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Abstract Research on P2P data structures has tacitly as-
sumed that peers readily participate in the work, i.e., are co-
operative. But such participation is voluntary, and free rid-
ing is the dominant strategy. This article describes a protocol
that renders free riding unattractive, for one particular P2P
data structure. The protocol is based on feedback that adja-
cent nodes exchange. This induces transitive logical networks
of nodes that rule out uncooperative peers. The protocol uses
proofs of work to deter free riding. To show that coopera-
tive behavior dominates, we have come up with a cost model
that quantifies the overall cost of peers, depending on their
degree of cooperativeness and many other parameters. The
cost model tells us that we can achieve a good discrimination
against peers that are less cooperative, with moderate addi-
tional cost for cooperative peers. Extensive experiments con-
firm the validity of our approach.

Key words Peer-to-Peer distributed hashtables free riding
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1 Introduction

Peer-to-Peer data structures (P2P data structures)address a
core issue of data management research, namely administer-
ing huge sets of (key, value)-pairs. A P2P system consists of
nodes, a.k.a.peers. Peers may issue queries, but they are also
supposed to participate in the work, i.e., storage of data and
evaluation of queries in the context of P2P data structures.
By participating in the work, peers share the infrastructure
costs (disk space, energy, network bandwidth etc.). P2P data
structures do not have a centralized instance, a.k.a.coordina-
tor, which monitors and controls the peers. So far, research
on P2P data structures has tacitly assumed that peers readily
participate in the work. But experience with P2P systems that
are operational, notably file-sharing systems, indicates that
this is not realistic [3]. Peers seek to minimize their costs.
Free riding is the dominant behavior in the economic sense.
Existing technology does not solve the problem for P2P data

structures: Payment mechanisms [14] are vulnerable and have
high infrastructure costs. Certified code or similar solutions
[9] typically require a centralized certification instance, i.e.,
are not P2P. Proposals against free riding in mobile environ-
ments [5,21] are not applicable either. There, peers can ob-
serve the behavior of other peers in the same radio network
cell and infer their degree of cooperativeness.

Our objective is the design of protocols for P2P data struc-
tures that render free riding unattractive. This article focuses
on the evaluation of queries. It does so forContent-Address-
able Networks (CAN)[24], a prominent P2P data structure.
With the protocol envisioned, peers will only answer queries
issued byreliable nodes1, i.e., nodes that have correctly pro-
cessed all recent incoming queries. New nodes or nodes with
an unclear status must prove their reliability first, beforeben-
efiting from the system. At the same time, the costs of the
protocol shall not be much higher than the ones of existing
protocols. The design of such a protocol is difficult, for vari-
ous reasons:

– In contrast to other P2P scenarios different from P2P data
structures (cf. [8,11]), it is not only one peer, but a se-
quence of peers that processes a query. This makes the
problem much more difficult, as this article will show.
In our setting, peers cannot readily observe the behav-
ior of other nodes: if a query remains unanswered, the
issuer cannot say which other peer has not cooperated.
From a slightly different perspective, peers hide their in-
tentions. A statement like “Connection refused” will not
be generated if a node does not participate in the work.
Hence, standard recovery mechanisms for CAN [24] like
expanded ring search or flooding will not work.

– The transition between ‘reliable’ and ‘unreliable’ is blur-
red: A peer that tends to be unreliable may process in-
coming queries from time to time, in particular if there
is a direct advantage in sight. Further, the ‘attitude’ of a
node may change at any time.

1 In the context of this article,reliable andcooperativeare syn-
onyms.
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– There is no centralized instance that provides information
on the degree of reliability of a certain peer in an author-
itative way.

– The network may be large. In general, a peer has not in-
teracted before with a peer whose query it is supposed to
process. However, when deciding if it should process the
query, it can only rely on its own observations from the
past, or on observations from other nodes that it deems
reliable.

– Peers may change their identity at any time and sign up
under a new identity.
Our three contributions are as follows: First, we propose

a CAN protocol that differentiates between reliable and less
reliable peers. In a nutshell, a peer generates positive or neg-
ative feedback on other peers in certain situations. It forwards
the feedback to other peers, attached to messages that it would
send out anyhow. Each node decides for itself if it ‘trusts’ the
feedback from others, and uses the feedback it is aware of
to estimate the reliability of other peers. A node processes
a request from another node only if it deems the node reli-
able. Peers with low reliability must provideproofs of work
(ProW) [4,17] before they obtain a query result. The expec-
tation is that peers decide to be reliable, instead of carrying
out many ProW and ending up with higher overall costs. We
explain why our setting requires ProW, in contrast to other
scenarios [11].

Second, we develop a cost model for our protocol that
predicts the expected overall costs of a peer, depending on its
degree of reliability. Using this model, we show that (1) the
protocol differentiates well between reliable and less reliable
peers, i.e., less reliable peers end up with higher overall costs
than reliable ones. Since the behavior of peers is not readily
observable, negative feedback on fully reliable peers typically
exists. Our protocol does not guarantee that entirely reliable
nodes do not have to supply any ProW. However, we use our
cost model to show the following: (2) additional costs for re-
liable peers, incurred by such ProW, are moderate, compared
to other costs.

Third, we show the quality of our protocol by means of
extensive experiments. They show that our cost model pre-
dicts the system behavior well and demonstrate that the proto-
col is operational in realistic and synthetic settings. We stress
that we have a CAN implementation of our own that is fully
operational, for large numbers of peers [7]. We have used this
prototype for a lot of the experiments. Our experiments fur-
ther show that the protocol is robust against changes of the
environment, i.e., it differentiates well between cooperative
and uncooperative nodes, and it is robust against most kinds
of attacks. The protocol does so even if external character-
istics like the global failure probability change significantly.
Another important finding is that the protocol does not penal-
ize neighbors of uncooperative nodes.

Summing up, this article is the first to investigate how to
tackle free riding in P2P data structures where the behaviorof
peers is not readily observable, by means of an open protocol.
The protocol proposed is truly Peer-to-Peer since it does not
rely on any centralized instance.

The remainder of this article has the following structure:
The next section reviews related work, Section 3 provides a
brief recap of CAN. Section 4 demonstrates the necessity of
countermeasures against free riding. Section 5 describes our
new protocol. Section 6 provides a cost model for the proto-
col. Section 7 features a discussion, and Section 8 confirms
our findings by extensive experiments. Section 9 deals with
attacks on our protocol. Finally, Section 10 concludes.

2 Related Work

The database community has started investigating distributed
data structures about a decade ago [19,18]. The topic has at-
tracted recent interest from other communities as well. This
has resulted in many proposals, now referred to asoverlay
networks, distributed hash tables, structured P2P networks,
etc. [16]. All suggestions for distributed data structureswe
are aware of tacitly assume that all nodes follow the protocol
and do not do free riding.

