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Abstract Research on P2P data structures has tacitly asstructures: Payment mechanisms [14] are vulnerable ared hav
sumed that peers readily participate in the work, i.e., are ¢ high infrastructure costs. Certified code or similar solos
operative. But such participation is voluntary, and fre ri  [9] typically require a centralized certification instance.,

ing is the dominant strategy. This article describes a paito are not P2P. Proposals against free riding in mobile environ
that renders free riding unattractive, for one particulaPP ments [5,21] are not applicable either. There, peers can ob-
data structure. The protocol is based on feedback that adjaserve the behavior of other peers in the same radio network
cent nodes exchange. This induces transitive logical mésvo cell and infer their degree of cooperativeness.

of nodes that rule out uncooperative peers. The protocsl use oy gbjective is the design of protocols for P2P data struc-

proofs of work to deter free riding. To show that coopera-yres that render free riding unattractive. This articleufges

tive behavior dominates, we have come up with a cost modeb, the evaluation of queries. It does so @ontent-Address-

that quantifies the (_)verall cost of peers, depending on theigple Networks (CANJ24], a prominent P2P data structure.

degree of cooperativeness and many other parameters. TRgith the protocol envisioned, peers will only answer querie

cost model tells us that we can achieve a good discriminatiofss,ed byreliable nodeb i.e., nodes that have correctly pro-

against peers that are less cooperative, with moderate addigssed all recent incoming queries. New nodes or nodes with

tional cost for cooperative peers. Extensive experimemms ¢ - o ynclear status must prove their reliability first, befoee-

firm the validity of our approach. efiting from the system. At the same time, the costs of the
protocol shall not be much higher than the ones of existing

Key words  Peer-to-Peer distributed hashtables free ridingyotocols. The design of such a protocol is difficult, forivar
incentives reputation OUS reasons:

— In contrast to other P2P scenarios different from P2P data
structures (cf. [8,11]), it is not only one peer, but a se-
guence of peers that processes a query. This makes the

1 Introduction problem much more difficult, as this article will show.

In our setting, peers cannot readily observe the behav-

ior of other nodes: if a query remains unanswered, the

issuer cannot say which other peer has not cooperated.

From a slightly different perspective, peers hide their in-

tentions. A statement like “Connection refused” will not

be generated if a node does not participate in the work.

Hence, standard recovery mechanisms for CAN [24] like

expanded ring search or flooding will not work.

The transition between ‘reliable’ and ‘unreliable’ is blur

red: A peer that tends to be unreliable may process in-

coming queries from time to time, in particular if there

is a direct advantage in sight. Further, the ‘attitude’ of a

node may change at any time.

Peer-to-Peer data structures (P2P data structuradiiress a

core issue of data management research, namely administer-
ing huge sets of (key, value)-pairs. A P2P system consists of
nodes, a.k.geers Peers may issue queries, but they are also
supposed to participate in the work, i.e., storage of dath an
evaluation of queries in the context of P2P data structures.
By participating in the work, peers share the infrastruetur
costs (disk space, energy, network bandwidth etc.). P2&® dat _
structures do not have a centralized instance, ech@dina-

tor, which monitors and controls the peers. So far, research
on P2P data structures has tacitly assumed that peersyreadil
participate in the work. But experience with P2P systemts tha
are operational, notably file-sharing systems, indicdtes t
this is not realistic [3]. Peers seek to minimize their costs
Free ridingis the dominant behavior in the economic sense. ! |n the context of this articlereliable and cooperativeare syn-
Existing technology does not solve the problem for P2P datanyms.
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— There is no centralized instance that provides information ~ The remainder of this article has the following structure:
on the degree of reliability of a certain peer in an author-The next section reviews related work, Section 3 provides a
itative way. brief recap of CAN. Section 4 demonstrates the necessity of

— The network may be large. In general, a peer has not ineountermeasures against free riding. Section 5 descrilres o
teracted before with a peer whose query it is supposed tmew protocol. Section 6 provides a cost model for the proto-
process. However, when deciding if it should process thecol. Section 7 features a discussion, and Section 8 confirms
query, it can only rely on its own observations from the our findings by extensive experiments. Section 9 deals with
past, or on observations from other nodes that it deemsttacks on our protocol. Finally, Section 10 concludes.
reliable.

— Peers may change their identity at any time and sign up
under a new identity. 2 Related Work
Our three contributions are as follows: First, we propose

a CAN protocol that differentiates between reliable and les The database community has started investigating distdbu
reliable peers. In a nutshell, a peer generates positive@r n data structures about a decade ago [19, 18]. The topic has at-
ative feedback on other peers in certain situations. ltémds  tracted recent interest from other communities as wells Thi
the feedback to other peers, attached to messages thald wothas resulted in many proposals, now referred toaerlay
send out anyhow. Each node decides for itself if it ‘trudt€ t networks distributed hash tablestructured P2P networks
feedback from others, and uses the feedback it is aware aftc. [16]. All suggestions for distributed data structunes
to estimate the reliability of other peers. A node processesire aware of tacitly assume that all nodes follow the prdtoco
a request from another node only if it deems the node reli-and do not do free riding.
able. Peers with low reliability must provigeoofs of work The proposals mainly differ with regard ¢ontact-selec-
(Prow)[4,17] before they obtain a query result. The expec-tion, i.e., which are the peers a node can directly commu-
tation is that peers decide to be reliable, instead of cagryi nicate with, androuting-selectioni.e., which contact does
out many ProW and ending up with higher overall costs. Wea node forward the current query to. High contact-selection
explain why our setting requires ProW, in contrast to otherflexibility together with high routing-selection flexibiji is
scenarios [11]. preferred; more recent proposals try to achieve both [1&. T
Second, we develop a cost model for our protocol thattopology of the key space is closely related to contact and
predicts the expected overall costs of a peer, dependirig on irouting selection. The key space GAN [24] is a torus of
degree of reliability. Using this model, we show that (1) the 4 dimensions. Each peer maintains a contact list containing
protocol differentiates well between reliable and lesgbd¢  at least2d immediate neighbors of its zone in the key space.
peers, i.e., less reliable peers end up with higher ovesatbsc ~ Section 3 provides a detailed description of CABHORD
than reliable ones. Since the behavior of peers is not seadil[28] organizes the data in a circular one-dimensional key sp
observable, negative feedback on fully reliable peerssllyi  ce. Messages travel from peer to peer in one direction throug
exists. Our protocol does not guarantee that entirelybldia the cycle, until the peer whose ID is closest to the key of the
nodes do not have to supply any Prow. However, we use ouguery has been found. Each peer keeps trackgif) other
cost model to show the following: (2) additional costs for re peers in the distanc—! with 1 < k < log(n), wheren is
liable peers, incurred by such ProW, are moderate, comparegthe number of peers in the systeRastry[27] uses a Plaxton
to other costs. Mesh to store and locate its data. The forwarding algorithm
Third, we show the quality of our protocol by means of is similar to the one of Chord. Each node maintains a routing
extensive experiments. They show that our cost model pretable containingogs: (n) - (2° — 1) contacts determined by
dicts the system behavior well and demonstrate that theprot common prefixes of the node-1Disis an exogenous param-
col is operational in realistic and synthetic settings. Wess  eter.P-Grid [1] is based on a virtual distributed search tree.
that we have a CAN implementation of our own that is fully Each node is addressed with a subtree-ID, which is the binary
operational, for large numbers of peers [7]. We have usad thistring representation of the path from the root to the peer on
prototype for a lot of the experiments. Our experiments fur-the leaf of the virtual tree. For each level of the tree, each
ther show that the protocol is robust against changes of theaode maintains a reference to another peer in the samesubtre
environment, i.e., it differentiates well between coopeea  whose ID branches to a different subtree in the deeper levels
and uncooperative nodes, and it is robust against most kind4 6] features a detailed survey of the various approaches.
of attacks. The protocol does so even if external character- CAN differ from other approaches where contacts do not
istics like the global failure probability change signifithy. have to be direct neighbors in the key space. Consequently,
Another important finding is that the protocol does not penal the number of hops of a query in CAN tends to be larger.
ize neighbors of uncooperative nodes. On the other hand, identifying free riders is a hard problem i
Summing up, this article is the first to investigate how to contacts may be nodes somewhere in the key space. The rea-
tackle free riding in P2P data structures where the beha¥ior son is that the dissemination of reputation- or trust-eslan-
peersis not readily observable, by means of an open protocalormation becomes more difficult. This article limits thesdi
The protocol proposed is truly Peer-to-Peer since it doés nocussion to CAN and leaves the problem of feedback dissem-
rely on any centralized instance. ination in the more general case for future work.
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Free riding has received much attention in the context ofpeers responsible for certain feedback items remainspanal
P2P systems different from P2P data structures [23]. Somgously to [2].
approaches use the concepts of trust and reputation tadget ri ~ Similar approaches exist, e.g., EigenTrust [13]. However,
of free riding. Trustis the subjective belief of a node in the those vulnerabilities of global P2P repositories call fordl
honesty and the capabilities of another participant. [20} p interactions between transaction partners instead. Hieee,
vides a comprehensive formal definition of trust as a comfeedback about a certain node is distributed among its-trans
putational concepiReputationis derived from observations action partners. They may assess the same peer differently.
of the behavior of a participant in the past. Reputation sys{22] describes sharing of reputation information in suctea d
tems collect, distribute and aggregate feedback [26]. Repu centralized way. A node describes every other node with a
tion systems in P2P networks have to work without trustedrating coefficient, i.e., a numeric value. Nodes share tle¢-co
third parties, immutable peer identifiers and centralized s ficients after each transaction. A node updates its cosffiie
vices. by adding the new value weighted by the coefficient of the

Various approaches have addressed these challenges. B%Fnder]; Howev_er, the approach dogs not pursue a_tlght cdog-
sed on the Generalized Prisoner’s Dilemma, [11] addressdd'"d of reputation management and query processing and is

free riding with a game-theoretic concept. It shows that-com IessAspeI?ﬁc than ours. | ive behavi
mon game-theoretic strategies like Tit-for-Tat do not work nother concept {o rule out uncooperative behavior uses

well in P2P systems, and proposes a novel family of incentivéﬂ'CromymtentS [14]_' H(I)stfr' u;jra;]s_tructurtet_ costs Vr\]”th mi
technigques based on a reciprocative decision function. Th&"OPayments may simply be oo nigh In a Setling such as ours

function copes with untraceable defections, dynamic pepul with many small transactiqns. More recent approaghes like
tions and asymmetric transactions by using private or share.PPay [30] try to reduce the infrastructure costs by usingfloa

histories. The approach tries to find a theoretically opltimamg’ self-managing coms, 1.€., the load is transferredhftbe
solution and does not address realization issues. broker to the peers. But in general, payment schemes based
on artifical coins may come along with inflation or deflation.

