({S1, ..., Sn}) + Size(T) ≤ Dmax)
13 && (∀Si ∈ {S1, ..., Sn}: Si is Set_Of_Full_Tuples)
14 //use Treecut: hand over data to parent and go to sleep
15 FullTuples = InsertFull_Tuples(FullTuples, T);
16 send(FullTuples, parent);
17 //query execution is complete:
18 exitQuery();
19 else
20 store FullTuples; //act as proxy for received complete tuples
21 store JoinAttTuples as "SubtreeJoinAtts";
22 ProxyJoinAttTuples = πJoinAttr(FullTuples);
23 JoinAttTuples = UnionJoin_Atts(JoinAttTuples, ProxyJoinAttTuples);
24 T ′ = πJoinAttr(T);
25 JoinAttTuples = InsertJoin_Atts(JoinAttTuples, T ′);
26 send(JoinAttTuples, parent);
27 //sleep until next step - cf. Figure 1

Fig. 2. ForwardJoinAttrValues

Due to Treecut, a node either sends complete tuples or
join-attribute tuples. Thus, we have to distinguish between
two different data structures for transmission. Complete tu-
ples are forwarded as a multiset (Set_Of_Full_Tuples).
In contrast, we insert the join-attribute tuples into a
more elaborate data structure, discussed in Section V
(Join_Attr_Structure).

ForwardJoinAttrValues starts by merging the data from

the children into a single data structure for complete tuples
(Line 8) and join-attribute tuples (Line 10), respectively. Then
it is determined whether Treecut applies, depending on the
amount of data to send (Lines 12, 13). If so, the node adds its
tuple to the data received, sends it to its parent, and is done
executing the query (Lines 15 - 18). Otherwise, the node stores
the complete tuples from its children to act on behalf of them
in the Final-Result-Computation step (Line 20). In addition, it
stores the join-attribute tuples of its subtree (Line 21). This is
used in the Filter-Dissemination step, and Section IV-C will
deal with it. Then the node generates the join-attribute tuples
of the complete tuples received as well as its own join-attribute
tuple T ′, adds it to the data received, sends it to its parent,
and waits for the Filter-Dissemination (Lines 22 - 27).

Memory capacities. Treecut introduces proxies that store
the data of their descendants. The amount of memory needed is
limited by Dmax (30 bytes) multiplied by the number of chil-
dren of a node. The children are a subset of its communication
neighbors. Thus, the number of these neighbors can serve as
an upper bound, usually around 6 to 15 [3], [8]. In summary,
Treecut requires only a small fraction of the capacities of the
node (hundreds of KBs, cf. Sec. III).

C. Disseminating the Join Filter

After the base station has received the join-attribute tuples
of both relations, it joins them and creates the join filter.
SENS-Join now has to disseminate the filter in the network.
A simple way to do so would be to forward it along the
routing tree. However, based on the following observation,
we can significantly reduce the number of packets: In the
Join-Attribute-Collection step, each node gets to know the
join-attribute tuples of its descendants. If a node keeps this
knowledge until the Filter Dissemination, it can decide

1) which part of the join filter is relevant for its subtree
(which join-attribute tuples appear in it), and

2) whether it is necessary to forward the join filter at all.
Selective Filter Forwarding. The first item means reducing

the size of the join filter while being forwarded to the leaves,
i.e., the filter is pruned progressively. The second item refers
to the situation where none of the tuples from the filter appears
in the subtree of a node. In this case there is no need to
forward the filter, i.e., the filter is forwarded exclusively into
those regions that contain result tuples. Figure 3 shows the
forwarding procedure. Since the filter also is a set of join-
attribute tuples, the same data structure is used as for the prior
collection step (Join_Attr_Structure).

1 ForwardJoinFilter(Join_Attr_Structure Filter)
2

3 SubtreeFilter = IntersectJoin_Atts(Filter, SubtreeJoinAtts);
4 if (SubtreeFilter �= ∅)
5 //send join-attribute tuples of subtree to children
6 broadcast(SubtreeFilter);
7 else
8 //do nothing - the subtree won’t be involved in final step
9 //sleep until next step - cf. Figure 1

Fig. 3. ForwardJoinFilter

130130

Recall that nodes have stored the necessary knowledge
(SubtreeJoinAtts) during the Join-Attribute-Collection step.
ForwardJoinFilter simply intersects the set of join-attribute
tuples that appear in the subtree with the join filter (Line 3).
This yields the set of join-attribute tuples that contribute to the
result and are located in the subtree. The node forwards the
result of the intersection if it is not empty. Note that especially
if the sensor readings are spatially correlated, complete regions
of the tree might not have to forward the join filter.