The proposals mainly differ with regard tocontact-selec-
tion, i.e., which are the peers a node can directly commu-
nicate with, androuting-selection, i.e., which contact does
a node forward the current query to. High contact-selection
flexibility together with high routing-selection flexibility is
preferred; more recent proposals try to achieve both [16]. The
topology of the key space is closely related to contact and
routing selection. The key space ofCAN [24] is a torus of
d dimensions. Each peer maintains a contact list containing
at least2d immediate neighbors of its zone in the key space.
Section 3 provides a detailed description of CAN.CHORD
[28] organizes the data in a circular one-dimensional key spa-
ce. Messages travel from peer to peer in one direction through
the cycle, until the peer whose ID is closest to the key of the
query has been found. Each peer keeps track oflog(n) other
peers in the distance2k−1 with 1 ≤ k ≤ log(n), wheren is
the number of peers in the system.Pastry[27] uses a Plaxton
Mesh to store and locate its data. The forwarding algorithm
is similar to the one of Chord. Each node maintains a routing
table containinglog2b(n) · (2b − 1) contacts determined by
common prefixes of the node-IDs.b is an exogenous param-
eter.P-Grid [1] is based on a virtual distributed search tree.
Each node is addressed with a subtree-ID, which is the binary
string representation of the path from the root to the peer on
the leaf of the virtual tree. For each level of the tree, each
node maintains a reference to another peer in the same subtree
whose ID branches to a different subtree in the deeper levels.
[16] features a detailed survey of the various approaches.

CAN differ from other approaches where contacts do not
have to be direct neighbors in the key space. Consequently,
the number of hops of a query in CAN tends to be larger.
On the other hand, identifying free riders is a hard problem if
contacts may be nodes somewhere in the key space. The rea-
son is that the dissemination of reputation- or trust-related in-
formation becomes more difficult. This article limits the dis-
cussion to CAN and leaves the problem of feedback dissem-
ination in the more general case for future work.
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Free riding has received much attention in the context of
P2P systems different from P2P data structures [23]. Some
approaches use the concepts of trust and reputation to get rid
of free riding.Trust is the subjective belief of a node in the
honesty and the capabilities of another participant. [20] pro-
vides a comprehensive formal definition of trust as a com-
putational concept.Reputationis derived from observations
of the behavior of a participant in the past. Reputation sys-
tems collect, distribute and aggregate feedback [26]. Reputa-
tion systems in P2P networks have to work without trusted
third parties, immutable peer identifiers and centralized ser-
vices.

Various approaches have addressed these challenges. Ba-
sed on the Generalized Prisoner’s Dilemma, [11] addresses
free riding with a game-theoretic concept. It shows that com-
mon game-theoretic strategies like Tit-for-Tat do not work
well in P2P systems, and proposes a novel family of incentive
techniques based on a reciprocative decision function. The
function copes with untraceable defections, dynamic popula-
tions and asymmetric transactions by using private or shared
histories. The approach tries to find a theoretically optimal
solution and does not address realization issues.

From an algorithmic point of view, [2] was one of the
first proposals of P2P-based reputation management. It is ba-
sed on complaints, i.e., negative feedback. Given thatc(u, v)
denotes the complaint from peeru aboutv with u, v ∈ P , the
reputation value isT (u) = |{c(u, v)|v ∈ P}|×|{c(v, u)|v ∈
P}|. High values ofT (u) indicate thatu is not trustwor-
thy. Each node stores the complaints it has generated in a
global repository that all nodes can access. The repositoryis
implemented as a P2P data structure (P-Grid). However, [2]
does not discuss measures against insertion of spoof feed-
back. These seem to be indispensable, should the system be-
come operational. Further, the peer that stores feedback about
a certain node is a promising target for attacks and a single
point of failure from the perspective of that node. With our
work in turn, each peer runs a local repository for reliability
information. This allows for a tight integration of message
forwarding with reliability issues and is independent from
global structures.

PeerTrust [29] incorporates feedbackS as a numeric ex-
pression of the satisfaction earned by each transaction, the
credibility C of the participating peers, and factors for the
community- and transaction contexts (CF andTF ). Let u
denote the peer in question,p(u, i) the other peer participat-
ing in the transactioni. Then the basic trust value isT (u) =
∑

i S(u, i) · C(p(u, i)) · TF (u, i) + CF (u). A P-Grid in-
stance stores the feedback itemsS(u, i). This approach does
not address all issues either. First, managing and distributing
a comprehensive history of many feedback items is expen-
sive. Second, the software plays the role of a trusted third
party. The concept fails if the software does not guarantee
that each transaction is rated one time, that only the partici-
pating nodes have permission to write feedback to the P-Grid
repository, and that each peer can access it. Third, the vulner-
ability of the P2P repository against directed attacks against

peers responsible for certain feedback items remains, analo-
gously to [2].

Similar approaches exist, e.g., EigenTrust [13]. However,
those vulnerabilities of global P2P repositories call for local
interactions between transaction partners instead. Here,the
feedback about a certain node is distributed among its trans-
action partners. They may assess the same peer differently.
[22] describes sharing of reputation information in such a de-
centralized way. A node describes every other node with a
rating coefficient, i.e., a numeric value. Nodes share the coef-
ficients after each transaction. A node updates its coefficients
by adding the new value weighted by the coefficient of the
sender. However, the approach does not pursue a tight cou-
pling of reputation management and query processing and is
less specific than ours.

Another concept to rule out uncooperative behavior uses
micropayments [14]. However, infrastructure costs with mi-
cropayments may simply be too high in a setting such as ours
with many small transactions. More recent approaches like
PPay [30] try to reduce the infrastructure costs by using float-
ing, self-managing coins, i.e., the load is transferred from the
broker to the peers. But in general, payment schemes based
on artifical coins may come along with inflation or deflation.
Furthermore, they typically require a central bank in orderto
prevent from fraud coins.

Public-key cryptography can help to ban free riders. The-
re are two approaches [10]: The quorum-based model as-
sumes that the majority provides true information. The Web-
of-Trust model builds trust graphs from the peers trusted by
the issuer, until the peer in question is reached. However, both
approaches are expensive: the first one requires the invoca-
tion of many nodes, the second one is similar to the travel-
ing salesman problem. Other approaches use certified code
or similar technologies [9] to prevent users from behaving at
will. But this requires a central instance, and would not be
in line with P2P. Dealing with free riders in mobile networks
is simpler than in our setting, and existing solutions are not
applicable either [5,21]: A core difference is that nodes can
eavesdrop messages to and from nodes in the same radio net-
work cell.

[6] features a preliminary version of our protocol that
lacks important features described here. There, only positive
feedback is used, but not negative feedback. For this reason,
a peer can only recognize that another peer has turned un-
cooperative when the respective feedback times out. While
negative feedback is indispensable, it significantly adds to
the complexity of the protocol. Further, the evaluation of the
protocol in this current article is much broader. It includes a
formal analysis and an experimental demonstration that our
model is a faithful description of reality.