From an algorithmic point of view, [2] was one of the Furthermore, they typically require a central bank in otder
first proposals of P2P-based reputation management. It is bgyrevent from fraud coins.
sed on complaints, i.e., negative feedback. Givendhatv) Public-key cryptography can help to ban free riders. The-
denotes the complaint from peeaboutv with u,v € P,the  re are two approaches [10]: The quorum-based model as-
reputation value i§'(u) = [{c(u, v)|v € P} x [{c(v, u)|v € sumes that the majority provides true information. The Web-
P}|. High values ofI'(u) indicate thatu is not trustwor-  of-Trust model builds trust graphs from the peers trusted by
thy. Each node stores the complaints it has generated in ghe issuer, until the peer in question is reached. Howewgh, b
global repository that all nodes can access. The repos#ory approaches are expensive: the first one requires the invoca-
implemented as a P2P data structure (P-Grid). However, [2fion of many nodes, the second one is similar to the travel-
does not discuss measures against insertion of spoof feeghg salesman problem. Other approaches use certified code
back. These seem to be indispensable, should the system bgr similar technologies [9] to prevent users from behaving a
come operational. Further, the peer that stores feedbackt ab \wi|l. But this requires a central instance, and would not be
a certain node is a promising target for attacks and a singlgn line with P2P. Dealing with free riders in mobile networks
point of failure from the perspective of that node. With our js simpler than in our setting, and existing solutions are no
work in turn, each peer runs a local repository for reliapili  applicable either [5,21]: A core difference is that nodes ca
information. This allows for a tlght integration of message eavesdrop messages to and from nodes in the same radio net-
forwarding with reliability issues and is independent from work cell.
global structures. [6] features a preliminary version of our protocol that
PeerTrust [29] incorporates feedbaglas a numeric ex- lacks important features described here. There, onlyipesit
pression of the satisfaction earned by each transactien, thfeeédback is used, but not negative feedback. For this reason
credibility C of the participating peers, and factors for the @ P€r can only recognize that another peer has turned un-
community- and transaction contextS8¥ andT'F). Letw ~ Ccooperative when the respective feedback times out. While
denote the peer in questiop(u, i) the other peer participat- negative fee.dback is indispensable, it significantly aadds t
ing in the transaction. Then the basic trust value#(u) =  the complexity of the protocol. Further, the evaluationhaf t
S, S(u,i) - C(p(u,i)) - TF(u,i) + CF(u). A P-Grid in- protocol in th|§ current artlcle_ls much broader. It_mcledze
stance stores the feedback itefia, 7). This approach does formal analysis and an experimental demonstration that our
not address all issues either. First, managing and digimpu  Model is a faithful description of reality.
a comprehensive history of many feedback items is expen-
sive. Second, the software plays the role of a trusted thirdy ~gntent-Addressable Networks
party. The concept fails if the software does not guarantee
that each transaction is rated one time, that only the partic Content-Addressable Networks (CAR¥] may serve as the
pating nodes have permission to write feedback to the P-Gridbasis for a broad variety of applications in the realm of the
repository, and that each peer can access it. Third, theruln WWW, Semantic Web or elsewhere; see [15] for a compre-
ability of the P2P repository against directed attacksragjai hensive list. They address a core issue of data management
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research, namely administering huge sets of (key, valagyp its zone. Otherwise, it forwards the query to that neighbor i

under high query and update rates. its contact list whose distance to the query point is minimal
A CAN is a distributed system that consists of many nodesThe procedure recurs until the query arrives at the node that

(peers). Nodes typically are PC or workstations, operateld a can answer it, thearget nodeThe target node then sends the

maintained by different persons or organizations. A pear be result to the issuer.

efits from the CAN by issuing queries and obtaining query

results. On the other hand, it is supposed to participatiedn t ) o

administration of the data and in the evaluation of queries? How Bad is Free Riding in CAN, after all?

!Each CAN node is respons'b"? for a part of the key Spa,ceObvioust, any mechanism to deal with uncooperative behav-
Its zone The _key spaceisa n-dlmen§|onal torus of Carte3|ar]or comes with additional computational overhead. On the
coordinates in the unit space, and is independent from g o hand, when looking at well-known coordinator-fre@P2
physical network topolqu. systems in the wild, e.g., Kazaa or gnutella, it seems that a
A query’is a point in the I_<ey space. We also spgak OfP2P system can function in spite of free riders. But there is
query pomts'l_'he query rgsult |s.the value corresponding to big difference between this kind of P2P systems and P2P
thg query point. !n addition to its zone, a node !mows a”_data structures: There, pedimodthe network with a request,
neighbor nodes, i.e., n_odes who_se zones are adjacent to 'it.%., a peer sends a replica of a query message to each of its
zone, and stores them ircantact list contacts (except for the one which has sent the query to the
Example 1The key space of the CAN in Figure 1 is two- peer). In contrast, P2P data structuresgreedy forwarding
dimensional. The Node,Rs responsible for Zone ([0.5; 0.5), i.e., a message goes from peer to peer. Obviously, resource
[0.625; 0.75)) of the key space, i.e., it knows all (key, glu  consumption with this scheme is much less. Further, any peer
pairs where keye ([0.5; 0.5), [0.625; 0.75)). The neighbors can access any (key, value)-pair. On the other hand, P2P data
in the contact list of Node Pare Nodes B, P, Py, Py, Ps structures are vulnerable when it comes to loss of messages.
and R. Node B is a neighbor of Node P In a CAN consisting ofN = 10,000 peers withd =
4 dimensions, a query is forwardéd= d/4 - N'/¢ = 10
times on average (cf. [24]). Suppose that the CAN contains

1 P, | P, u = 500 peers which do not forward any incoming query
message. Then the probability of obtaining a query result is
Py PiP7| P only (1 —u/N)! =~ 60%. Furthermore, the rate of answered
Y P P queries decreases exponentially when the failure prababil
S goes up.
— P, An experiment illustrates the problem further. We have
0 0 X ; run a CAN consisting ofV = 100,000 peers with a four-

dimensional key space. We varied the number of free riders
u from 0 to 50% and the private failure raei.e., the rate at

which free riders do not forward or answer messages, from 0
to 100%. Figure 2 shows the result of the experiment. The z-

The partitioning of the key space results from the CAN axis is the rate of queries answeredrhe experiment shows
construction protocol. A peer which wants to join the CAN that in settings without countermeasures against uncaeper
finds a random node that is already in the CAN. That nodeive nodes even a small number of free riders or a small &ilur
splits its zone, keeping one half and reassigning the otilér h rate reduces the number of queries answered significantly.
to the new node. Finally, the two nodes inform all neighbors
about the new zone assignment.

Given this key space patrtitioning, query processing is a
variant ofgreedy forward routingpased on the Chessboard
distance. The original proposal from [24] uses the Manhat-
tan distance. But our feedback dissemination mechanism de-
pends on the fact that two peers with adjacent zones have
some neighbors in common (see Section 5). Zones typically
have different size2d is a lower bound on the number of
neighbors in a CAN using the Manhattan distarge— 1 is
the lower bound for the Chessboard distance. A larger num-
ber of neighbors induces a higher maintenance overhead, bﬁ;__t _ . .
decreases the average path length in the CAN. [24] featuresd- 2 Rate Qf answers obtained at different rates of uncooperativ

. . . . . peers and private failure rates.
a more detailed discussion of the various tradeoffs inwblve
here.

A node that has issued a query first checks if it can an- Now suppose a peer would repeat an unanswered query

swer the query. This is the case if the query point falls intoafter a certain period of time, and the P2P data structure has

Fig. 1 Two-dimensional CAN.
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many replicas or uses m-of-n data coding, i.e., zones asgign an experimental web crawler. It runs a modified random walk

to free riders would not result in any loss of data. Then thealgorithm over the WWW. Table 1 shows some statistics.

presence of free riders would 'only’ incur additional netlwo  Next to the URL itself, a query message contains some pro-

expenses and an increased latency. Now we ask: Where tecol overhead, e.g., information about the issuer and some

the break-even, compared to a protocol that excludes aay freflags. In addition, a TCP/IP frame wraps each message, and

riding at the price of additional network overhead? SYN- and ACK-messages initiate each TCP/IP-connection.
To answer this question, we first determine the averagéVe estimate (very) generousty, = 200 bytes.

number of message forwardsn the presence of free riders, Section 6 will show that forwarding 10 feedback items is
i.e., how many peers forward a message on average given thaifficient in order to identify and exclude the vast majoaty
each peer drops the message with probahiftyetl = d/4-  free riders. A feedback item is a data object consisting of a
N/ pe the average length of a forwarding path under the aspeer-ID, a timestamp and some flags (cf. Section 5). Thus we
sumption that peers do not drop messagg¢s! = p denotes  setc, = 100 bytes.

the global failure probability, i.e., the probability of agr

to not process a query message. Obviously, in a CAN with-

out free riders it is the case that= [. In a CAN where the Number of pages crawled 7,646,238
global failure probability i = 1, the message is forwarded

; he | " ohb dd d riah Minimum length of URLs crawled 12.0
from the issuer to its neighbor and dropped right away, so Maximum length of URLS crawled 2550
f = 1. In general, the average number of message forwards

Average length of URLs crawled 61.1

£ is the sum of the probabilities that the message is dropped -
after1 - - -1 forwards or answered aftéforwards, multiplied Standard deviation of the length 18.7
with the respective number of forwarders:

Table 1 Some statistics from our experimental web crawler.

l
T=(X a-ppi)+0-p't @
i=1 Figure 3 now graphs the overall costs (y-axis) of a CAN
protocol without measures against free riding and the ones

~Suppose that each peer repeats an unanswered query upjp 5 protocol incorporating such mechanisms. The number
t times. Given the costs,, of transmitting a query message ot neers ranges from 1,000 to 500,000 (x-axi)y=4, and

from one peer to another, the average epstomes fromthe  yho n\ymber of retries is not limited (in the context of thetfirs
cost of each try mu_Itlplled with the probability to obtain an protocol). As expected, a larger number of peers increhges t
answer aftet - - - ¢ tries: costs due to longer paths and higher failure probabilifiss.

a result, even when the rate of 10% uncooperative peers is

_ t - small, the free riding-aware forwarding protocol outpenis
Ch=1[ cm- Z (1 —(1- p)l)'7 (1-p)" (2 the standard protocol. Obviously, one could constructacen
j=1 ios where peers fare better without our protocol. But the set

tings behind these scenarios are unrealistic or imprdckoa
Now consider a protocol that rules out free riders at theexample, the break-even is below 2.9 % uncooperative nodes
costc, of feedback on peers attached to each outgoing mesy 3 CAN consisting of 500,000 nodes, or it is below 2500
sa%el,lsuch as our protoéoWe estimate the average costs nodes in a setting with 10% uncooperative nodes.
as follows:

.= . 35000 T T T T
Cr = l (Cm + Ca) (3) Without countermeasures——
With countermeasures- - - *

o . . 30000
Let us now return to our original question: Where is the

break-even of a protocol that incorporates mechanismasigai

25000

free riding, given a realistic setting? , 2000
Experiences from P2P systems that are operational such 15000
as gnutella indicate a rate of free riders of up to 70% [3]. 10000

However, we believe that P2P data structures will attract an
other target group. We therefore assume a rate of 10% in the
calculation that follows. (If we used those 70%, our protoco %6 50000 100000 150000 200000 250000 300000 350000 400000 450000
would look much better.) _ . ) _ _

Now consider an application of P2P data structures Wherézlg' 3 Network traffic in bytes for operating with or without our

- countermeasures in a CAN with 10% uncooperative nodes.

the keys are URLs. The costs of transferring messages are as-
sumed to be the number of bytes. To obtain a realistic dis-

tribution of these numbers for URLs, we have implemented 3 The algorithm caches URLs visited. When a web server returns
an error, the algorithm restarts the random walk from a rentgo

2 We assume that ProW are requested from free riders only. selected URL from the cache.

50001 /.
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An analysis of the delay for obtaining query answersNo uncooperative behavior at application levelThis arti-
yields similar results. The only difference is that attachi cle leaves aside adverse behavior on the application level.
additional information to messages practically does net in instance, a node might try to prevent other nodes from obtain
crease the latency. Even when looking at the delay in ismlati ing access to a certain (key, value)-pair and might attempt a
already and leaving aside the costs, countermeasuresagaiiDoS attack on the node responsible for the pair. When look-
free riders are always advantageous. ing at the storage level in isolation, such an attack consume
resources, but does not provide any benefit to the node that
initiates it. While uncooperative behavior at the applmat

5 A CAN Protocol that Differentiates between level is an important problem, it is beyond the scope of this

Cooperative and Uncooperative Peers article. The problem of free riding at the storage level loas t
be solved first.

This section describes our new CAN protocol. We start with

a description of our various assumptions, followed by one of\erifiability of query results. The issuer of a query must be

the new data structures. Then we give an overview of oumble to verify the correctness of the result. Otherwise,deno

protocol, followed by the protocol itself. could send back a spoof query result and save the cost for data
storage. Verification of query results can take place by ex-
ploiting replication or application-specific charactéds of

5.1 Assumptions the data values managed (cf. Section 9).

Our reliability-aware CAN protocol depends on certain ehar
acteristics of the nodes and of the applications using the CA 5.2 Data Structures and Message Components

as described next. We will address the impact of these as- S o
sumptions in Sections 7 and 8. With our protocol, each node decides individually if it deeem

another peer reliable, based on observations from the past.
We refer to such observationsfeedbackFeedback is time-
stamped with the creation date and refers to one node, the
feedback subjecFeedback items can be positive or negative.
_They always have the same weight. Each node manages a
private feedback repositoryo keep up tos feedback items

is not much more expensive (in terms of infrastructure gosts220Ut €ach of its neighbors. We refer to the number of posi-
than query routing. Results are needed in time, so it is infeallVe féedback items in the reputation repository of Node P

sible to batch queries and issue them at once. It is acceptabfSsociated with subjectPas thereliability coefficient of B
if some (very few) queries remain unanswered. Examples ar@Y P1- A coefficient below a threshold valdemeans that P
object lookup systems, annotation services, push sergices eems P unreliable.

Thus, we strive for lightweight mechanisms that must cope To kegp Frack of queries it hgs forwarded in th? past, a
with a high rate of small parallel queries. node maintains guery log It contains the ID of the neighbor

the node has forwarded the query to, and the query point. The
query log is purged from time to time. A so-callésbdback
notificationinforms a peer about the success or failure of a

Application profile with frequent queries and small query re
sults. This article focuses on an application profile with the
following characteristics: Peers remain connected to #te n

work for a long time. They issue queries frequently and reg
ularly. Query results are typically small, thus their defiy

Equal private costs. A general problem is that the costs of a

peer (CPU, network bandwidth, memory, etc.) prieate in- query it has forwarded recently. Finally, the data struesur

formation For example, a peer connected with a dial-up mo- .
! : f[]om the conventional CAN are present as well, notably the
dem wants to save bandwidth, as opposed to one with a lease

line, which might be better off carrying out (CPU-intengive contact list and the structures storing the (key, valué)spa

ProW instead of processing queries. In general, it is not fea

sible to observe these preferences. This article assunes$ eq g 3 oyerview

private costs for all peers. Further, a node itself is resjia

for keeping the rate of system failures low. Our protocolgdoe The principle of our protocol is that nodes collaborate with

not (and cannot) ‘feel sorry’ for peers that are cooperative reliable neighbors only. If Node,Rends a query to its Neigh-

but run in an unstable environment. bor R, P, will process the message in an outright way only
if it deems R reliable. Thus, it is in the interest of a node that

Messages are not tampered with during forwardinyVe as- its reliability coefficients by its neighbors are high. Ouoto-

sume that only the issuer of a piece of information can havecol offers three alternatives for a node #® become reliable

falsified a message. For example, a peer may create falda the eye of a certain neighbos Pi.e., obtain a reliability

feedback. But it is unable to perform a man-in-the-middle at coefficient> i:

tack, e.g., to intercept a response message and claim to B&1P; forwards or answers a query, ang ireceives a notifi-

the peer who has provided the query result. In the presence cation about this.

of cryptographic signatures and the unlimited connegtivft  R2P; answers a proof of work request from.RWill be ex-

the Internet, this is realistic. plained right away.)
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R3Neighbors of P share their feedback, and the number of log, generates positive feedback on it, and puts this fegddba
positive feedback items on h the repository of RPisat  into its feedback repository. It then informs that peer véth

leastt. feedback notification. The procedure recurs until eachipeer
In addition, there are three ways how &an become unreli- the forwarding chain has generated positive feedback on the
able in the eyes of P next forwarder. The processing scheme for negative feédbac
R4P; does not forward or answer a query, andreceives a  is analogous.

notification about this. Whenever P obtains a message from NeighbeortRat it
RS5P; forwards a query, but another peer does not forward odoes not deem reliable; Pequests groof of work (Prow)

answer it later on. from P,. A ProW is a task that is easy to formulate, and the

R6Neighbors of R share their feedback, and the number of solution is easy to verify, but solving it requires a lot of re
positive feedback items on; Bn the repository of Pis  sources [4,17]. Having obtained a ProW from P; gener-
belowt. ates a number of positive feedback items gn oW are a

. ] waste of resources, when looked at in isolation. To decrease

Example ZThe repository of P containss = 10 feedback  the number of Prow requested from reliable nodes, adjacent

items on B. I_Dl_ has generated three of them itself. Two of peers share feedbacR3, R6). In order to save resources,

them are positive. Phas gen_erat_ed them because other CANfgedback is piggybacked to messages a peer sends out any-
nodes have answered queries issued hyaRd R had for-  pow 1n our example, Pforwards feedback to the nodes that
warded these queries to.PThe third feedback item is neg- 4re neighbors of £ A new feedback that is recent, be it in-
ative. From the remaining 7 feedback items obtained fromcoming, be it generated by the node itself, replaces thesblde
other nodes, 6 are positive, and one is negative. Thus, the r§em in the repository. This is in order to react to changes in
liability coefficient of B, by Py is 8. Assuming that < 8, P1 the hehavior of nodes. To make dissemination of spoof feed-
deems R reliable. _ back more difficult, a node accepts feedback only from neigh-

Now think of a Node P that obtains a query forwarded o that it deems reliable. A detailed discussion on spoof
by P, initially issued by k. P; estimates the reliability of  feedpack and other potential attacks is provided in Se&ion

P,. If the reliability coefficient of B by P; is lower thant, At first sight, since new nodes are likely candidates for

Py asks B for a ProW before processing the message. If thep oy it might seem that Prow are disincentives to join the

reliability coefficient ist or more, or if the ProwW response ,ayork. But there is no alternative to ‘entrance fees’ fawn

arrives in time, B processes the query. comers in settings where peers can change their identity at |
Feedback is not always generated Wi R2, R4, or 5 cost. This is because a P2P system does not contain a cen-

RS occur, but only with a certain p_robab||ftyTh|§ ISIN O~ tral instance that authenticates and monitors the usets. Wi

der toindirectly assign different weights to the differkimds protocol, a user could erase his reputation by leaviag th

of feedback. For instance, if we think tHall is twice asim-  hanwork and joining under another IP address and node ID.
portant aRs, the probability assigned R1 s twice the oné  Gjying advances to newcomers is likely to induce them to
of R5. Implementing weights with probabilities is easier than ¢.,nyme the advances, then leave the network and join under
with counters, and peers save bookkeeping efforts. anew identity. Related work in game theory confirms that the
__P»can observ&2 only. With R1, R4, andR5, an incom-  gyateqy with the highest payoff employs entry fees. For ex-
ing feedback notification triggers the generation of feettba ample, [12] formally proves based on the prisoners dilemma

Itis the issuer of the query that generates such a notifitatio ot no strategy can do better than one that punishes newcom-
For positive feedback, this happens after the arrival of the, g

query result_. If a result does not arriv_e within a certaiﬁmr_ There are ways to ease the join process for newcomers.
of time, the issuer sends out a negative feedback notifitatio Consider again the CAN construction process sketched in

q The r?(tionalehper?ind%S ri]S thgtftheai;suer of thi quEry Section 3. A new peer receives one half of the zone and infor-
oes not know which peer has defectd.ensures that the i ahout the neighbors from a node that is already part

unreliable peer obtains negative feedback by penalizing alof the system. An obvious extension to this mechanism is to

forwarde_rs. This is of course quite undifferent_iated. B t ass on feedback information on the neighbors as well. An
expec_tatl?n I(;Isbthali unreliable pee;ssend_up \g'tthur?h mOrgssumption behind this is that a peer that helps a newcomer is
negative fee r?c on average ((;1 'f ectllpnbl )- uhrt €rMOT%eliable. Another extension to the CAN protocol could dgplo
RS motivates t € peers to searc or refiable paths, e.g., t?)ublic-key cryptography to allow peers to keep its repotati
bypass (otherwise reliable) peers which tend to forward tQyhile being logged out

unrle:hal:()jlg nc|>(dest._f_ i K as foll E i One might wonder why the entrance fee cannot be 'regu-
issueeseor %Cmg? dIsIC; '32? Wgrloaz tcr)leoévjdrevsesrgeIr(])}etr?epr?neerlsar, work, instead of a ProW. regular’ means that the nodes
query, 9 ait until a neighbor node asks them to perform useful work,

sage. Now assume that t_he query result arrives. The |ssuer€),r\f our case the forwarding and answering of queries. Unlike
the query reads the peer it has forwarded the query to fromthgther P2P settings, query processing in P2P data structures

4 Here, each peer is initialized with the same set of prokigsli reqUi!'eS the COOPeraﬁO".‘ of a sequence of peers. If only one
which do not change over time. The problem of variable, iicilial ~ peer in a forwarding chain defects, the query is not procksse
probabilities is left open for further research. successfully. All peers in the chain would obtain negative
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feedback. In their own self-interest, nodes must be able t®f positive feedback and of a positive notification, by cagli

find out about the degree of cooperativeness of a peer that isandleFeedbackNotificatioin addition, the method returns

not known as cooperative to any other reliable node. Furtherthe query result to the application. If the query result duss

more, this must go on fast. It is not feasible to wait for the arrive in time,handleFeedbackNotificatida invoked with a

peer in question having performed enough regular work.  negative parameter value.