Memory capacities. Selective Filter Forwarding trades
memory for transmission costs. The memory requirements for
Selective Filter Forwarding are determined by the specifics of
the data structure (which we have not yet discussed). Even
without knowing the details, observe that it is possible to
bound the memory used: A node keeps the join-attribute tuples
of its subtree if their size is less than a predefined limit. We
use a limit of 500 bytes. To illustrate, this is only a small
fraction of the 512 KB of a SunSPOT. Introducing a limit only
has a minor influence on the performance of Selective Filter
Forwarding since the amount of data exceeds a few hundred
bytes close to the root only. However, the mechanism has its
main benefit towards the leaves.

D. Final Result Computation

After the filter has been disseminated, this step collects the
complete tuples. Conceptually, this is the simplest step: All it
does is forwarding the tuples along the routing tree to the base
station. Depending on how many tuples actually contribute to
the result, the data volume can be very small. Finally, the base
station computes the result.

Note that the complete tuple needs to be stored in the
first step (cf. Figure 1, Line 8). It is not possible to re-
acquire it from the sensors as the sensor readings could have
changed since the Join-Attribute-Collection. As any other join
algorithm, SENS-Join reads the sensors exactly once.

E. Design Considerations

Parameter Dmax. We have argued that, if the absolute
amount of data (Dmax) is already small, it can hardly be
reduced. Thus the energy savings would be small. This ar-
gument holds if the number of packets is not affected, leading
to an important constraint: Dmax < MAX_PACKET_SIZE.
Beyond that, our choice of Dmax = 30 bytes is justified by our
experiments: E.g., if the set of tuples exceeds 50 bytes, SENS-
Join already achieves a data reduction of about 25 to 30 bytes.
This is due to switching to join-attribute tuples as well as to
our compact data structure (Join_Attr_Structure).

Join Locations. An important design decision is where the
join-attribute tuples are joined and where to compute the final
result. We perform both computations at the base station. For
the final result, the base station is the optimal join location.
This is the result of a theoretical analysis which we have
carried out [20]. As a rough intuition, this is due to the
filtering: The selectivity of joining the filtered relations is low
and the result is larger than the input. Thus, sending the result
to the base station is more costly than sending the input tuples.

For the pre-computation, we found in-network approaches to
be superior to using the base station in specific scenarios only.
Thus, our choice is better in most cases.

Discussion. [3] proposes using an index ("semantic routing
tree") on static attributes to reduce the costs of forwarding
queries inside the network. Selective Filter Forwarding is
different. Our mechanism prunes the join filter which is for-
warded progressively. In addition, we do not build a dedicated
index tree. We exploit the knowledge available at a node
anyhow. Thus, we employ a temporary structure which comes
at no additional costs. Our mechanism is also applicable for
attributes whose value changes frequently, in contrast to [3].

F. Design for Error Tolerance

One of the most critical issues for algorithms in sensor
networks is coping with changes in the network topology, due
to links going down and node failures. SENS-Join builds upon
tree-based routing. In particular, the collection-tree protocol
(CTP) of TinyOS has undergone a series of optimizations
to adapt to changes in the topology. By building upon this
mature routing technology, we can exploit its error handling
mechanisms: An execution of SENS-Join requires the routing
tree to be stable for the duration of a single execution. This
is in the order of a few seconds. Beyond a single execution,
SENS-Join does not maintain any state. If a link goes down
during the execution of a query, we rely upon the tree protocol
to re-establish the routing structure. Afterwards, we simply
re-execute the query. If data loss needs to be avoided, a
more elaborate technique for handling link failures would be
required that stores the data during the outage. However, while
network disconnection is a problem, it is infrequent given the
short execution time of queries and we leave a more elaborate
error handling as future work.

V. COMPACTLY REPRESENTING

JOIN-ATTRIBUTE TUPLES

We now describe the data structure used to represent join-
attribute tuples in the first two steps. Our mechanism roughly
halves the costs of the pre-computation.

Mechanisms like Bloom Filters cannot serve as a com-
pact representation in our context since they only allow for
evaluating equi-joins. Compression algorithms would also
be unsuitable: Firstly, they are not targeted towards small
data volumes. This results in bad compression ratios for our
problem, see Section VI-B. Next, a compression algorithm
would introduce a huge overhead [21]: A node must de-
compress the data received before adding its own tuple. The
data then needs to be re-compressed before forwarding it.
Our compact representation avoids this problem by comput-
ing the primitives InsertJoin_Atts, UnionJoin_Atts, and
IntersectJoin_Atts directly on it.

A. Key Ideas of Compact Representation

Our mechanism pursues two goals: Firstly, we minimize the
number of bits required to represent a single join-attribute
tuple. The second goal is to compactly encode a set of tuples.