3 Content-Addressable Networks

Content-Addressable Networks (CAN)[24] may serve as the
basis for a broad variety of applications in the realm of the
WWW, Semantic Web or elsewhere; see [15] for a compre-
hensive list. They address a core issue of data management
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research, namely administering huge sets of (key, value)-pairs
under high query and update rates.

A CAN is a distributed system that consists of many nodes
(peers). Nodes typically are PC or workstations, operated and
maintained by different persons or organizations. A peer ben-
efits from the CAN by issuing queries and obtaining query
results. On the other hand, it is supposed to participate in the
administration of the data and in the evaluation of queries.
Each CAN node is responsible for a part of the key space,
its zone. The key space is a n-dimensional torus of Cartesian
coordinates in the unit space, and is independent from the
physical network topology.

A query is a point in the key space. We also speak of
query points. The query result is the value corresponding to
the query point. In addition to its zone, a node knows all
neighbor nodes, i.e., nodes whose zones are adjacent to its
zone, and stores them in acontact list.

Example 1The key space of the CAN in Figure 1 is two-
dimensional. The Node P1 is responsible for Zone ([0.5; 0.5),
[0.625; 0.75)) of the key space, i.e., it knows all (key, value)-
pairs where key∈ ([0.5; 0.5), [0.625; 0.75)). The neighbors
in the contact list of Node P1 are Nodes P2, P7, P4, P9, P3

and P6. Node P2 is a neighbor of Node P8.

Fig. 1 Two-dimensional CAN.

The partitioning of the key space results from the CAN
construction protocol. A peer which wants to join the CAN
finds a random node that is already in the CAN. That node
splits its zone, keeping one half and reassigning the other half
to the new node. Finally, the two nodes inform all neighbors
about the new zone assignment.

Given this key space partitioning, query processing is a
variant ofgreedy forward routingbased on the Chessboard
distance. The original proposal from [24] uses the Manhat-
tan distance. But our feedback dissemination mechanism de-
pends on the fact that two peers with adjacent zones have
some neighbors in common (see Section 5). Zones typically
have different sizes.2d is a lower bound on the number of
neighbors in a CAN using the Manhattan distance.3d − 1 is
the lower bound for the Chessboard distance. A larger num-
ber of neighbors induces a higher maintenance overhead, but
decreases the average path length in the CAN. [24] features
a more detailed discussion of the various tradeoffs involved
here.

A node that has issued a query first checks if it can an-
swer the query. This is the case if the query point falls into

its zone. Otherwise, it forwards the query to that neighbor in
its contact list whose distance to the query point is minimal.
The procedure recurs until the query arrives at the node that
can answer it, thetarget node. The target node then sends the
result to the issuer.

4 How Bad is Free Riding in CAN, after all?

Obviously, any mechanism to deal with uncooperative behav-
ior comes with additional computational overhead. On the
other hand, when looking at well-known coordinator-freeP2P
systems in the wild, e.g., Kazaa or gnutella, it seems that a
P2P system can function in spite of free riders. But there is
a big difference between this kind of P2P systems and P2P
data structures: There, peersfloodthe network with a request,
i.e., a peer sends a replica of a query message to each of its
contacts (except for the one which has sent the query to the
peer). In contrast, P2P data structures usegreedy forwarding,
i.e., a message goes from peer to peer. Obviously, resource
consumption with this scheme is much less. Further, any peer
can access any (key, value)-pair. On the other hand, P2P data
structures are vulnerable when it comes to loss of messages.

In a CAN consisting ofN = 10, 000 peers withd =
4 dimensions, a query is forwardedl = d/4 · N1/d = 10
times on average (cf. [24]). Suppose that the CAN contains
u = 500 peers which do not forward any incoming query
message. Then the probability of obtaining a query result is
only (1 − u/N)l ≈ 60%. Furthermore, the rate of answered
queries decreases exponentially when the failure probability
goes up.

An experiment illustrates the problem further. We have
run a CAN consisting ofN = 100,000 peers with a four-
dimensional key space. We varied the number of free riders
u from 0 to 50% and the private failure rateq, i.e., the rate at
which free riders do not forward or answer messages, from 0
to 100%. Figure 2 shows the result of the experiment. The z-
axis is the rate of queries answereda. The experiment shows
that in settings without countermeasures against uncoopera-
tive nodes even a small number of free riders or a small failure
rate reduces the number of queries answered significantly.
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Fig. 2 Rate of answers obtained at different rates of uncooperative
peers and private failure rates.

Now suppose a peer would repeat an unanswered query
after a certain period of time, and the P2P data structure has
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many replicas or uses m-of-n data coding, i.e., zones assigned
to free riders would not result in any loss of data. Then the
presence of free riders would ’only’ incur additional network
expenses and an increased latency. Now we ask: Where is
the break-even, compared to a protocol that excludes any free
riding at the price of additional network overhead?

To answer this question, we first determine the average
number of message forwardsf in the presence of free riders,
i.e., how many peers forward a message on average given that
each peer drops the message with probabilityp? Letl = d/4 ·
N1/d be the average length of a forwarding path under the as-
sumption that peers do not drop messages.u/N = p denotes
the global failure probability, i.e., the probability of a peer
to not process a query message. Obviously, in a CAN with-
out free riders it is the case thatf = l. In a CAN where the
global failure probability isp = 1, the message is forwarded
from the issuer to its neighbor and dropped right away, so
f = 1. In general, the average number of message forwards
f is the sum of the probabilities that the message is dropped
after1 · · · l forwards or answered afterl forwards, multiplied
with the respective number of forwarders:

f =
(

l
∑

i = 1

(1 − p)i−1 · p · i
)

+ (1 − p)l · l (1)

Suppose that each peer repeats an unanswered query up to
t times. Given the costscm of transmitting a query message
from one peer to another, the average costcn comes from the
cost of each try multiplied with the probability to obtain an
answer after1 · · · t tries:

cn = f · cm ·
t
∑

j = 1

(

1 − (1 − p)l
)j−1

· (1 − p)l (2)

Now consider a protocol that rules out free riders at the
costca of feedback on peers attached to each outgoing mes-
sage, such as our protocol2. We estimate the average costscr

as follows:

cr = l · (cm + ca) (3)

Let us now return to our original question: Where is the
break-even of a protocol that incorporates mechanisms against
free riding, given a realistic setting?

Experiences from P2P systems that are operational such
as gnutella indicate a rate of free riders of up to 70% [3].
However, we believe that P2P data structures will attract an-
other target group. We therefore assume a rate of 10% in the
calculation that follows. (If we used those 70%, our protocol
would look much better.)