So far, Prow have been artificial problems like finding

prime factors of large numbers. However, ProW that perform

useful work from the perspective of the application are con-: handleFeedbackNotification(Point x,

ceivable as well. The only prerequisite is that the problem i 2 NotificationType n, LastForwarder {)

hard to compute, but it is easy o formulate, and its solution; Il is the last forwarder of the notification reliable?

is easy to verify. For example, if a CAN stores data crawled , if (f = this A f.reliabilityCoefficient< ¢) {

from the web, a Prow might be a crawl of a certain WWW stop processing the feedback notification;

domain. The peer which wants to verify the Prow checks”

whether a few randomly selected pages from the (_jom_ain ar§ I/ get the peer this node has forwarded the query to

part of the crawl. It might be possible that the validation of 1 Addressee a :this.queryLog.get(x);

such a ProW is successful, even though the peer in question I

has not crawled the entire domain. But the probability o thi Il generate feedback am.j forward the notification

s 13 generateFeedback(a, n);
can be kept arbitrarily small. 14 send(a, NotificationMessage(x, n));
It remains to be discussed why a node should carry out a }

ProW in the context of queries issued by other nodes. When

assuming that nodes issue queries at a steady rate, the notig- 5 MethodhandleFeedbackNotification

will soon issue a query itself. If its reliability coefficiers

belowt, it will have to carry out a Prow anyhow (cf. Subsec-

tion 5.1). Furthermore, a ProW delays query processing. If a o )

node refuses Prow until they relate to its own queries, it isMethod handleFeedbackNotificationThis method (shown

the processing of exactly these queries that is delayed. in Figure 5) is invoked with every observation of work per-
formed or not performed. This may be a returned query re-
sult as well as the arrival of a feedback notification. Method

5.4 Protocol handleFeedbackNotificatida invoked with the query point,
the notification type which can be positive or negative, and

We now describe the various methods that implement outhe last forwarder of the notification (or the one that has gen

protocol. To ease the presentation, we assume that a key &ated it).handleFeedbackNotificatidirst checks the relia-

only queried for once. Of course, our implementation canbility of the last forwarder. If it is not the peer itself arglriot

deal with the general case, i.e., keys being queried for moreeliable, the feedback notification is classified as spoaf an

than once. is ignored. OtherwisehandleFeedbackNotificatioeads the
addressee of the query from the log, and generates feedback
with the respective peer as feedback subject. At laahd-

: quer/;//g‘z(r)\j\gré)ihe query message leFeedbackNotificatiosends a feedback notification to that

3 handleQuery(xthis, this); peer, and the process recurs. An obvious optimization which
4 o ) . is also part of our implementation is to ship feedback notifi-
5 Resultr:=waitForAnswer(timeout); cations piggybacked to regular messages, instead of separa
6 if (query result returned in time)

7 handleFeedbackNotification(x, messages.

8 answer obtainedhis);

12 } elsreef{urn r'to application; Method generateFeedbackThis method creates feedback
1 handleFeedbackNotification(x, items and stores them in the local feedback repository. The
12 no answer obtainedhis); first parameter of MethodenerateFeedbadk the feedback

1 } subject. The second one specifies the reason why feedback
1} is created, i.e.NotificationTypeis an enumeration type of

the following valuesquery result obtainednho query result
obtained forward, no forward correct ProW result deliv-
ered Given this second parameter value, Mettygherate-
Feedbaclgenerates a feedback item with a certain probability

Method query: If a peer wants to obtain the value corre- (cf. Table 2).

sponding to a certain query point, it will invoke Methgdery

(Figure 4) with the query point as parameter. Metlypgtry ~ Method handleQuery: This method (Figure 6) answers and
invokeshandleQuerywhich is described below, and waits for forwards queries to reliable peers and generates feedlrack a
an answer. If it arrives in timaqueryinitiates the generation tachments. The parameters lzdndleQueryare the query

Fig. 4 Methodquery
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handleQuery(Point x, LastForwarder f, IssueKi)

I is the last forwarder reliable?
if (f # this A f.reliabilityCoefficient< ¢) {
requestProW(f);
waitForProWAnswer(timeout);
if (ProW answer returned in time)
o generateFeedback(f, Prow obtained);
se
stop processing the query;

/I answer from local zone?
if (x is located inthis.zone)return value(x) to i;

I/ forward query
CandidatePeers C :5p | dist(p,x)< dist(this,x)
A p € this.contactLis};

I/l determine reliable addressee
ReliablePeers R :5p | p.reliabilityCoefficient> ¢
ApeC}
if (R# 0) {
sort R by dist(pe R, x);
Addressee a := getFirstElement(C);
}else{
sort C by dist(ps C, x);
forall (pe C){
requestProW(p);
waitForProWAnswer(timeout);
if (ProW answer returned in time)
generateFeedback(p, Prow obtained);
Addressee a :=p;
break;
}
}
}

/I generate feedback attachment
FbAttachment F :={f | isNeighbor(a, f.subject)
A f € thisrepository};

// forward messages
send(a, QueryMessage(X, i, F));
this.queryLog.add(x, a);

Fig. 6 MethodhandleQuery

point, the last forwarder of the query (or the one that has is-

all feedback items whose subjects have a zone adjacent to the
one of the addressee. (Our implementation features some op-
timizations that ensure that no feedback item is sent to the
same node twice.) At last, the query is forwarded, and the
addressee is written to the query log.

Example 3n Figure 1, assume that s about to forward a
query to B. Then it would attach feedback on Bnd on R
to the message.

MethodhandleQuerymakes sure that the peer hands the
query to a peer that it deems reliable. This is an important
design decision R5 in Subection 5.3 states that a peer that
forwards a query to an unreliable node is treated as if it was
unreliable itself.

6 Formal Analysis

Parameter Abbr. Default
number of nodes per dimension n 10
dimensionality of the key space d 4
degree of replication r
total number of nodes N
size of feedback repository per

. s 10
neighbor
global failure probability for all
nodes b
private failure rate q
threshold for reliability
probability that one feedback
item for forwarding is generated ¢forward 0.2

probability that one feedback
item for query answering is
generated

relationship between positive

Ganswer 0.5

sued it) and the issuer of the query. First, the method checks
the reliability of the last forwarder. If it is below; the peer
is asked for a Prow. The query is ignored if there is no Prow

and negative feedback items dpn 2
number of feedback items

generated for Prow qProw 1
cost of forwarding a message | crorward 2
cost of answering a message Canswer 5
cost of a Prow CProW 100

result within the timeout periodhandleQuerghen checks if

the query point is in its zone. If so, it returns the answer (orTable 2 List of parameters.

at least the information that there is no value for this query

point) to the issuer of the query. Otherwise, the method-iden

tifies a peer to forward the query to. It is the neighbor node  Our analysis is based on various assumptions; we will ad-
with the smallest distance to the query point that is reiabl dress the impacts of our assumptions in Section 8: The CAN
If there is no such reliable neighbor, all neighbors are or-grid is completely regular, with zones per dimension. The
dered by their distance to the query poimandleQuenynow  number of zones is?, whered stands for the dimensionality
requests a Prow from each of them, one by one. As soownf the key space. Both the query points and the nodes issu-
as one peer returns the ProW, it becomes the addressee, aing queries are uniformly and independently distributetthan
positive feedback for the ProW is generated. Having identi-key space. Query processing takes place in rounds. Each node
fied the addressee, the method determines the feedback iterissues one query per round. If a query remains unanswered,
to be piggybacked to the message. This is done by selectinthe issuer does not repeat it. The total number of nodes is
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N = r-n?, wherer is the degree of replication. The pa- pendently distributed. Thus,
rameterr is identical for all zones. I andr are sufficiently

large, a npde will z_zllways find a reliable neighbor closer H).th avgdist™ — dist™ (a1, o) da1 das )
target point than itself. Consequently, we can neglectsitu
tions where greedy forwarding fails because all neighbors i z1,22€[051]¢

one direction are unreliable. Table 2 is a list of the paranset ] ]
used. Their default values will be discussed in Section 7. wel he double integral calculates the distances between each

assume that the system is in steady state. Assuming stea(ﬂEQSSible source and destination pointiidimensions. Note
state is not a restriction, see [13] for a description how B p2 that we obtain the average without dividing by the lengths

.. - i i i i d _
system reaches such a state. In addition, utility equalis cosOf the intervals, because itis 1 in the unit spaee]®. For
i.e., peers are risk-neutral. mula 5 reflects the situation where no node along the path

In what follows, we useP; to refer to a peer in the CAN, defects. The number of queries issued per roundy jghe
andz; = (w1, ..., 244) 1o refer to an arbitrary point in the number of queries the node is expected to forward per round
(2 1Ly eeey b

X i . : o d
zone of P;. As a first step, we seek a formula for the number Without defection and failures isvgdist™ .
of hops of a message from one point to another one. Given

two pointszy = (211, ..., 214) @andxzs = (221, ..., Z24); *1, Defection and Failures. Let p be theglobal failure proba-
r5 € [0; 1]¢ on ad-torus, theircell distance in Dimensiohis bility over all nodes, including both system failures as well as
as follows: adverse behavior resulting in queries that are not forwhrde

or answered. E.g., in a CAN consisting of 99 fully coopera-
tive peers, one fully uncooperative peer that is unknowd, an
) in the absence of system failurgs,= 0.01. Our assump-
L+ [min(zys, 220) - 0] + [0 —max(z1i,22:) - 7)) (4) tion that the CAN is large and in steady state implies fhat

) . is constant and does not change over time. In what follows,
Example 4in Figure 7,n = 8 andd = 2. The cell distance e refer to a node with failure probabilifyas cooperative,
of a pointin Cell R and one in Cell Pin Dimension x is 4, irrespective of the nature of the failures.
itis 3 in Dimension y. ) ) Each peer is supposed to forward queries issued by other