131131

0
10

20
30

40

12

15

18

21

temperature

x
y

temperature

10 20 30x
y

Fig. 4. Distribution of values for 3 join attributes

42

45

48

51

14 15 16 17 18 19 20

h
u
m

id
it
y

temperature

Fig. 5. Distribution of values for 2 join attributes

The key idea towards representing single join-attribute tu-
ples is to perform a quantization of the range of each sensor
type. This lets us influence the number of bits. Clearly, a
quantization reduces the accuracy of the join-attribute tuples.
This is not a problem: As the join-attribute tuples are only
used for the pre-computation, we can reduce their accuracy
without sacrificing correctness of the final result.

To compactly encode a set of join-attribute tuples we exploit
spatial (auto-) correlation of sensor readings. We briefly pro-
vide the intuition: Figure 4 shows temperature measurements
and their locations, taken from a real-world deployment [22].
In the presence of spatial correlation, sensor readings from
nearby nodes are likely to be similar. As a consequence, a set
of join-attribute tuples is highly redundant. Our representation
eliminates this redundancy by means of a spatial index.

B. Quantization

Conceptually, join-attribute tuples are points in an un-
bounded, continuous, n-dimensional space. Figure 5 illustrates
this perception: Given a query with two join attributes, hu-
midity and temperature, join-attribute tuples are points in
a two-dimensional space. The idea of a quantization is to
approximate a continuous range of values by a relatively small
set of discrete values. Quantization requires us to specify
bounds on the ranges ([min, max]) and a resolution (step size)
for each dimension. The outcome is a restricted, discrete, n-
dimensional space. To complete the quantization we need to
assign a symbol to each multidimensional cell. This symbol
encodes a join-attribute tuple that falls into the cell. In other
words, we need a numbering which maps a multidimensional
point to one dimension, i.e., a space-filling curve.

For the numbering it is important that numbers correspond-
ing to nearby join-attribute tuples are similar in order to
keep the spatial correlations. Z-ordering accomplishes this, cf.
Figure 6a and b. Besides its good locality-preserving behavior,
Z-ordering is easy to compute. This is important in WSNs.
We compute the Z-number of a point by bit interleaving of
the coordinates of each dimension, see Figure 6c.

0 1

2 3

0 1

2

4 5

3 6 7

8

10

9 12 13

11 14 15

00 01 10 11

00

01

10

11 1 11 0

(c) bit interleaving
of binary coordinates

(a) basic Z-order
curve (2D)

(b) Z-ordering,
first iteration

Fig. 6. Z-ordering

We now turn to two important details: Firstly, we need to
determine an appropriate range of values ([min, max]) and a
resolution of each dimension. This is done at the base station
and is disseminated independent of a query. The second aspect
refers to computing Z-numbers. The problem is that a sensor
measurement might fall outside of the specified range. To ease
presentation, we discuss the second aspect first.

Computing Z-numbers. Each node needs to encode its
join-attribute tuple which is computing the Z-number. This
is presented in Figure 7.

1 //compute size of each dimension
2 for all dimensions i
3 SizeOfDim[i] = {(MaxVal[i] − MinVal[i]) · 1

Resolution[i]} + 1;
4 SizeOfDim[i] = roundUpToPowOf2(SizeOfDim[i]);
5 BitPerDim[i] = log(SizeOfDim[i])
6

7 EncodeTuple(Tuple T ′)
8

9 //compute coordinates (P[i]) of T ′ in each dimension
10 for all dimensions i
11 P[i] = {(T ′[i] − MinVal[i]) · 1

Resolution[i]};
12 if (P[i] < 0)
13 P[i] = 0;
14 if (P[i] ≥ SizeOfDim[i])
15 P[i] = SizeOfDim[i] − 1;
16 //apply bit interleaving to encode P (T ′)
17 Z = InterleaveBits(P, BitsPerDim);
18 return Z;

Fig. 7. EncodeTuple

As a prerequisite for the bit interleaving, we need to know
the length of the coordinates. This is implied by the number of
cells in each dimension (Lines 2 - 5). E.g., in Figure 6c, we
need two bits for each dimension. We compute the number
of bits for each dimension separately as, in general, the
dimensions are not of equal size. In this case, each dimension
contributes to the bit interleaving until its bits are exhausted.
EncodeTuple starts by computing the coordinates of T ′

(Lines 10 - 15). By doing so, we ensure that they are within
the specified range ([MinVal, MaxVal]) (Lines 12 - 15). This
is necessary since the estimated range might be too narrow. In
this case we map the value to the boundary of the correspond-
ing dimension. We discuss this solution subsequently. Finally,
InterleaveBits computes the encoding (Line 17).