Now consider an application of P2P data structures where
the keys are URLs. The costs of transferring messages are as-
sumed to be the number of bytes. To obtain a realistic dis-
tribution of these numbers for URLs, we have implemented

2 We assume that ProW are requested from free riders only.

an experimental web crawler. It runs a modified random walk
algorithm over the WWW.3 Table 1 shows some statistics.
Next to the URL itself, a query message contains some pro-
tocol overhead, e.g., information about the issuer and some
flags. In addition, a TCP/IP frame wraps each message, and
SYN- and ACK-messages initiate each TCP/IP-connection.
We estimate (very) generouslycm = 200 bytes.

Section 6 will show that forwarding 10 feedback items is
sufficient in order to identify and exclude the vast majorityof
free riders. A feedback item is a data object consisting of a
Peer-ID, a timestamp and some flags (cf. Section 5). Thus we
setca = 100 bytes.

Number of pages crawled 7,646,238

Minimum length of URLs crawled 12.0

Maximum length of URLs crawled 255.0

Average length of URLs crawled 61.1

Standard deviation of the length 18.7

Table 1 Some statistics from our experimental web crawler.

Figure 3 now graphs the overall costs (y-axis) of a CAN
protocol without measures against free riding and the ones
of a protocol incorporating such mechanisms. The number
of peers ranges from 1,000 to 500,000 (x-axis),d =4, and
the number of retries is not limited (in the context of the first
protocol). As expected, a larger number of peers increases the
costs due to longer paths and higher failure probabilities.As
a result, even when the rate of 10% uncooperative peers is
small, the free riding-aware forwarding protocol outperforms
the standard protocol. Obviously, one could construct scenar-
ios where peers fare better without our protocol. But the set-
tings behind these scenarios are unrealistic or impractical. For
example, the break-even is below 2.9 % uncooperative nodes
in a CAN consisting of 500,000 nodes, or it is below 2500
nodes in a setting with 10% uncooperative nodes.
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c
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Without countermeasures
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Fig. 3 Network traffic in bytes for operating with or without our
countermeasures in a CAN with 10% uncooperative nodes.

3 The algorithm caches URLs visited. When a web server returns
an error, the algorithm restarts the random walk from a randomly
selected URL from the cache.
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An analysis of the delay for obtaining query answers
yields similar results. The only difference is that attaching
additional information to messages practically does not in-
crease the latency. Even when looking at the delay in isolation
already and leaving aside the costs, countermeasures against
free riders are always advantageous.

5 A CAN Protocol that Differentiates between
Cooperative and Uncooperative Peers

This section describes our new CAN protocol. We start with
a description of our various assumptions, followed by one of
the new data structures. Then we give an overview of our
protocol, followed by the protocol itself.

5.1 Assumptions

Our reliability-aware CAN protocol depends on certain char-
acteristics of the nodes and of the applications using the CAN,
as described next. We will address the impact of these as-
sumptions in Sections 7 and 8.

Application profile with frequent queries and small query re-
sults. This article focuses on an application profile with the
following characteristics: Peers remain connected to the net-
work for a long time. They issue queries frequently and reg-
ularly. Query results are typically small, thus their delivery
is not much more expensive (in terms of infrastructure costs)
than query routing. Results are needed in time, so it is infea-
sible to batch queries and issue them at once. It is acceptable
if some (very few) queries remain unanswered. Examples are
object lookup systems, annotation services, push servicesetc.
Thus, we strive for lightweight mechanisms that must cope
with a high rate of small parallel queries.

Equal private costs. A general problem is that the costs of a
peer (CPU, network bandwidth, memory, etc.) areprivate in-
formation. For example, a peer connected with a dial-up mo-
dem wants to save bandwidth, as opposed to one with a leased
line, which might be better off carrying out (CPU-intensive)
ProW instead of processing queries. In general, it is not fea-
sible to observe these preferences. This article assumes equal
private costs for all peers. Further, a node itself is responsible
for keeping the rate of system failures low. Our protocol does
not (and cannot) ‘feel sorry’ for peers that are cooperative,
but run in an unstable environment.

Messages are not tampered with during forwarding.We as-
sume that only the issuer of a piece of information can have
falsified a message. For example, a peer may create false
feedback. But it is unable to perform a man-in-the-middle at-
tack, e.g., to intercept a response message and claim to be
the peer who has provided the query result. In the presence
of cryptographic signatures and the unlimited connectivity of
the Internet, this is realistic.

No uncooperative behavior at application level.This arti-
cle leaves aside adverse behavior on the application level.For
instance, a node might try to prevent other nodes from obtain-
ing access to a certain (key, value)-pair and might attempt a
DoS attack on the node responsible for the pair. When look-
ing at the storage level in isolation, such an attack consumes
resources, but does not provide any benefit to the node that
initiates it. While uncooperative behavior at the application
level is an important problem, it is beyond the scope of this
article. The problem of free riding at the storage level has to
be solved first.

Verifiability of query results. The issuer of a query must be
able to verify the correctness of the result. Otherwise, a node
could send back a spoof query result and save the cost for data
storage. Verification of query results can take place by ex-
ploiting replication or application-specific characteristics of
the data values managed (cf. Section 9).

5.2 Data Structures and Message Components

With our protocol, each node decides individually if it deems
another peer reliable, based on observations from the past.
We refer to such observations asfeedback. Feedback is time-
stamped with the creation date and refers to one node, the
feedback subject. Feedback items can be positive or negative.
They always have the same weight. Each node manages a
private feedback repositoryto keep up tos feedback items
about each of its neighbors. We refer to the number of posi-
tive feedback items in the reputation repository of Node P1,
associated with subject P2, as thereliability coefficient of P2
by P1. A coefficient below a threshold valuet means that P1
deems P2 unreliable.

To keep track of queries it has forwarded in the past, a
node maintains aquery log. It contains the ID of the neighbor
the node has forwarded the query to, and the query point. The
query log is purged from time to time. A so-calledfeedback
notification informs a peer about the success or failure of a
query it has forwarded recently. Finally, the data structures
from the conventional CAN are present as well, notably the
contact list and the structures storing the (key, value)-pairs.

5.3 Overview

The principle of our protocol is that nodes collaborate with
reliable neighbors only. If Node P1 sends a query to its Neigh-
bor P2, P2 will process the message in an outright way only
if it deems P1 reliable. Thus, it is in the interest of a node that
its reliability coefficients by its neighbors are high. Our proto-
col offers three alternatives for a node P1 to become reliable
in the eye of a certain neighbor P2, i.e., obtain a reliability
coefficient≥ t:
R1P1 forwards or answers a query, and P2 receives a notifi-

cation about this.
R2P1 answers a proof of work request from P2. (Will be ex-

plained right away.)
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R3Neighbors of P1 share their feedback, and the number of
positive feedback items on P1 in the repository of P2 is at
leastt.

In addition, there are three ways how P1 can become unreli-
able in the eyes of P2:
R4P1 does not forward or answer a query, and P2 receives a

notification about this.
R5P1 forwards a query, but another peer does not forward or

answer it later on.
R6Neighbors of P1 share their feedback, and the number of

positive feedback items on P1 in the repository of P2 is
belowt.