If the number of cells per dimensionbecomes larger, ,qes. The issuer delivers the query to the first forwardgr wi

the cell distance per dimension of two points becomes largege ainty. The first forwarder forwards it to the next onetwit
as well, irrespective of the fact that the positions of thmfso probability1 — p. The scheme recurs until the query reaches a
have not changed. Given the cell distances per dimensien, th) .o that answers it, again with probability- p. We assume
cell distanceof two points is the Lo-distance Chessboard 4 >> avgdist™?, so these probabilities per hop are
d|'standce. In Wgat follows, we use the notation independent from each other. Thus, a query will be transmit-
dist™® = maxi_, (dist} (21, 22))- ted over a distance a@f hops and answered with probability
(1—p)°~1-(1—p). The expected number of forwarders of a
query is the sum of the probabilities of being forwarded by a
- P number of 1, 2, .dist™%(xy, z2) — 1 forwarders. Given this,
the average number of forwards each peer is expected to do
per round is as follows:

dist? = min(||x1; - n| — |29 - n]|,

Y
dist"’d(w1,12)—l
P1 Pz h?(ﬁ‘ward = // Z (1 - p)lildxld'rQ (6)
0 P3 z1,x2€[0;1]¢ i=1
0 X 1
Clearly, in the presence of failurgs > 0 and therefore is
Fig. 7 Cell distance in a regular grid. h}lﬁwwd < avgdist™?. The number of queries a node is
expected to answer per round dependyp as follows:
- 1 if6=0
Example 5The grey cells in Figure 7 represent one shortest s (p,0) = { (1—p)=1if 5 >0 (7)
path (out of several ones) from to Ps. Its length is 4. Now
consider a message forwarded along this path. We say’that
is thefirst forwarder of the queryPs; thesecond forwarder of pd = //fg“””(n dist™?(z1,x2))dz1dzy  (8)
the queryetc. In our terminologyP; and P5 areissuerand
answerer o120

What is the average number of message hops per quenyquation 7 differentiates between queries that are issyed b
Our assumptions are that nodes issue queries with the sano¢her nodes and queries the issuer can answer itself, i.e.,
frequency, and that the query points are uniformly and indedist™?(z;, x5) = 0.
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How much feedback should a cooperative node expect per Let us now look at feedback for not forwarding. Peers
round? A cooperative node obtains both positive and nega-cannot directly observe peers not forwarding queries. If a
tive feedback. Consider the evaluation of a given query withquery does not return a result in time, each peer of the for-
issuerz, and query poinks. Having obtained the query, the warding chain obtains a negative feedback notification mes-
node responsible far, answers with probability — p. If it sage. Again, the formula has to consider three aspectsrtl) f
does not answer, the issuer generates negative feedback aarders may ignore the query message, (2) the peer responsi-
the first forwarder and a feedback notification that is negati ble forz, may not answer it, and (3) the feedback notification
(see Subsection 5.4). The feedback notification is forndirde can get lost. Negative feedback is generated on all peers be-
just as queries are, with probability— p per step. In other fore the answerer, i.e., for queries transmitted over dcsta
words, our model reflects that feedback notifications may getess than 2, no such feedback is generated. Equation 13 re-
lost, just as queries are. flects this. Then the average number of negative feedback per
Given the distance between issuer and answerer, we disrode per round is the sum of the probabilities over all nodes
tinguish three cases: If the issuer itself is able to ansiver t that might not have processed the query (Equation 14).
query @ist™?(z1,x2) = 0), no feedback is generated. If the
query is answered by a direct neighbéist™(z;, x2) = 1), )
the query is transmitted with certainty, the answer occiitts w 0 5o if o <2
1 — p, and the respective feedback is generated with certainty f14" (2, 0) =19 1 _ \6-1_, (1 _oi-1
again. If the distance is greater than 1, we have to take three (1=p) b (1 +-Z(1 P) if6 =2
points into account: (13)
— A query issued byr; with query pointz, is forwarded
from z; to zo with probability (1 — p)dist™*(@1.e2)=1,

dist™ % (xq,20)

This leads to the first factor in the third row of Equation9.
— The node responsible fap answers the query with prob- hforward,neg // Z fid*(p,9)dzrdzy - (14)
ability 1 — p (second factor). z1,22€[0;1]4

— The resulting feedback notification arrives at the last node

beforex, in the chain of forwarders with probabilify — hie e b | 4 1o look at th o i
p)dist"vd(mhmz)_z once itis generated (third factor). That This is because we only need to look at the case where a
nodes forward and answer the query.

node generates feedback for having answered the query.
Putt_ln_g every_thlng together, _Equat|0n 9 |s_ the probability 0 if5 <2
of obtaining positive feedback items for having answered a , . 5) — 5o
query forwarded ove¥ hops, and Equation 10 is the average 16 (p,0) = (1—p)°— 1+t <1 +> (1—p)j_1> if § >2

Formula 16 for positive feedback is similar but simpler.

number of positive feedback items. j=1
(15)
0 ifo =0 n, awe () dist"
auw(p, 0) = 1. (1 - p) ifo=1 hfotiward pos / f p7 dist 7d(l’l?‘%'2))dx1d‘r2 (16)
(1—=p)°1-(1—=p) (1—-p)P2ifs>1 x1,22€[051]¢
©) According to our protocol (cf. Figure 4-4), generating feed
hfjn‘iwer,pos = /f‘“”” (p, dist™®(x1,20))dz1dz, (10)  back occurs with a certain probability, allowing to diffate

ate between the different kinds of violations of the protoco

The numbers of feedback items actually generated are as fol-
Equation 12 is similar. It returns the average number of neg ows:

ative feedback items for not having answered queries. The

xr1, :EQG[O 1]d

node responsible far, does not answer with probabiligy h;‘loliward pos = h?'gf“ward,pos “Qforward
?gtiward neg h?;)rward,neg * 4forward * dpn (17)
0 ifo=0 h’:zlndswer ,pos = hgnswer ,pos Qanswer
U«WE (p’ 5) L p ifo=1 (11) hgnl%swer neg hgndswer neg Ganswer " dpn
(1=p)’t-p-Q-p)°2ifs>1

Given this, we have derived formulae for the expected num-

bers of feedback items for forwarding and answering. Feed-
hgndswer neg / fis (p, distn’d(l'l,l‘g))dl'ld.%‘g (12) back is also generated when a node has carried out a Prow.

h’];meOS stands for the expected number of this kind of
feedback items generated per round. We will derive a closed
The probability to obtain feedback items for having (not) an formulain what follows. When extending the protocol to cope
swered a message decreases with the distance. Other nodeith other kinds of adverse behavior, there will be more rea-
may drop the feedback notification instead of forwarding it. sons for generating negative (or positive) feedback. Tlae an
This is why our protocol incorporates not only feedback for lysis steps that follow can take these kinds of feedback into
answering queries, but for forwarding as well. account without difficulty.

11,126 0 1
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How likely is a ProW request? As a first step, we estimate feedback notification reaches the predecessor of the nede re
the expected lifetime of a feedback item in a feedback reposmains unchanged. Therefore, we adapt the existing formulae
itory. The expected number of feedback items on a node gerfor having forwarded or answered by factar— ¢)/(1 — p).

erated per round i§ ", E;;gos +>. ﬁg;geg, with z € {for- So the number of positive feedback items an uncooperative

ward, answer, ProW }. The larger the sum, and the smaller peer can expectis:
the sizes of the repository, the smaller is the expected life-

. . . 7n,d ,d 1-—
time ttl of feedback items. The formula is ’}?orward,pos = h?orward,pos ) %TZ (25)
il — S (18) hZﬁdswer,pos = hZﬁdswer,pos ’ TZ
- Tn,d ?n,d
%: haneg + %: ha pos The peer does not forward or answer queries with probability

q, instead of. So we adapt Formulae 12 and 14 by inserting
where the expected lifetime is given in numbers of roundssactorq /p:

The probability that the rating of a random feedback item in

the feedback repository is negative or positive is as fatow :;gww dmeg = ;ﬁﬁww dneg ° % (26)
Zﬁn,d hZ;Ldswer,neg = h:zlhdswer,neg : %
x,neg
p?{eil; = > ;Ln,dm iy jd (19) The formulae for the amount of feedback actually generated
e are analogous to (17).
Shrd, . . .
n,d _ x Costs of joining the CAN. Finally, we quantify the costs of

Ppos = frd prd (20) joining the CAN. Obviously, a new node must carry out some
2 halpos + 32 halneg : : :
z z ProW before being able to issue queries. When the node car-
ries out a ProW, its neighbors will share information on.this

Given these probabilities, the following questions a&hat .
Thus, a new node must take the following costs:

is the expected value of the reliability coefficient? Hovelik

is it that the coefficient is below? In other words, how likely
is it that a cooperative node is deemed unreliable by itsmeig
bors? Clearly, the value of the reliability coefficient fdls
the binomial distributiorB (s, pgg)‘i). Then the following holds:

E(cost’) =

* CProWw (27)
qProw

7 Discussion
E(reliability coefficient) = s - pg(;‘i (21)
Given this cost model, we are interested in the impact of the
pp? = P(reliability coefficient < t) various parameters and the interdependencies between them
_ til <5> ) (pn,d)i ) (1 _ pn,d)sfi (22) In what follows, we limit the discussion to results that we
=o\? bos pos find most interesting. We have used numerical methods to in-
Now we can determine the number of ProW requested fronferpret the formulae.
a cooperative peer. It depends on the probability of having a
certain reliability coefficient, and the number of Prow negd
to reach threshol¢t

t—1

n, N nad) S—1 t—1
i =3 (1) - G5 =ty | =

i—0 qProw
(23)
Thus the number of positive feedback items created on aver-

1 n,d _ n,d :
age 'ShPronos - hProWypos "qProw: Finally, the expected . Fig. 8 Costs for forwarding and responding for cooperative nodes.
overall cost of a node per round is the frequency of the vari-

ous tasks, multiplied with their respective costs.
o First we look at cooperative nodes. Their costs depend
E(cost) = hid e - Canswer T prpard = Corward (24)  on the global failure probability and the reliability thresh-
+h}é’fow  CProw old ¢. Figure 8 graphs the expected coster answering and
forwarding queries. Figure 9 shows the expected ProW cost.
Nodes that cooperate lessNow consider a node with a pri- Parametep ranges from 0 to 0.2. Higher values fprare
vate failure rate, i.e., defections and system failures. In what not meaningful, in contrast to, say, existing file-sharigg-s
follows, we refer to a node with a failure ragelarger than  tems. Since cooperative behavior dominates, as we will show
p asuncooperativeHow much feedback can it expect per p will be small. The values of the other parameters are as in
round? The probability that a query is forwarded or answeredrable 2. Figure 8 shows that a high global failure probabil-
changes froml — p to 1 — ¢. Because all other nodes for- ity reduces the costs of forwarding/answering queriess Thi
ward with probabilityl — p as before, the probability that a is because queries will get lost on the way from the issuer
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to the answerer. But this may go along with high Prow costpeer. For the protocol to work, the ratio should always be
for all peers (Figure 9). Thus, Prow cost may account for asignificantly larger than 1. With the parameter settingsseimo
significant share of the cost of a cooperative node in a CANfor the experiment, this does not always hold, e.g., for kmal
with a high global failure probability, at least if the parat®er . Thus, to achieve the discrimination of uncooperative peer
settings have not been chosen carefully. We see thatfob sought, it is necessary to choose the parameter settings mor
the ProW costs are independentpofThis makes sense: A carefully. On the other hand, it seems that one can achieve th
node does not need to carry out a ProW, since it is deemediscrimination envisioned: There is a large part of the dioma
reliable in any case. where the function value is larger than 1, and, according to
Figure 9, the ProW costs of cooperative peers are moderate.