Specifying Ranges and Resolution. The following param-
eters need to be specified: MinVal[i] and MaxVal[i] to bound
each dimension as well as their resolution (Resolution[i]).
These ranges are specific to the environment of the WSN. It
is therefore possible to fix them while setting up the network.
While elaborate techniques exist for estimating the values, e.g.,

132132

h
u
m

id
it
y

temp

points corresponding to
join-attribute tuples

Fig. 8. Construction of the quadtree

[19], for our purpose reasonably good estimates are sufficient.
If our estimated range is too large, we might need more bits
to encode a point. But since our domain grows in steps of
powers of two (Line 4), a moderate overestimation is not
critical. E.g., there is no difference whether we specify a range
containing 600 values or 900 values: They both are in the
interval [512, 1024] and require 10 bits. In contrast, if the range
is too narrow, a value might be outside of it. EncodeTuple
maps such a point to the boundary of the range. In the worst
case this wrongly yields join-attribute tuples that match, and
we unnecessarily send their complete tuples. But this affects
only a few tuples unless the range is much too narrow.

The idea behind a quantization is to have a coarser resolu-
tion to reduce the number of different values per dimension.
Again, the resolution has no impact on the correctness of the
result. If it is too fine, we need more bits to encode each
point. If it is too coarse, complete tuples might be sent erro-
neously2. We found out experimentally that the performance
of SENS-Join is insensitive to the resolution used for the pre-
computation as long as it is not too coarse. Thus, we simply
use a fixed resolution for a particular environment. E.g., in our
experiments we used steps of 0.1◦C for the temperature and
of 1m for the X- and Y-coordinates.

C. Representing Points Using a Spatial Index

To encode a a set of points our idea is to use a spatial index.
A region quadtree [23] is a good choice: Firstly, our goal is to
achieve a compact encoding. A region quadtree is based on a
regular decomposition of an n-dimensional universe. The 2n

subspaces resulting from a partition are of equal size. This is
advantageous for our compact representation since it is not
necessary to encode how to divide the space. Secondly, a
quadtree is closely related to Z-ordering. The Z-number of
a point corresponds to the sequence of quadrants that results
from a traversal of a quadtree down to the point.

Encoding sets of points with a quadtree. To illustrate
the intuition, assume a query with a single join attribute and
the two (discretized) values 23.2◦C and 23.4◦C. To eliminate
redundancy, we could represent them as 23◦C plus the relative

2As we reduce the resolution, we need to adjust the join of the pre-
computation not to miss a joining tuple. This is where the false positives
come from. These modifications are straightforward for standard Θ-joins.

Encoding:

i = index-node p = point eol = end of list

10 0 00

10 0 10

001 101 0001 101 111 0

Index nodes:

List of points:

(content)

(content)(i)

(p) (eol)

Fig. 9. Encoding of a quadtree

remainders 2 and 4, respectively. As an abstract illustration,
Figure 8 shows a quadtree for five join-attribute tuples from a
two-dimensional example. Each tuple corresponds to a point in
a two-dimensional, quantized space. Each index node of the
quadtree corresponds to a region. At each level of the tree,
all dimensions are partitioned into halves. Redundancy within
the set of points is eliminated as follows: The index indicates
the region which is common to all of the points. If we encode
each point relative to the region, then the index node represents
what the points have in common. A relative remainder contains
information that is unique to a point. Thus, we represent a set
of points by the index nodes plus the remainders.

Since quadtrees are well-known, we restrict the discussion
of the details to two aspects: Firstly, we need a pointerless
representation of the tree. This is because we use it as a wire
format. In addition, the use of pointers negatively affects the
space requirements of the data structure. The second aspect
refers to a general design decision with respect to quadtrees:
The decomposition into subspaces is usually continued until
the number of points is below a given threshold t [24]. Thus,
we need a criterion to decide when to stop the decomposition.

Pointerless representation. There has been a lot of interest
in pointerless quadtree representations [23]. We represent the
tree as a bitstring consisting of index nodes and the points
which are given relative to the path. Figure 9 shows these
elements. The pointerless representation is obtained by storing
them in the order of a depth-first traversal of the quadtree.
This allows us to easily implement UnionJoin_Atts and
IntersectJoin_Atts. We elaborate on this in Section V-D.

The details of our encoding are as follows: An index node
starts with a ’0’ bit specifying that it is an index node. The
remaining bits of an index node encode which of the quadrants
at the subsequent level is present in the tree. If the number
of points in a quadrant is below the threshold, the points are
given as a list. A leading ’1’ indicates a point. Their encoding
is relative to the path and contains only the position within the
current quadrant. Thus, as the size of the quadrant becomes
smaller with every level, so does the relative encoding of a
point. As shown in Figure 9, we also need to mark the end of
a list of points. This is done by appending a ’0’.

Decomposition threshold. In general, the threshold t for
stopping the recursive decomposition of a quadtree depends on

133133

its use. In Figure 8, t equals 3, so a set of three points is listed
explicitly. As our goal is a compact representation, t depends
on the number of bits required for a further subdivision vs.
the number of bits required for explicitly listing the points.
Recursively subdividing a quadrant costs inserting an index
node into the tree (cf. the encoding in Figure 9). In contrast,
since the points are specified relative to the current path,
this subdivision reduces the number of bits of each point. In
general, the idea is to compare both solutions and to stop the
decomposition if a list of points is shorter.