Example 2The repository of P1 containss = 10 feedback
items on P2. P1 has generated three of them itself. Two of
them are positive. P1 has generated them because other CAN
nodes have answered queries issued by P1, and P1 had for-
warded these queries to P2. The third feedback item is neg-
ative. From the remaining 7 feedback items obtained from
other nodes, 6 are positive, and one is negative. Thus, the re-
liability coefficient of P2 by P1 is 8. Assuming thatt ≤ 8, P1

deems P2 reliable.
Now think of a Node P3 that obtains a query forwarded

by P2, initially issued by P1. P3 estimates the reliability of
P2. If the reliability coefficient of P2 by P3 is lower thant,
P3 asks P2 for a ProW before processing the message. If the
reliability coefficient ist or more, or if the ProW response
arrives in time, P3 processes the query.

Feedback is not always generated whenR1, R2, R4, or
R5 occur, but only with a certain probability4. This is in or-
der to indirectly assign different weights to the differentkinds
of feedback. For instance, if we think thatR1 is twice as im-
portant asR5, the probability assigned toR1 is twice the one
of R5. Implementing weights with probabilities is easier than
with counters, and peers save bookkeeping efforts.

P2 can observeR2 only. With R1, R4, andR5, an incom-
ing feedback notification triggers the generation of feedback.
It is the issuer of the query that generates such a notification.
For positive feedback, this happens after the arrival of the
query result. If a result does not arrive within a certain period
of time, the issuer sends out a negative feedback notification.

The rationale behindR5 is that the issuer of the query
does not know which peer has defected.R5 ensures that the
unreliable peer obtains negative feedback by penalizing all
forwarders. This is of course quite undifferentiated. But the
expectation is that unreliable peers end up with much more
negative feedback on average (cf. Section 6). Furthermore,
R5 motivates the peers to search for reliable paths, e.g., to
bypass (otherwise reliable) peers which tend to forward to
unreliable nodes.

Feedback notifications work as follows: Every time a peer
issues or forwards a query, it logs the addressee of the mes-
sage. Now assume that the query result arrives. The issuer of
the query reads the peer it has forwarded the query to from the

4 Here, each peer is initialized with the same set of probabilities
which do not change over time. The problem of variable, individual
probabilities is left open for further research.

log, generates positive feedback on it, and puts this feedback
into its feedback repository. It then informs that peer witha
feedback notification. The procedure recurs until each peerin
the forwarding chain has generated positive feedback on the
next forwarder. The processing scheme for negative feedback
is analogous.

Whenever P1 obtains a message from Neighbor P2 that it
does not deem reliable, P1 requests aproof of work (ProW)
from P2. A ProW is a task that is easy to formulate, and the
solution is easy to verify, but solving it requires a lot of re-
sources [4,17]. Having obtained a ProW from P2, P1 gener-
ates a number of positive feedback items on P2. ProW are a
waste of resources, when looked at in isolation. To decrease
the number of ProW requested from reliable nodes, adjacent
peers share feedback (R3, R6). In order to save resources,
feedback is piggybacked to messages a peer sends out any-
how. In our example, P1 forwards feedback to the nodes that
are neighbors of P2. A new feedback that is recent, be it in-
coming, be it generated by the node itself, replaces the oldest
item in the repository. This is in order to react to changes in
the behavior of nodes. To make dissemination of spoof feed-
back more difficult, a node accepts feedback only from neigh-
bors that it deems reliable. A detailed discussion on spoof
feedback and other potential attacks is provided in Section9.

At first sight, since new nodes are likely candidates for
ProW, it might seem that ProW are disincentives to join the
network. But there is no alternative to ’entrance fees’ for new-
comers in settings where peers can change their identity at lit-
tle cost. This is because a P2P system does not contain a cen-
tral instance that authenticates and monitors the users. With
our protocol, a user could erase his reputation by leaving the
network and joining under another IP address and node ID.
Giving advances to newcomers is likely to induce them to
consume the advances, then leave the network and join under
a new identity. Related work in game theory confirms that the
strategy with the highest payoff employs entry fees. For ex-
ample, [12] formally proves based on the prisoners dilemma
that no strategy can do better than one that punishes newcom-
ers.

There are ways to ease the join process for newcomers.
Consider again the CAN construction process sketched in
Section 3. A new peer receives one half of the zone and infor-
mation about the neighbors from a node that is already part
of the system. An obvious extension to this mechanism is to
pass on feedback information on the neighbors as well. An
assumption behind this is that a peer that helps a newcomer is
reliable. Another extension to the CAN protocol could deploy
public-key cryptography to allow peers to keep its reputation
while being logged out.

One might wonder why the entrance fee cannot be ’regu-
lar’ work, instead of a ProW. ’regular’ means that the nodes
wait until a neighbor node asks them to perform useful work,
in our case the forwarding and answering of queries. Unlike
other P2P settings, query processing in P2P data structures
requires the cooperation of a sequence of peers. If only one
peer in a forwarding chain defects, the query is not processed
successfully. All peers in the chain would obtain negative
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feedback. In their own self-interest, nodes must be able to
find out about the degree of cooperativeness of a peer that is
not known as cooperative to any other reliable node. Further-
more, this must go on fast. It is not feasible to wait for the
peer in question having performed enough regular work.

So far, ProW have been artificial problems like finding
prime factors of large numbers. However, ProW that perform
useful work from the perspective of the application are con-
ceivable as well. The only prerequisite is that the problem is
hard to compute, but it is easy to formulate, and its solution
is easy to verify. For example, if a CAN stores data crawled
from the web, a ProW might be a crawl of a certain WWW
domain. The peer which wants to verify the ProW checks
whether a few randomly selected pages from the domain are
part of the crawl. It might be possible that the validation of
such a ProW is successful, even though the peer in question
has not crawled the entire domain. But the probability of this
can be kept arbitrarily small.

It remains to be discussed why a node should carry out a
ProW in the context of queries issued by other nodes. When
assuming that nodes issue queries at a steady rate, the node
will soon issue a query itself. If its reliability coefficient is
belowt, it will have to carry out a ProW anyhow (cf. Subsec-
tion 5.1). Furthermore, a ProW delays query processing. If a
node refuses ProW until they relate to its own queries, it is
the processing of exactly these queries that is delayed.

5.4 Protocol

We now describe the various methods that implement our
protocol. To ease the presentation, we assume that a key is
only queried for once. Of course, our implementation can
deal with the general case, i.e., keys being queried for more
than once.