Fig. 9 Costs for answering ProW for cooperative nodes.

Fig. 11 Discrimination between cooperative and uncooperative
Let us now look at the costs of nodes that are uncoopngdes.

erative. Figure 10 plots the total casbf an uncooperative

node as a function of its failure rateand threshold. The _ o _ _ _

failure rate of an uncooperative peer, which we have chosen Having said this, the crucial questions are: What is an op-
arbitrarily for this particular plot, ig = p-2. Inreality,anun- ~ timal setting of the endogenous parameters? How does the
cooperative peer is not likely to have such a low failure rate overall system behavior look like with such a setting? To an-
only marginally higher than the average rate. But this graptsWer these questions, we must clarify first what we mean with
is supposed to show that a small difference in the failuresrat ‘OPtimal’. Two objectives come to mind: (1) Discrimination
already affects the total costs of uncooperative peersfsign 2gainst nodes with a higher failure rate should be as good as
icantly. Let us first look at the case whefrés small. Every ~ POssible. (2) The additional overhead of cooperative nodes
node qualifies as reliable, even though the feedback reposit Should be minimal. — Obviously, we cannot achieve both ob-
ries might contain hardly any positive feedback item. Isthi jectives at the same time: We can achieve a good discrim-
case, costs are low since a node does not have to carry olftation against nodes that tend to be uncooperative by be-
any Prow. According to Figure 8, costs even slightly deaeas iNg Strict, e.g., high value of threshoid higher weight for

with increasing;. The reason is that the node now processed'egative feedback items, etc. But this means that cooperati
fewer queries and therefore has lower cost. But according tlodes are more likely to have to carry out ProW, since they
Figure 10, this effect is insignificant, compared to Prowsgos @IS0 obtain negative feedback. Their costs would increase.
whent is high. In other words, if is too low, it pays off to be This would run counter to Objective (2). Hence, we wonder:

uncooperative. On the other hand, Figure 9 tells us thaelargAre there system states with good discrimination as well as
¢ penalize cooperative nodes. moderate overhead of cooperative nodes?
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Fig. 10 Total costs for uncooperative nodes.
Fig. 12 Discrimination, with overhead bounded.

Fortunately, Figure 11 tells us that there are parameter
settings where the discriminatiehbetween cooperative and Figure 12 shows the maximal discrimination against un-
uncooperative nodes is good and costs for cooperative peecooperative nodes for a given overhead. In more detail, we
remain acceptable. Figure 11 shows the ratio of the total cogequire that the overhead of cooperative nodes to work off
of a peer with failure rateg and of one that is cooperative ProW requests must be less than 10%, compared to the cost of
(¢ = p-2). The z-axis is the total cost of an uncooperative peefforwarding and answering queries. ‘10%’ is arbitrarily eho
with failure rateq divided by the total cost of a cooperative sen; we want to show that even small additional expenses
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from cooperative nodes lead to an acceptable discrimimatio nodes are minimal. Figure 13 shows the expected ProW cost
Other values yield similar effects. w of a cooperative node divided by its expected total cost.
In most cases, these additional costs are pleasingly logy Th
Example 6Suppose that the expected overall cost of a coopincrease with increasingand increasingV, but stay within
erative node is 70 for a certain setting of the endogenous pag tolerable range. Thus, our protocol yields a good diserimi

rameters. The expected ProW cost is 20. The ProW cost asgation of partly uncooperative nodes with moderate effort.
ratio of the overall cost is 20/70. This is more than 0.1, Whic

is our upper bound. Thus, we would ignore this setting and .In. what fO"O\évs’ V\Ile mv:::suigate thethmfll_Jence Ofcg;? re-
search for an other one. maining parameters. In particular, can they improve diseri

Given this bound, Figure 12 shows the maximal discrim- nation without increasing ProW costs? The role of Parameter

ination that is possible, i.e., the overall cost of an unesep s, the size of the feedback repository, seems to be evident:

ative node divided by the overall cost of a cooperative node.The 'afgers' the easier for a peer to collect evidence for co-
erativeness and uncooperativeness, and the larger the ex

Because the protocol depends on the path lengths, the x-axid S : -
is the number of zones in the CAN. This would be the num-peCted dlscrlmlnat|on. The (_)pposne p_ers_pe_ctwg is thatllsm
ber of peers if there was no replication. The y-axis is thle fai values ofs might not result in goqd discrimination, at least
ure rateq of the uncooperative node. Again, the private fail- when the bound on the overhead is small.
ure rate is set tg = p - 2. Parameters to be optimized are  Figure 14 graphs the optimal discrimination for a given
t, Gforward, Qanswers Qpn, 8NAgprow . From our cost model overhead of 10% and the private failure rat¢again,p =
it follows that ¢ forward/Canswer = Aforward/danswer- The  ¢/2), for different values ob. The grey color highlights val-
values ofcforwards Canswers @Ndcprow are as in Table 2. ues ofs andq which do not allow to meet the overhead con-
Cforwards Canswer @ANACp,oyy are exogenous parameters (cf. straint. The figure reveals a positive result: there are ydwa
Subsection 5.1). settings that fulfill the overhead bound, except for tinyagp
Figure 12 shows that the values are always larger than 1ifory sizes and very large failure rates.
i.e., the discrimination sought does occur! The discririara
is very good for small and medium values &f and small
global failure probabilitiep. However, it decreases with in-
creasingV. Note that the protocol works for CAN with many
nodes as well, as long as the path lengths are short enough.
Choosingr andd appropriately guarantees that. — The curve
is not as smooth as one might expect it to be. The reason is
that the domains of some parameters are discrete. In particu
lar, ¢ must be an integer. The result from Figure 12 is positive
since the discrimination envisioned does take place, waith r
alistic settings of the various parameters. The threshaligev
for the additional cost of a cooperative node is very moderat
(0.1). The values of are conservative as well. If for instance Fig. 14 Discrimination for different sizes of the repository.
g = 0.1, this means that the node still processes 90% of the
incoming queries as requested. Discrimination againsésod

W|th a h|gher failure rate iS mUCh more d|St|nCt Another parameter iSP’I‘OW! the cost Of a proof Of Work'
It specifies the amount of work a node has to carry out in
w order to signal its willingness to cooperate. Our expeatesti

regarding this parameter are as follows: if the ProW is too ex
pensive, this will incur significant additional costs foroge
erative nodes. If the ProW is too cheap, the number of Prow
requests might be high, and this might bring down query per-
formance.

Fig. 13 Overhead, with discrimination bounded.

Number of Prow

Figure 13 is based on the inverse perspective. Now the

constraint is a minimum discrimination of 1.2 for partly un- R
cooperative nodes. In other words, the expected total dost o 01 I/,,;'O/,';';ig = ,: 002
a node with failure ratg = p - 2 must be 20% more than 001 = i

the expected total cost of a cooperative node. Again, 1.2 is a

arbitrary (bot moderate) value. Given this constraint, @kl 0
for settings where the expected Prow costs of cooperativ&ig. 15 Number of proofs for uncooperative peers.
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Figure 15 plots the number of ProW requested from un-
cooperative nodes for different Prow costs and differeilt fa
ure rates, again with a Prow overhead bound of 10% for co-
operative nodes. It meets our expectations in the following
respect: low ProW costs incur a high rate of Prow requests
and vice versa. But an unexpected result is that the number
of ProW requested is exponentially decreasing. The inflec-
tion point is near a cost value of 200. This has an importanfig. 16 Discrimination between cooperative and uncooperative
implication: the problem of different private costs (cf.cSe nodes in the experiment.
tion 5.1) goes away if Prow costs are high. Namely, very
small intervals along the 'Number of Prow’ axis relate to
large intervals along thep,.,ii--axis. Consequently, our pro-
tocol will remain effective in heterogeneous settings veher
peers run on different hosts, endowed with different capaci
ties for Prow computation.

w
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Effectiveness. The most urgentissue is to show that our reli-
ability-aware CAN protocol functions as envisioned — and as
predicted by our model. Remember Figure 11, which graphs
the calculated discrimination between cooperative an@unc
operative nodes. It tells us that uncooperative nodes lave t
take significantly higher costs than cooperative ones if the
threshold value is adjusted to the global and the localfailu

8 Experimental Evaluation rate. We hope to see the same curve if we replay the analysis
with our prototype (cf. settings in Section 7). Figure 16880

Having carried out an extensive model-based analysis, W_gwe result of this experiment: leaving aside some smoothnes
want to verify that our reliability-aware CAN protocol is-op issues, both curves are congruent!

erational under real-world assumptions as well. We havk eva

uated our protocol by means of numerous experiments. Thefffects of model assumptionsin order to ease the alge-
address the following issues: raic analysis we introduced some assumptions which do not

— Does an implementation show the behavior predicted bf\lways hold in reality. We now want to show experimen-
our model. i.e.. is our model correct? tally that these simplifications do not result in a model that

— How restrictive are our assumptions behind the algebrai@vers'mpl'f'eFj’ and predictions are real_lstu_:. In other degr
model (some of which are necessary to keep the formale assumptions only hold for the derivation of the formal

analysis manageable)? Does the protocol remain operaF-OSt model, z_;md_ we will show that they are not necessary to
tional if we drop assumptions like regular zones or com-€nSure functioning of the system. We have run experiments

pletely even distribution of queries issued at steady Pates"ith 10,000 peers and a rate of 10% uncooperative nodes us-

— How sensitive is the system regarding small changes ofng a local failure rate of 20%. The first experiment repro-
the environment? In a living system, peers may alter thei

duces the setting from the algebraic analysis, i.e., iesedin
behavior or join and leave the CAN. Thus, characteris-& COMPIetely regular zone-partition scheme and peersugsui
tics like the failure probability,

the number of peers, or queries at regular rates for equally distributed query kbys
the length of forwarding paths may change over time. inSubsequent experiments, we have replaced each of these sim-

other words, assume that we have found the optimal valPlifications with assumptions closer to the real world:
ues of the endogenous parameters for a given setting of ~ 1N€ completely regular zone partitioning is replaced by
the exogenous parameters. Now the exogenous parame- & realistic zone scheme. It is the result of the split pro-

ters change. Do those values of the endogenous param- (0co! Of the original CAN (cf. Section 3). Peers are now
eters still result in good discrimination and acceptable responsible for zones of different sizes and have different

overhead? numbers of neighbors.