Encoding of relation membership. To ease presentation,
we have omitted so far how to encode which relation a join-
attribute tuple belongs to. This is important for the base station
to do the join. We prefix each point with two bits ("relation
flags") indicating that the point belongs to Relation A (’10’),
B (’01’), or to both relations (’11’). As a consequence of
prefixing the points, when inserting them into the quadtree,
the topmost index node represents the relation flags.

D. Computing Low-Level Primitives

Recall that compression algorithms are not helpful in our
context, due to repeated compression/decompression [21]. A
strength of our quadtree representation is that UnionJoin_Atts
and IntersectJoin_Atts can be computed directly on it.
There is no need to recover the original tuples. Note that
both primitives operate on sets (sets of join-attribute tuples
represented as quadtrees) and obey the usual semantics.
UnionJoin_Atts is similar to the merge step in Mergesort

and can be done in one pass over the data: It merely requires
a traversal of the two trees in parallel. Performing these oper-
ations directly on the quadtrees is simple due to the depth-first
order. Since quadtrees follow a regular decomposition scheme,
the shape of the tree is independent of the order of the points
being added. We omit the pseudocode for UnionJoin_Atts
and IntersectJoin_Atts since these operations are well-
known. In fact, the ability to perform set operations quickly
is one of the reasons for the popularity of quadtrees [23].

VI. EXPERIMENTAL STUDY

To demonstrate the efficiency of SENS-Join we imple-
mented a prototype in the ns-2 network simulator [25]. We
compare its performance to the external join which sends both
input relations to the base station and joins them. Recall that,
despite its simplicity, the external join is optimal if the selec-
tivity is very low. In addition, the external join outperforms
the specialized join methods mentioned in Section II in each
of our experiments. This is because the latter require very
specific scenarios. Thus, in this article, we do not report on
comparisons to them.

Our implementation of the external join is state-of-the-art:
We aggregate different tuples as they move up the routing tree
to reduce the number of packets for the external join. Further,
we perform projections and selections as early as possible.

Metric. Typically, sensing and communication dominate the
power consumption [1], [2], [3]. As sensing is the same for
every join method, we focus on communication.

Choosing a metric for measuring the communication costs
is difficult. In general, using the number of transmissions
(networking packets) is more appropriate than counting bytes
transferred, due to the huge per packet overhead. However,
this is closely tied to the maximum packet size. For large
packets, e.g., 124 bytes, the amount of data per packet can
vary significantly, and the number of packets is not directly
proportional to the energy consumption either. We use the
number of transmissions as our metric with a maximum packet
size of 48 bytes. This is commonly used. We discuss the
influence of the maximum packet size in Section VI-A.

We compare the communication costs along two lines:
overall communication costs and per node communication
costs. The latter is important due to the routing tree. Nodes
close to the root are more loaded than leaf nodes. Thus, the
per node metric is more critical: When the energy of the nodes
near the root is depleted, the network ceases operation.

General setting. For our experiments, we simulate a ran-
dom distribution of nodes. We set the communication range
of each node to 50m and assume links to be bi-directional.
This is a common setting in the networking community [2].

For the scope of this presentation we use a fixed distribution
of the physical quantities, emulating real sensor data. Varying
the data distribution has two effects: (a) The size of the result
may change, and (b) the positions of the nodes contributing
to the result may change as well. However, we found that
changing the positions of nodes only has a minor influence.
Further, to vary the fraction of tuples that join, we can also
adapt the join conditions. This is much easier to present, and
this is what we do.

Parameters. There is a large number of parameters that
influence the efficiency of SENS-Join. As discussed below,
they can be reduced to the following parameters: (1) fraction
of nodes in the result, (2) ratio of join attributes

attributes overall , (3) number of
nodes (size of the network), and (4) packet size.

The idea behind our approach is to send only the tuples
that contribute to the result. Thus, the savings depend on the
size of this fraction. A second parameter is the ratio of join
attributes over the number of attributes in the query. While
the external join sends complete tuples, we only send the
join-attribute values during the Join-Attribute-Collection step.
Thus, the smaller this ratio, the higher the expected savings.
Finally, we are interested in the influence of the network size
and of the packet size. The first two parameters in particular
determine the form of the queries used in the experiments:

SELECT A.att_1,..., A.att_n, B.att_1,..., B.att_n
FROM Sensors A, Sensors B
WHERE join-expr(A.join-atts, B.join-atts)
AND ... AND join-expr(A.join-atts, B.join-atts)
ONCE

The join conditions are range conditions in the style of Q1
and Q2, used to vary the fraction of tuples in the result. The
queries do not contain selection predicates. These would be
handled locally and affect the number of nodes concerned.
However, our third parameter already controls this number.
Beyond that, we found the influence to be negligible and omit

134134

(a) 33% join attributes

(b) 60% join attributes

External Join
SENS-Join

Fig. 10. Overall savings of SENS-Join

a respective treatment. In addition, we query the same number
of attributes from both relations. Otherwise, the tuples sent in
the Final-Result-Computation step would be of different size,
and the number of transmissions would depend on the fraction
of the tuples that are large/small. We found that this parameter
has the same effect as varying the number of attributes overall.