1 query(Point x){
2 // forward the query message
3 handleQuery(x,this, this);
4

5 Result r := waitForAnswer(timeout);
6 if (query result returned in time){
7 handleFeedbackNotification(x,
8 answer obtained,this);
9 return r to application;

10 } else {
11 handleFeedbackNotification(x,
12 no answer obtained,this);
13 }
14 }

Fig. 4 Methodquery

Method query: If a peer wants to obtain the value corre-
sponding to a certain query point, it will invoke Methodquery
(Figure 4) with the query point as parameter. Methodquery
invokeshandleQuery, which is described below, and waits for
an answer. If it arrives in time,queryinitiates the generation

of positive feedback and of a positive notification, by calling
handleFeedbackNotification. In addition, the method returns
the query result to the application. If the query result doesnot
arrive in time,handleFeedbackNotificationis invoked with a
negative parameter value.

1 handleFeedbackNotification(Point x,
2 NotificationType n, LastForwarder f){
3

4 // is the last forwarder of the notification reliable?
5 if (f 6= this ∧ f.reliabilityCoefficient< t) {
6 stop processing the feedback notification;
7 }
8

9 // get the peer this node has forwarded the query to
10 Addressee a :=this.queryLog.get(x);
11

12 // generate feedback and forward the notification
13 generateFeedback(a, n);
14 send(a, NotificationMessage(x, n));
15 }

Fig. 5 MethodhandleFeedbackNotification

Method handleFeedbackNotification:This method (shown
in Figure 5) is invoked with every observation of work per-
formed or not performed. This may be a returned query re-
sult as well as the arrival of a feedback notification. Method
handleFeedbackNotificationis invoked with the query point,
the notification type which can be positive or negative, and
the last forwarder of the notification (or the one that has gen-
erated it).handleFeedbackNotificationfirst checks the relia-
bility of the last forwarder. If it is not the peer itself and is not
reliable, the feedback notification is classified as spoof and
is ignored. Otherwise,handleFeedbackNotificationreads the
addressee of the query from the log, and generates feedback
with the respective peer as feedback subject. At last,hand-
leFeedbackNotificationsends a feedback notification to that
peer, and the process recurs. An obvious optimization which
is also part of our implementation is to ship feedback notifi-
cations piggybacked to regular messages, instead of separate
messages.

Method generateFeedback:This method creates feedback
items and stores them in the local feedback repository. The
first parameter of MethodgenerateFeedbackis the feedback
subject. The second one specifies the reason why feedback
is created, i.e.,NotificationTypeis an enumeration type of
the following values:query result obtained, no query result
obtained, forward, no forward, correct ProW result deliv-
ered. Given this second parameter value, Methodgenerate-
Feedbackgenerates a feedback item with a certain probability
(cf. Table 2).

Method handleQuery: This method (Figure 6) answers and
forwards queries to reliable peers and generates feedback at-
tachments. The parameters ofhandleQueryare the query
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1 handleQuery(Point x, LastForwarder f, Issuer i){
2 // is the last forwarder reliable?
3 if (f 6= this ∧ f.reliabilityCoefficient< t) {
4 requestProW(f);
5 waitForProWAnswer(timeout);
6 if (ProW answer returned in time)
7 generateFeedback(f, ProW obtained);
8 else
9 stop processing the query;

10 }
11

12 // answer from local zone?
13 if (x is located inthis.zone)return value(x) to i;
14

15 // forward query
16 CandidatePeers C :={p | dist(p,x)< dist(this,x)
17 ∧ p∈ this.contactList};
18

19 // determine reliable addressee
20 ReliablePeers R :={p | p.reliabilityCoefficient≥ t

21 ∧ p∈ C};
22 if (R 6= ∅) {
23 sort R by dist(p∈ R, x);
24 Addressee a := getFirstElement(C);
25 } else {
26 sort C by dist(p∈ C, x);
27 forall (p∈ C) {
28 requestProW(p);
29 waitForProWAnswer(timeout);
30 if (ProW answer returned in time){
31 generateFeedback(p, ProW obtained);
32 Addressee a := p;
33 break;
34 }
35 }
36 }
37

38 // generate feedback attachment
39 FbAttachment F :={f | isNeighbor(a, f.subject)
40 ∧ f ∈ this.repository};
41

42 // forward messages
43 send(a, QueryMessage(x, i, F));
44 this.queryLog.add(x, a);
45 }

Fig. 6 MethodhandleQuery

point, the last forwarder of the query (or the one that has is-
sued it) and the issuer of the query. First, the method checks
the reliability of the last forwarder. If it is belowt, the peer
is asked for a ProW. The query is ignored if there is no ProW
result within the timeout period.handleQuerythen checks if
the query point is in its zone. If so, it returns the answer (or
at least the information that there is no value for this query
point) to the issuer of the query. Otherwise, the method iden-
tifies a peer to forward the query to. It is the neighbor node
with the smallest distance to the query point that is reliable.
If there is no such reliable neighbor, all neighbors are or-
dered by their distance to the query point.handleQuerynow
requests a ProW from each of them, one by one. As soon
as one peer returns the ProW, it becomes the addressee, and
positive feedback for the ProW is generated. Having identi-
fied the addressee, the method determines the feedback items
to be piggybacked to the message. This is done by selecting

all feedback items whose subjects have a zone adjacent to the
one of the addressee. (Our implementation features some op-
timizations that ensure that no feedback item is sent to the
same node twice.) At last, the query is forwarded, and the
addressee is written to the query log.

Example 3In Figure 1, assume that P1 is about to forward a
query to P7. Then it would attach feedback on P2 and on P4
to the message.

MethodhandleQuerymakes sure that the peer hands the
query to a peer that it deems reliable. This is an important
design decision –R5 in Subection 5.3 states that a peer that
forwards a query to an unreliable node is treated as if it was
unreliable itself.

6 Formal Analysis

Parameter Abbr. Default
number of nodes per dimension n 10

dimensionality of the key space d 4

degree of replication r

total number of nodes N

size of feedback repository per
neighbor

s 10

global failure probability for all
nodes

p

private failure rate q

threshold for reliability t

probability that one feedback
item for forwarding is generated qforward 0.2

probability that one feedback
item for query answering is
generated

qanswer 0.5

relationship between positive
and negative feedback items

qpn 2

number of feedback items
generated for ProW

qProW 1

cost of forwarding a message cforward 2

cost of answering a message canswer 5

cost of a ProW cProW 100

Table 2 List of parameters.

Our analysis is based on various assumptions; we will ad-
dress the impacts of our assumptions in Section 8: The CAN
grid is completely regular, withn zones per dimension. The
number of zones isnd, whered stands for the dimensionality
of the key space. Both the query points and the nodes issu-
ing queries are uniformly and independently distributed inthe
key space. Query processing takes place in rounds. Each node
issues one query per round. If a query remains unanswered,
the issuer does not repeat it. The total number of nodes is
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N = r · nd, wherer is the degree of replication. The pa-
rameterr is identical for all zones. Ifd andr are sufficiently
large, a node will always find a reliable neighbor closer to the
target point than itself. Consequently, we can neglect situa-
tions where greedy forwarding fails because all neighbors in
one direction are unreliable. Table 2 is a list of the parameters
used. Their default values will be discussed in Section 7. We
assume that the system is in steady state. Assuming steady
state is not a restriction, see [13] for a description how a P2P
system reaches such a state. In addition, utility equals cost,
i.e., peers are risk-neutral.