. . —Instead of peers issuing the same number of queries at
We have performed all experiments on a Linux cluster of reqular rates. we assian a factor to each peer whose dis-
32 loosely coupled workstations equipped with 2 GHz CPU, -gular rates, we assig . P .
. tribution is Gaussian. It determines the number of queries
2 GB RAM and 100 MBit Ethernet each. Here we ran a Java- . :
. . : . issued in each round. The factor has mean value 1.0 and
based CAN implementation which we have implemented our- .
. . ranges from 0 to 2. Hence, the number of queries each
selves. We have extended it for logging and management pur- . .
. : . peer issues per round remains 1.0 on average.
poses and stripped it from all unnecessary features (pemsis — The equally distributed query points are replaced by po-
storage, repair mechanisms, etc.) [7] provides a detased d ints wr?ose)éistribution isanuysL)ian aswell Hpere the):npean
scription of our experimental setup. Given this settingrare : : '
. . - value is the center of the 4d-hypercube of the key space.
a 4-dimensional CAN consisting of up to 160,000 nodes. The ) .
. Thus, more queries go to the nodes in the center than the
number of queries was 5,000,000. All parameters are set to )
: . . peers at the sidés
optimal values (cf. Table 2) according to our model if not ex-
plicitly stated otherwise. To ensure_th?\t we are i.n steaglgst 5 Note that the key space is a d-torus. 'sides’ is the part of the
we started measurements and statistics gathering ontyaafte space close to the wrap-around from 1 to 0 and vice versa im eac
initialization period of 500,000 queries. dimension.
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We now turn off those simplifications, each one in iso- Does the protocol penalize the neighbors of uncooperative
lation as well as all of them at the same time. Our expec-nhodes? A crucial point of the reliability-aware protocol is
tations are minor deterioration in the discrimination ahe t the following one: each peer in a chain of forwarders is pe-
cost measures, but the protocol should remain effective imalized with negative feedback if the issuer does not receiv
each setting. an answer for its query. The rationale for this has been to

guarantee that the node ignoring the query obtains negative
feedback in any case. However, one might think that peers
o Simpiied systent— close to uncooperative nodes are 'punished’ as well, artd tha
100 §"mp”0§1€86§3 ey =2 | they fare significantly worse than nodes which are not in the
neighborhood of such peers. But the following experiment
shows that our protocol copes well with these cases. We used
) a CAN consisting of 9,500 cooperative and 500 uncoopera-
i tive (¢ = 0.2) nodes in a 4-dimensional key space.
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Figure 17 plots the costs for cooperative and uncoopera-
tive nodes with some of these simplifications in place/tdrne .
off. It tells us that the largest change is due to the realisti . ‘ ‘
assignment of zones to peers. This is reasonable: with the re O it distos (o the nearest Unooperatie peer
alistic partition scheme, zones are now different in sizéhW E
larger zones, a message forward covers a larger distance.é
the number of uncooperative nodes remains constant, shorte
paths decrease the global failure probability. Thereftre,
ProW costs as well as the ones of forwarding messages de- Figure 19 graphs the costs of nodes as a function of the
crease (cf. Figures 9 and 10). In contrast, sending quetries alistance to the closest uncooperative node. The costs dis-
different rates to query points unevenly distributed inkbg  played are the average costs of all nodes with the same dis-
space does not make much of a difference. If a node issuggince to the closest uncooperative node, the standard devi-
queries at a rate different from the other nodes, say, ateehig ation and the absolute maximum and minimum values. Be-
rate, its feedback will be updated at a higher rate as well. Bucause of the regular zone model there is a small finite number
this does not affect the global behavior. The diagram cousfirm of distances to the closest uncooperative node. The distanc
this. metric is the Euclidean one, which is used for query forward-

ing as well. If the distance to the closest uncooperativeenod

is 0, the node itself is uncooperative. If the distance isth®
Gaussian_,;g?jii;ui:';:ﬁu:ﬁ%f closest uncooperative node is an immediate neighbor. With a
at Sfussian distibuted guenyrales=7 | distance of 0.7, the peer and an uncooperative node have one
N L corner in common, etc. The solid black line in Figure 19 con-
nects the average cost values for each group of peers with the
same distance.

The figure reveals the following information: on average,

g a node is not penalized at all for being close to an uncoop-
erative node. A detail observation is that there is a signifi-
cant spread in the costs, according to the standard davéatio
and the extrema values. This is due to the fact that Figure 19
Fig. 18 Do our assumptions affect the discrimination? considers only the closest uncooperative peer. In some case
there may be several uncooperative peers quite close to the
current node. In some cases, there may be only one uncoop-

Figure 18 shows the discrimination for the same settingserative peer that is rather close. Another much more impor-
Removing the simplifications affects cooperative nodes andant finding from this experiment is that cooperative behav-
uncooperative ones as well. Thus, the discrimination ramai ior dominates, except for extreme cases. However, the mean
nearly unchanged. Summing up, the result of these experivalue minus the standard deviation of the costs of uncoop-
ments is again positive. The protocol is effective, eveniwhe erative peers are always larger than the maximum costs of
dropping the model assumptions. cooperative peers, irrespective of their distance to tbe-cl
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ig. 19 Relation between costs and the distance to the closest unco-
erative peer.

Simplifications
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est uncooperative node. This is a positive result. Admiigted
one can construct special cases where this does not hald, e.g
a peer completely blocked in all directions by uncoopeeativ
nodes. But this is will virtually never happen under normal
conditions. For example, the probability that all neighsor
on one side of a peer are uncooperative is less than 0.5%
for a 4-dimensional CAN with a rate of 50% uncooperative
nodes, and this rate is unrealistically large. Furthericap

tion brings down this probability to arbitrarily small nueds.  Fig. 20 Impacts ofg,. andgp,ow .

Rate of feedback creation.An important question is whether ) )
the number of feedback items in the repositories of the peerfal parameter settings for a CAN of 10,000 nodes, and varied
is sufficient. The amount of feedback generated depends off?€ network size from 81 to 160,000 nodes including a rate of
Qforward AN Ganswer, Which are external parameters cou- 10% uncooperative nodes with a local failure rate of 20%.
p|ed with the costs of forwarding and answering queriesi and We anticipate that the best discrimination will occur at
qprow andg,,. The parameteyp,,i controls the number the number of nodes the parameters are optimized for, and
of feedback items generated for each proof of work. For in-increasing the number of nodes will increase the costs or de-
stance, a value ofp,ow = 1 means that for each proof Crease the discrimination. We will already declare success
result the peer who has requested it will generate one posif the discrimination between cooperative and uncoopeeati
tive feedback itemg,, specifies the amount of feedback cre- Nodes remains significant, and if the additional costs of co-
ated if peers do not seem to follow the protocol. For example2Perative nodes will not skyrocket for a wide range of CAN
qyn = 2 states that for each query that remains unanswere8!Z€s.
each peer along the routing path receives twice the amount of
feedback (of negative type), compared to the amount of pos- 4 200
itive feedback it would have obtained otherwise. Thus, the
parameter controls how severely 'not forwarding’ is adiual
punished.

Because of the complexity of the protocol, it is difficult to
anticipate the effects of specific values;ef..iy andg,,. We
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expect that a small number of feedback items generated for 1h 1 50
one Prow would lead to a high number of Prow requests. We osb Discrimination—— | 25

. - Costs for cooperative nodes - -
further expect a largg,,, to penalize all nodes along the rout- 0 L, Qostsloryncoopepaivenodes — |
A . . 0 20000 40000 60000 80000 100000 120000 140000 16000
ing path with proofs for every message that has been rejected Number of peers

Only experiments will shed light on these issues. Figure 20xjg. 21 Scalability of our protocol.
graphs the number of proofs requested from a cooperative
peer per round as a function of the two parameters. The rate of
uncooperative peers is 50% £ 0.2). We chose such an ex- The graphs in Figure 21 show the discrimination between
treme rate for this particular plotin order to obtain restiitat  cooperative and uncooperative nodes (left axis and sok) li
expressive. Lower rates result in curves that are muchiflatteand the average costs for both kind of nodes (right axis and
Figure 20 shows that increasing,.iw rapidly decreases the dashed line). The solid line is the quotient of the dashesslin
number of proofs requested (note that the scale of the z-axigur first prediction is true: the maximum of the discrimina-
is logarithmic). In contrast, smaflp,.,w and largeg,, lead  tion is reached at approximately 10,000 nodes. The algebrai
to a very high number of proofs. As a result, the figure tellsmodel tells us that increasing the number of nodes leads to
us that the range of parameter values that are viable isrrathéncreased path lengths for forwarding. Because the ratio of
wide. Leaving aside extreme values below 0.5, the effect olincooperative nodes remains constant, i.e., the number of
both parameters is negligible, in particular when comp&sed these nodes is increased as well, the effort for detecting un
threshold:. This result allows us to set the parameters to ar-cooperative behavior will also increase. But our ‘criterfor
bitrary, average values and to focus on the other parametersuccess’ is met: the total costs for cooperative nodes remai
Given the complexity of the system, this is helpful. significantly below the costs for uncooperative nodes fer th
numbers of CAN nodes observed. Furthermore, the graphs
Scalability. Our model allows to adjust all parameters to demonstrate that the discrimination continues to stay @laov
optimal values if the degree of cooperativeness of the uncovalue of two, even for a number of nodes which is 16 times
operative nodes and the number of peers are known exactharger than the number of nodes used for the optimization.
Both the algebraic analysis and the experiments we have préFhis is a result that we have not anticipated. Of course, ad-
sented so far indicate that our protocol is stable agairsigh  justing the parameter values (e.g., by using self-tuninghme
es in the behavior of the nodes. But what happens if the numanisms or schemes from organic computing) would bring the
ber of nodes changes? To investigate this, we calculatéd optdiscrimination to an optimum and would allow the protocol
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to cope with an even larger number of nodes. But our experi9 Attacks
ment shows that this issue is not particularly urgent.

Figures 17 and 18 show that the model assumptions gé\ crucial issue is the behavior of our protocol under différe

not affect the global behavior at large. At most, they desgea Kinds of attacks, be they by free riders which want to save
the path length a little. But this shows that our model assumpr€sources, be they by malicious nodes trying to harm other

tions are rather conservative. We anticipate that the podto PE€rs- In the presence of m-of-n data coding techniques and

remains scalable in the real world as well as in our experiT€Plication, we can neglect that other peers might be unable
ments to access (key, value)-pairs in the zones of malicious nodes

Furthermore, we exclude problems arising from an incorrect
implementation. In what follows, we look at different attac
and examine how they affect our system. Some of these at-

Why should a peer share feedbackWith our protocol, @ (50ks are well known from other contexts, others are specific
peer forwards feedback to its neighbors. But why should it doy, or protocol.

this? At first glance, this does not bring a direct advantage.