Default setting. In each experiment we vary one of the
parameters. If a parameter is not varied we use the following
default value: The size of the network is 1500 nodes in a
1050m · 1050m area. The fraction of the nodes in the result is
5%. For the ratio of join attributes to attributes overall we will
consider two default settings settled towards different ends of
the spectrum. The first one is 33% based on one join attribute.
The second one is 60% based on three join attributes.

A. Efficiency of SENS-Join

Overall communication costs. A first set of experiments
determines the overall savings of SENS-Join as compared to
the external join. The parameter is the fraction of nodes that
contribute to the result. The higher this fraction, the more
tuples finally need to be transmitted. Thus, we expect SENS-
Join to perform better than the external join unless a high
fraction of the tuples joins. There is a break-even point due
to the pre-computation of SENS-Join. Figure 10 graphs the
results for 33% and 60% join attributes. For the latter, we
save up to two-thirds of the overall energy consumption of the
external join. For 33% join attributes, the energy savings are
up to 80%. They are higher for a smaller ratio of join attributes
to attributes overall, as discussed below. Next, SENS-Join is
superior until more than 60% (80%) of the nodes join.

Per node communication costs. In the following we
investigate the relationship between the number of descendants
in the routing tree and the load of the nodes. Due to the
forwarding load, nodes with many descendants take up more
resources and thus determine the lifetime of the network. Thus,
it is critical to reduce the load on these nodes. Figure 11(b)
shows that for 60% join attributes the most loaded nodes
are unburdened by more than 75%. For 33% join attributes,
Figure 11(a) shows a reduction of more than an order of
magnitude. This difference increases as the ratio of join

(a) 33% join attributes

(b) 60% join attributes

External Join
SENS-Join

Fig. 11. Per node savings of SENS-Join

External Join
SENS-Join

Fig. 12. Influence of the ratio of 3 join attributes
x attributes overall

attributes to attributes overall decreases. The next paragraph
explores this influence in detail.

Ratio join attributes
attributes overall . We want to verify that a smaller ratio

of join attributes to attributes overall increases the savings, and
we want to find out if and how these savings are bounded.
This also is supposed to justify that our 33% and 60% default
settings represent different ends of the spectrum.

The difficulty with the ratio is that the number of combi-
nations is daunting. But many combinations lead to similar
ratios (2:4, 4:7, 4:8, etc.) and are close to one of the defaults.
Thus, they represent a large number of queries. In contrast,
it is possible to increase the ratio to 100%, at least in theory.
Though it is difficult to find meaningful queries with very high
ratios, the analysis provides a lower bound on the savings.

We now fix the join attributes (join conditions) to have a
constant rate of nodes that join (5%). In a first experiment we
consider queries with three join attributes. We vary the number
of attributes overall from five to three. Clearly, this is the
minimum for three join attributes. Figure 12 graphs the results.
As expected, the savings increase as the ratio of join attributes
to attributes overall decreases. We also see that even for the

External Join
SENS-Join

Fig. 13. Influence of the ratio of 1 join attribute
x attributes overall

135135

External Join
SENS-Join

Fig. 14. Influence of the network size

worst case of 100% join attributes we save transmissions,
compared to the external join. This is because of the quadtree
representation. In the second experiment we take one join
attribute and vary the number of attributes overall from one
to five. The results in Figure 13 confirm our expectations.

Network size. To determine the influence of the network
size we vary the number of nodes from 1000 to 2500. At the
same time we vary the area of the network to keep the node
density constant. We expect the size of the network to have
only a small influence on the relative results. If we assume a
fixed fraction of tuples that join, the savings are proportional to
the size of the network in each step. There is one exception:
At the beginning of the Join-Attribute-Collection step when
Treecut is applied our method is identical to the external join,
and there are no savings. Intuitively, the influence of this
initial phase becomes less as the size of the network increases.
Figure 14 shows that this expectation holds. The savings are
slightly superlinear with the size of the network.

Packet size. The influence of the maximum packet size is
difficult to assess. If it is increased, the number of packets is
reduced. However, SENS-Join is highly optimized: The data
volume of most of the nodes is so small that it already fits into
a single 48 byte packet. Therefore, if we increase the packet
size, the external join will profit more in terms of packets sent
because it sends much more data per packet. However, it is
then difficult to draw any conclusions since sending a packet
containing, say, 100 bytes is much more costly than sending,
say, 30 bytes. The number of transmissions is not directly
proportional to the energy consumption any more.