In what follows, we usePi to refer to a peer in the CAN,
andxi = (xi1, ..., xid) to refer to an arbitrary point in the
zone ofPi. As a first step, we seek a formula for the number
of hops of a message from one point to another one. Given
two pointsx1 = (x11, ..., x1d) andx2 = (x21, ..., x2d); x1,
x2 ∈ [0; 1]d on ad-torus, theircell distance in Dimensioni is
as follows:

distni = min(|⌊x1i · n⌋ − ⌊x2i · n⌋|,

1 + ⌊min(x1i, x2i) · n⌋ + ⌊n − max(x1i, x2i) · n⌋) (4)

Example 4In Figure 7,n = 8 andd = 2. The cell distance
of a point in Cell P1 and one in Cell P5 in Dimension x is 4,
it is 3 in Dimension y.

If the number of cells per dimensionn becomes larger,
the cell distance per dimension of two points becomes larger
as well, irrespective of the fact that the positions of the points
have not changed. Given the cell distances per dimension, the
cell distanceof two points is the L∞-distance (Chessboard
distance). In what follows, we use the notation
distn,d = maxd

i=1(distni (x1, x2)).

Fig. 7 Cell distance in a regular grid.

Example 5The grey cells in Figure 7 represent one shortest
path (out of several ones) fromP1 to P5. Its length is 4. Now
consider a message forwarded along this path. We say thatP2

is thefirst forwarder of the query, P3 thesecond forwarder of
the queryetc. In our terminology,P1 andP5 are issuerand
answerer.

What is the average number of message hops per query?
Our assumptions are that nodes issue queries with the same
frequency, and that the query points are uniformly and inde-

pendently distributed. Thus,

avgdistn,d =

∫∫

x1,x2∈[0;1]d

distn,d(x1, x2)dx1dx2 (5)

The double integral calculates the distances between each
possible source and destination point ind dimensions. Note
that we obtain the average without dividing by the lengths
of the intervals, because it is 1 in the unit space[0; 1]d. For-
mula 5 reflects the situation where no node along the path
defects. The number of queries issued per round isN , the
number of queries the node is expected to forward per round
without defection and failures isavgdistn,d.

Defection and Failures. Let p be theglobal failure proba-
bility over all nodes, including both system failures as well as
adverse behavior resulting in queries that are not forwarded
or answered. E.g., in a CAN consisting of 99 fully coopera-
tive peers, one fully uncooperative peer that is unknown, and
in the absence of system failures,p = 0.01. Our assump-
tion that the CAN is large and in steady state implies thatp
is constant and does not change over time. In what follows,
we refer to a node with failure probabilityp as cooperative,
irrespective of the nature of the failures.

Each peer is supposed to forward queries issued by other
nodes. The issuer delivers the query to the first forwarder with
certainty. The first forwarder forwards it to the next one with
probability1−p. The scheme recurs until the query reaches a
peer that answers it, again with probability1− p. We assume
that N >> avgdistn,d, so these probabilities per hop are
independent from each other. Thus, a query will be transmit-
ted over a distance ofδ hops and answered with probability
(1− p)δ−1 · (1− p). The expected number of forwarders of a
query is the sum of the probabilities of being forwarded by a
number of 1, 2, ...distn,d(x1, x2)−1 forwarders. Given this,
the average number of forwards each peer is expected to do
per round is as follows:

hn,d
forward =

∫∫

x1,x2∈[0;1]d

distn,d(x1,x2)−1
∑

i=1

(1 − p)i−1dx1dx2 (6)

Clearly, in the presence of failuresp > 0 and therefore is
hn,d

forward < avgdistn,d. The number of queries a node is
expected to answer per round depends onp as follows:

faux
8 (p, δ) =

{

1 if δ = 0
(1 − p)δ−1 if δ > 0

(7)

hn,d
answer =

∫∫

x1,x2∈[0;1]d

faux
8 (p, distn,d(x1, x2))dx1dx2 (8)

Equation 7 differentiates between queries that are issued by
other nodes and queries the issuer can answer itself, i.e.,
distn,d(x1, x2) = 0.
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How much feedback should a cooperative node expect per
round? A cooperative node obtains both positive and nega-
tive feedback. Consider the evaluation of a given query with
issuerx1 and query pointx2. Having obtained the query, the
node responsible forx2 answers with probability1 − p. If it
does not answer, the issuer generates negative feedback on
the first forwarder and a feedback notification that is negative
(see Subsection 5.4). The feedback notification is forwarded,
just as queries are, with probability1 − p per step. In other
words, our model reflects that feedback notifications may get
lost, just as queries are.

Given the distance between issuer and answerer, we dis-
tinguish three cases: If the issuer itself is able to answer the
query (distn,d(x1, x2) = 0), no feedback is generated. If the
query is answered by a direct neighbor (distn,d(x1, x2) = 1),
the query is transmitted with certainty, the answer occurs with
1− p, and the respective feedback is generated with certainty
again. If the distance is greater than 1, we have to take three
points into account:

– A query issued byx1 with query pointx2 is forwarded
from x1 to x2 with probability (1 − p)distn,d(x1,x2)−1.
This leads to the first factor in the third row of Equation 9.

– The node responsible forx2 answers the query with prob-
ability 1 − p (second factor).

– The resulting feedback notification arrives at the last node
beforex2 in the chain of forwarders with probability(1−
p)distn,d(x1,x2)−2, once it is generated (third factor). That
node generates feedback for having answered the query.
Putting everything together, Equation 9 is the probability

of obtaining positive feedback items for having answered a
query forwarded overδ hops, and Equation 10 is the average
number of positive feedback items.

faux
10 (p, δ) =







0 ifδ = 0
1 · (1 − p) ifδ = 1

(1 − p)δ−1 · (1 − p) · (1 − p)δ−2 ifδ > 1
(9)

hn,d
answer,pos =

∫∫

x1,x2∈[0;1]d

faux
10 (p, distn,d(x1, x2))dx1dx2 (10)

Equation 12 is similar. It returns the average number of neg-
ative feedback items for not having answered queries. The
node responsible forx2 does not answer with probabilityp.

faux
12 (p, δ) =







0 if δ = 0
1 · p if δ = 1

(1 − p)δ−1 · p · (1 − p)δ−2 if δ > 1
(11)

hn,d
answer,neg =

∫∫

x1,x2∈[0;1]d

faux
12 (p, distn,d(x1, x2))dx1dx2 (12)

The probability to obtain feedback items for having (not) an-
swered a message decreases with the distance. Other nodes
may drop the feedback notification instead of forwarding it.
This is why our protocol incorporates not only feedback for
answering queries, but for forwarding as well.