However, a simple 'Tit-for-Tat' extension of the proto- Spoof query results. In order to save the costs of data stor-
col, i.e., a peer which does not disseminate feedback ddes ngge, an uncooperative node could send back a spoof query
receive feedback in turn, changes things significantly, @s w resylt.
will show. A peer that does not exchange feedback with its  On the other hand, the issuer of a query can verify the
neighbors will have to issue many more ProW requests thagorrectness of the result. This can take place in two ways.
peers which do exchange feedback. The neighbors can eagt) In the case of replication, the issuer collects the query
ily detect this and refuse to carry out the Prow and exchangegult from more than one node and forms a quorum. (2) In
messages with that peer. Since a peer has at(&ast 1)/2  some applications, any peer can verify the correctness of a
other neighbors suitable to forward a certain messageito, th query result. For instance, if the CAN is used as a directory
is feasible. for object lookup or web-page annotations, a peer could al-

In the experiment that follows, we consider a simple Tit- ways check if directory entries are valid. Our protocol a we
for-Tat scenario, i.e., a peer which does not disseminat-fe as the formal analysis in Section 6 could be extended with
back does not receive feedback in turn. How does the rate dfegative feedback on spoof query results.

ProW requested differ between peers which share feedback

and peers that are isolated? Man-in-the-middle attacks. A node could manipulate the
content of messages it forwards to other nodes. [25] festure
detailed discussion of this attack in CAN. The receiver ef th

04 message is supposed to think that the sender of the message
z 0% 7 gave false information. It might then give negative feedkbac
Q 03 Pt . ) We see three answers to this kind of attack: (1) The is-
g osp e 1 suer could append a cryptographic signature to the message
FRELE that allows the receiver to verify its correctness. Herer-'c
gr 05 1 rectness’ means that the message has not been tampered with
§ 01 1 since the send. This is in contrast to the notion of correct-
005 With feedback disseminatior— | ness used in the context of the previous attack. There, cor-
Without feedback dissemination — -

0 I
0 0.05 0.1 0.15 0

rectness referred to the quality of the query result from an

P application point of view. (2) The issuer could send mudipl
Fig. 22 ProW requested with and without disseminating feedbackreplicas along disjoint paths. This would require only aonin
items between the peers. change of our routing protocol. (3) With our protocol, penal

ization with negative feedback extends to all peers in archai
of forwarders. As an extension of this idea, the forwardérs o
Figure 22 graphs the outcome of an experiment where query result that has been tampered with during forward-
10% of all nodes do not share feedback. In order to have exing will obtain negative feedback as well. Peers that modify
pressive results, we varied the global failure probab{lity — query results repeatedly will then end up with a standing tha
axis) from zero (no uncooperative peers, no Prow should bés worse than the one of average cooperative peers.
requested) to 20%. The y-axis is the number of ProW re-
quested per round. Figure 22 tells us that peers which do ndDissemination of spoof feedbackWith our protocol, a peer
receive feedback from others (dashed line) issue many moraccepts feedback only if
ProW requests than peers sharing feedback (solid line). In — its forwarder is deemed reliable, and
settings with a low global failure probability, the differee — it does not rate the forwarder itself.
of the rates is remarkably high. Therefore a node that wantén addition, a peer should accept feedback only if
to remain part of the network must decrease its extraorgdinar — the frequency of feedback being generated and forwarded
rate of ProW requests and share feedback. is comparable to the rate of other peers, and
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— each feedback item contains plausible values, e.g., feedand the effect on cooperative nodes receiving spoof feédbac
back comes from peers which could have made observafrom colluding peers are only moderate! A further analysis

tions on the feedback subject in the first place. (not explicitly described here) has shown that the attacker
Given this, what is the impact of a single peer disseminatingat the 'outside’ of the group, i.e., colluding peers with man
spoof feedback? cooperative neighbors receive much more negative feedback

Assume a peer tries to harm one of its neighbors by disthan spoof positive feedback disseminated by other collud-
seminating false negative feedback about it. The number oing peers. Obviously, colluding peers completely surraehd
neighbors of a peer with regular partitioning of the key gpac by other peers from the coalition do not have to perform any
isa = 3¢ — 1. In the worst case, the malicious peer alwaysProw. But in our four-dimensional setting each peer has 80
generates negative feedback. How does the probabilitythat neighbors. For instance, assume that we want to construct a
random feedback item whose subject is the attacked peer isoalition where 10 peers are completely surrounded by other
positive change? It becomes, = M, peers from the coalition. Then the coalition must contain at

Using the setting from Table 2 in a CAN with a global least 270 peers. Thus, to profit from that effect signifigantl
failure probability of 5%, Equation 23 tells us thatthe g the groups of peers that collude would have to be huge.
number of Prow requested from a cooperative peer will rise
from from 0.0098 to 0.0114 per round. We have conducted 250 o
experiments which confirm this value. Here, the increase is eihoon Ol peere—
even smaller than the standard deviation< 0.0068). Sum- ]
ming up, the impact of a single peer which disseminates spoof
feedback is small. Further, a peer can only attack its direct
neighbors in the key space.

Total Costs

Collaboration attacks. Compared to the last attack, mali- T T
cious peers that collude are more 'promising’. Think of a set Number of ollding peers
ting with the protocol extensions described in the contéxt o Fig. 23 Impacts of collaboration attacks.
the last attack and suppose that there is a group of collud-
ing peers. Each of these peers only forwards requests from
other colluding peers, and these peers steadily generate po
itive feedback about each other at a normal rate. As a preProxy attack. Another way to decrease the cost of participa-
requisite to do so, the colluding peers must have adjacerf{on is to have one peer as a proxy for many nodes. The proxy
zones in the key space. Thus, the attackers must have tarRarticipates cooperatively in the work. But it issues geri
pered with the feedback mechanism as well as with the joirS a substitute for many nodes which are not registered in the
protocol (cf. Section 3). The following questions arisevHo CAN. It returns the query results to the original issuers.
many peers are necessary to form a group that allows to ben-  From our perspective, it is subject to a philosophical
efit from the CAN without participating in the work (or with ~ discussion whether this is legitimate behavior or an attack
less work than regu|ar)? How does the CAN react to such é:learly, a lot of selfish users can benefit from the CAN at
group of colluding peers? the cost of operating a single node. On the other hand, the
We hypothesize that a |a|’ge number of peers is able td€er that is visible in the CAN behaves COOperatiVEly, and
keep the number of positive feedback items above the thresihe integrity of the CAN is not affected. Furthermore, think
old ¢ in the repositories of other peers. In addition, we sup-Of nodes located in a private network. A proxy on the fire-
pose that the number of ProW requested from neighbors ofvall could be the only way out. A potential solution to the
the colluding peers will rise to the level of an uncoopesmativ Problem seem to be load balancing mechanisms for P2P data
peer. We now want to validate these expectations by experistructures. The design of such mechanisms in a tamper-proof
ments. We again use the parameter values from Table 2, i.eWay is a major issue that goes well beyond the scope of this
N = 10,000, each peer has = 80 contacts, and the thresh- currentarticle.
old for reliability ist = 4. We run experiments with different
numbers of colluding peers which form one tight group in Infrequent queries, batching of queriesFrom the perspec-
the key space. In order to make it more difficult to distinguis tive of a single peer, it might be more efficient not to cooper-
between reliable peers and attackdi$7% of the peers are ate, but issue a batch of queries from time to time and carry
uncooperative with a local failure probability 56%. out one or several ProW in order to obtain most query results.
Figure 23 shows the results of the experiments. The x4n other words, let us know drop the assumption of frequent
axis is the size of the group of colluding peers, the y-axisqueries that cannot be issued as a batch (cf. Subsectian 5.1)
shows the average total costs of cooperative, uncooperatiHow does the dominant strategy now look like?
and colluding peers as well as the ones of the cooperative The costs of an entirely untrusted node to become trusted
neighbors of the colluding peers. The result is surprigingl by carrying out proofs of work ar&, = cprow - t/qprow- In
positive: in the range examined, the average costs of an abne round, a cooperative peer must bear the following costs:
tacker are always higher than the costs of a cooperative node, = ¢ forwmd-h?;‘iwa7,d+cansweT-hg;;iwerJrcPToW-h}é’fow.
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Therefore, the break-even between cooperative nodes ari@eferences

nodes that issue queries as a batch is,at. rounds. Using

the values from Table 2, the break-even lies at 24 rounds,1. Aberer, K.: P-Grid: A Self-Organizing Access Structue®2P

i.e., a node that can wait for more than 24 rounds can be
better off by batching queries and complying with ProW re-

quests instead of behaving cooperatively all the time.Glea

it is application-specific if a node can wait that long to have
its queries answered. There are applications where sugh lon

waits are not practical (cf. Subsection 5.1).

To sum up this discussion on potential attacks, we no-

tice that: (1) Leaving aside extreme scenarios, e.g.,katac
have virtually unlimited resources, our protocol remaips o

erational in the presence of malicious nodes. (2) Individua 5
uncooperative peers or medium-sized groups of peers are un-
likely to profit from attacks on the feedback mechanism. An

exception is the proxy situation, which does not necessaril

count as an attack. (3) The presence of malicious nodes in
the neighborhood does not significantly affect the costs of
cooperative nodes. (4) Repair mechanisms and data coding,

techniques that already exist in the literature and thaapre
plicable here as well avoid that data may be lost.

10 Conclusions

Free riding in P2P data structures is an important problem

that has not received much attention so far. The problem is _ : _
11. Feldman, M., Lai, K., Stoica, I., Chuang, J.: Robust itive

difficult because the degree of free riding of individual eed
is not readily observable, among other reasons. Furthene th

exists no centralized instance that might act as an audlorit
tive coordinator. Payment mechanisms do not solve the prob-
lem, since they require such a centralized instance. In-addi
tion, infrastructure costs would simply be too high. Our so-13.
lution is a new CAN protocol where peers generate and dis-
seminate feedback, and only peers with mostly positive-feed
back have their queries processed right away. All othergpeer
must provide proofs of work from time to time, depending on 14

their reliability. This mechanism is necessary to deteedef

tion. The protocol does not guarantee that cooperativemodel5'
will not have to carry out any proofs of work. But this arti-
cle provides a formal analysis and extensive experimeats th

show the following: the protocol can differentiate fairlyeilv

between cooperative and uncooperative peers, and addition
costs of cooperative peers are moderate. This holds true fory,
many realistic settings of the exogenous parameters. broth
words, cooperative behavior dominates, at least understhe a

sumptions listed in the body of this article.

Many issues remain for future work, including the design
of protocols for other P2P data structures. Since the contac
list of a peer is not restricted to its neighbors any morejfee
back dissemination is a more difficult problem. The interde-
pendencies with applications on top of the P2P data struc-

tures also require more attention. Finally, while our pcoto

is robust against most kinds of malicious behavior, theee ar

variants that remain to be explored.
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