We confirmed our expectations experimentally. Indeed, the
external join profits more in terms of the overall number of
packets. But for a maximum packet size of 124 bytes, SENS-
Join still reduces the number of packets of nodes close to the
root by an order of magnitude. This is expected as well: Recall
from Figure 11 that SENS-Join reduces the volume of data by
much. We omitted the figures due to space constraints.

B. Costs of SENS-Join – Breakdown

We are now interested in an explanation of the savings
with SENS-Join. We start by breaking down the number of
transmissions to the different steps. In addition, we consider
the performance of our compact representation in isolation,
and we analyze its influence on the SENS-Join performance.

Costs of the different steps. We now assign the costs of
SENS-Join to the different steps. As before, we consider the
overall costs if different shares of the tuples join. The costs
of the first step (Join-Attribute-Collection) solely depend on

SENS-Join
(3%)

SENS-Join
(5%)

SENS-Join
(9%)

SENS-Join
(25%)

External
Join

Fig. 15. Costs in the different steps of SENS-Join

the number of join attributes and not on the fraction of tuples
in the result. Figure 15 confirms that they are fixed. If there
were no result tuples (0% tuples that contribute), there would
be no packets in the Filter-Dissemination and Final-Result-
Computation steps. Thus, the costs of the first step provide a
lower bound on the costs of SENS-Join for a fixed number
of join attributes. Let us now look at the costs of the Filter-
Dissemination: The number of nodes which need to receive
the filter depends on the fraction of tuples in the result. Thus,
the smaller this fraction, the more subtrees are pruned.

Performance of quadtree representation. One of the
reasons that compression algorithms are unsuitable for our
problem is a bad compression ratio for small data volumes.
We now compare our compact representation to some well-
known compression algorithms of different kinds (cf. [26]):
zlib [27] (library form of gzip), which combines LZ77 and
Huffman coding, and bzip2, [28], which is based on the
Burrows Wheeler Transform. These algorithms do not run on
current sensor nodes due to their use of memory and code size.
However, by using highly optimized algorithms we provide an
upper bound on what can be achieved. We focus on lossless
algorithms. Lossy compression leads to incorrect join results.

For this experiment we modified the Join-Attribute-
Collection step to either send the raw join-attribute tuples
(no compact representation), to use one of the compression
algorithms, or to use our quadtree representation. We collect
three join attributes: temperature and the location coordinates.
This is difficult for our approach: Two of the join attributes
are uncorrelated (X- and Y-coordinates). As expected, using a
standard compression algorithm results in a poor compression
ratio: For 1500 nodes, collecting the join attributes using
no compression requires 5619 packets. Bzip2 requires 5666
packets (there is some overhead which increases the volume
if it is small) and zlib requires 4571 packets. In contrast, the
quadtree representation halves the costs (2762 packets).

Influence of quadtree representation. Finally, we distin-
guish between the savings due to only sending join attributes
and the ones due to the quadtree representation. For this dis-
cussion we use the queries from the introduction. Without the
quadtree mechanism we save sending two out of five attributes
for Q2. Thus, the volume of data is reduced by 40% (66%
for Q1). However, the actual savings of the Join-Attribute-
Collection step will be slightly smaller. This is because a
reduction in the volume of data does not reduce the number of

136136

External
Join

SENS_No-Quad
(4%)

SENS-Join
(4%)

Fig. 16. Influence of quadtree representation

packets if this already is the minimum of a single packet. The
numbers in Figure 16 confirm this simple back-of-the-envelope
calculation. The Join-Attribute-Collection step needs about
38% less transmissions than the external join. As discussed
above, the compact representation halves the volume of data
sent. Again, due to the lower bound of a single transmission,
some nodes cannot profit from this reduction (Figure 16).

VII. TRADEOFFS

SENS-Join can significantly reduce the energy consumption
of join processing. However, these benefits are not for free.

Response time. SENS-Join introduces a pre-computation
and is thus inferior to the external join regarding response
time. In a way, SENS-Join trades response time for energy
consumption, as the latter arguably is the most critical resource
in WSN. However, the response time of SENS-Join is upper
bounded by at most twice the duration of the external join.

Vulnerability to disconnection. If a link happens to go
down during the execution of a query, our current error
handling does not deliver results for the time of the outage
(cf. Section IV-F). However, this is an infrequent problem and
could be mitigated by a more elaborate error handling.

Memory requirements. Treecut and Selective Filter For-
warding trade memory for transmission costs. As discussed in
Section IV, our design accounts for memory restrictions.

VIII. CONCLUSIONS AND FUTURE WORK

General-purpose join queries are difficult to evaluate in
WSNs. The tuples are distributed throughout the network,
and matching tuples is costly in terms of communication.
In this paper, we presented SENS-Join, the first general-
purpose join method that can efficiently handle any number
of join conditions and arbitrary distributions of the nodes
involved. Our design combines centralized computations with
a distributed filtering. By thoroughly designing the information
flow and by means of a compact representation specific to the
pre-computation data, this filtering becomes efficient. SENS-
Join is more efficient than the state-of-the-art approach unless
a high fraction of the input relations (ca. 60% - 80%) joins.
We achieve a reduction of the overall energy consumption by
more than 80%. The savings of the most loaded nodes is more
than an order of magnitude in some situations. This prolongs
the lifetime of the network significantly. As follow-on work

we currently investigate if the filtering can be optimized for
continuous queries by exploiting temporal correlations.

Acknowledgements. This work was partially supported by
the German Research Foundation (DFG) within the Research
Training Group GRK 1194 "Self-organizing Sensor-Actuator
Networks" (GRK1194). We are grateful to Jörg Sander and
M. Tamer Özsu for their comments and to Camillo Scandura
for much help.

REFERENCES

[1] D. J. Abadi, S. R. Madden, and W. Lindner, “REED: Robust, Efficient
Filtering and Event Detection in Sensor Networks,” in VLDB, 2005.

[2] Y. Yao and J. Gehrke, “Query processing for sensor networks,” in Proc.
Conference on Innovative Data Systems Research (CIDR), 2003.

[3] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “The design
of an acquisitional query processor for sensor networks,” in SIGMOD,
2003.

[4] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,” ACM
TODS, vol. 30, no. 1, 2005.

[5] Y. Yao and J. Gehrke, “The cougar approach to in-network query
processing in sensor networks,” ACM SIGMOD Record, vol. 31, no. 3,
2002.

[6] X. Yang, H. B. Lim, M. T. Özsu, and K. L. Tan, “In-network execution
of monitoring queries in sensor networks,” in SIGMOD, 2007.

[7] B. J. Bonfils and P. Bonnet, “Adaptive and decentralized operator
placement for in-network query processing,” Tel. Sys., vol. 26, 2004.

[8] A. Coman, M. A. Nascimento, and J. Sander, “On join location in sensor
networks,” in MDM, 2007.

[9] H. Yu, E.-P. Lim, and J. Zhang, “On in-network synopsis join processing
for sensor networks,” in MDM, 2006.

[10] N. Roussopoulos and H. Kang, “A pipeline n-way join algorithm based
on the 2-way semijoin program,” IEEE Trans Knowl Data Eng, vol. 3,
no. 4, 1991.

[11] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems
(2nd Edition). Prentice Hall, 1999.

[12] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate aggregation
techniques for sensor databases,” in ICDE, 2004.

[13] M. L. Yiu, N. Mamoulis, and S. Bakiras, “Evaluation of spatial pattern
queries in sensor networks,” University of Hong Kong, Tech. Rep. HKU
CS Tech Report TR-2007-02, 2007.

[14] V. Chowdhary and H. Gupta, “Communication-Efficient Implementation
of Join in Sensor Networks,” in DASFAA, 2005.

[15] A. Pandit and H. Gupta, “Communication-Efficient Implementation of
Range-Joins in Sensor Networks,” in DASFAA, 2006.

[16] A. Coman and M. A. Nascimento, “A distributed algorithm for joins in
sensor networks,” in SSDBM, 2007.

[17] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and A. Woo,
“Tep 123: Collection tree protocol.” http://www.tinyos.net/tinyos-
2.x/doc/.

[18] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: A
Tiny AGgregation service for ad-hoc sensor networks,” in OSDI, 2002.

[19] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong,
“Model-driven data acquisition in sensor networks,” in VLDB, 2004.

[20] M. Stern, E. Buchmann, and K. Böhm, “Where in the sensor network
should the join be computed, after all?” in UKD Workshop, 2008.

[21] C. M. Sadler and M. Martonosi, “Data Compression Algorithms for
Energy-Constrained Devices in Delay Tolerant Networks,” in ACM
SenSys, 2006.

[22] http://db.csail.mit.edu/labdata/labdata.html.
[23] H. Samet, “The quadtree and related hierarchical data structures.” ACM

Comput. Surv., vol. 16, no. 2, 1984.
[24] V. Gaede and O. Günther, “Multidimensional access methods,” ACM

Comp. Surveys, vol. 30, no. 2, 1998.
[25] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,

P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu, “Advances
in network simulation,” Computer, vol. 33, no. 5, 2000.

[26] K. Sayood, Introduction to Data Compression, 2nd ed. Morgan
Kaufmann Publishers, 2000.

[27] J. Gailly and M. Adler, “zlib,” http://www.zlib.net.
[28] J. Seward, “bzip2,” http://www.bzip.org.

137137