Let us now look at feedback for not forwarding. Peers
cannot directly observe peers not forwarding queries. If a
query does not return a result in time, each peer of the for-
warding chain obtains a negative feedback notification mes-
sage. Again, the formula has to consider three aspects: (1) for-
warders may ignore the query message, (2) the peer responsi-
ble forx2 may not answer it, and (3) the feedback notification
can get lost. Negative feedback is generated on all peers be-
fore the answerer, i.e., for queries transmitted over distances
less than 2, no such feedback is generated. Equation 13 re-
flects this. Then the average number of negative feedback per
node per round is the sum of the probabilities over all nodes
that might not have processed the query (Equation 14).

faux
14 (p, δ)=











0 if δ < 2

(1−p)δ−1 · p·

(

1+
δ−2
∑

j=1

(1−p)j−1

)

if δ ≥ 2

(13)

hn,d
forward,neg =

∫∫

x1,x2∈[0;1]d

distn,d(x1,x2)
∑

i=1

faux
14 (p, i)dx1dx2 (14)

Formula 16 for positive feedback is similar but simpler.
This is because we only need to look at the case where all
nodes forward and answer the query.

faux
16 (p, δ) =











0 if δ < 2

(1−p)δ−1+1 ·

(

1+
δ−2
∑

j=1

(1−p)j−1

)

if δ ≥ 2

(15)

hn,d
forward,pos =

∫∫

x1,x2∈[0;1]d

faux
16 (p, distn,d(x1, x2))dx1dx2 (16)

According to our protocol (cf. Figure 4-4), generating feed-
back occurs with a certain probability, allowing to differenti-
ate between the different kinds of violations of the protocol.
The numbers of feedback items actually generated are as fol-
lows:

ĥn,d
forward,pos = hn,d

forward,pos · qforward

ĥn,d
forward,neg = hn,d

forward,neg · qforward · qpn

ĥn,d
answer,pos = hn,d

answer,pos · qanswer

ĥn,d
answer,neg = hn,d

answer,neg · qanswer · qpn

(17)

Given this, we have derived formulae for the expected num-
bers of feedback items for forwarding and answering. Feed-
back is also generated when a node has carried out a ProW.
ĥn,d

ProW,pos stands for the expected number of this kind of
feedback items generated per round. We will derive a closed
formula in what follows. When extending the protocol to cope
with other kinds of adverse behavior, there will be more rea-
sons for generating negative (or positive) feedback. The ana-
lysis steps that follow can take these kinds of feedback into
account without difficulty.
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How likely is a ProW request? As a first step, we estimate
the expected lifetime of a feedback item in a feedback repos-
itory. The expected number of feedback items on a node gen-
erated per round is

∑

x ĥn,d
x,pos +

∑

x ĥn,d
x,neg, with x ∈ {for-

ward, answer, ProW}. The larger the sum, and the smaller
the sizes of the repository, the smaller is the expected life-
time ttl of feedback items. The formula is

ttl =
s

∑

x
ĥn,d

x,neg +
∑

x
ĥn,d

x,pos

(18)

where the expected lifetime is given in numbers of rounds.
The probability that the rating of a random feedback item in
the feedback repository is negative or positive is as follows:

pn,d
neg =

∑

x
ĥn,d

x,neg

∑

x
ĥn,d

x,pos +
∑

x
ĥn,d

x,neg

(19)

pn,d
pos =

∑

x
ĥn,d

x,pos

∑

x
ĥn,d

x,pos +
∑

x
ĥn,d

x,neg

(20)

Given these probabilities, the following questions arise:What
is the expected value of the reliability coefficient? How likely
is it that the coefficient is belowt? In other words, how likely
is it that a cooperative node is deemed unreliable by its neigh-
bors? Clearly, the value of the reliability coefficient follows
the binomial distributionB(s, pn,d

pos). Then the following holds:

E(reliability coefficient) = s · pn,d
pos (21)

pn,d
r = P (reliability coefficient < t)

=
t−1
∑

i=0

(

s
i

)

·
(

pn,d
pos

)i
·
(

1 − pn,d
pos

)s−i (22)

Now we can determine the number of ProW requested from
a cooperative peer. It depends on the probability of having a
certain reliability coefficient, and the number of ProW needed
to reach thresholdt:

hn,d
ProW =

t−1
∑

i=0

(

s
i

)

·
(

pn,d
pos

)i
·
(

1 − pn,d
pos

)s−i
·

⌊

t − i

qProW

⌋

(23)
Thus the number of positive feedback items created on aver-
age iŝhn,d

ProW,pos = hn,d
ProW,pos · qProW . Finally, the expected

overall cost of a node per round is the frequency of the vari-
ous tasks, multiplied with their respective costs.

E(cost) = hn,d
answer · canswer +hn,d

forward · cforward

+hn,d
ProW · cProW

(24)

Nodes that cooperate less.Now consider a node with a pri-
vate failure rateq, i.e., defections and system failures. In what
follows, we refer to a node with a failure rateq larger than
p as uncooperative. How much feedback can it expect per
round? The probability that a query is forwarded or answered
changes from1 − p to 1 − q. Because all other nodes for-
ward with probability1 − p as before, the probability that a

feedback notification reaches the predecessor of the node re-
mains unchanged. Therefore, we adapt the existing formulae
for having forwarded or answered by factor(1 − q)/(1 − p).
So the number of positive feedback items an uncooperative
peer can expect is:

h̃n,d
forward,pos = hn,d

forward,pos · 1−q
1−p

h̃n,d
answer,pos = hn,d

answer,pos · 1−q
1−p

(25)

The peer does not forward or answer queries with probability
q, instead ofp. So we adapt Formulae 12 and 14 by inserting
factorq/p:

h̃n,d
forward,neg = hn,d

forward,neg · q
p

h̃n,d
answer,neg = hn,d

answer,neg · q
p

(26)

The formulae for the amount of feedback actually generated
are analogous to (17).

Costs of joining the CAN. Finally, we quantify the costs of
joining the CAN. Obviously, a new node must carry out some
ProW before being able to issue queries. When the node car-
ries out a ProW, its neighbors will share information on this.
Thus, a new node must take the following costs:

E(cost′) =
t

qProW
· cProW (27)

7 Discussion

Given this cost model, we are interested in the impact of the
various parameters and the interdependencies between them.
In what follows, we limit the discussion to results that we
find most interesting. We have used numerical methods to in-
terpret the formulae.
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Fig. 8 Costs for forwarding and responding for cooperative nodes.

First we look at cooperative nodes. Their costs depend
on the global failure probabilityp and the reliability thresh-
old t. Figure 8 graphs the expected costsc for answering and
forwarding queries. Figure 9 shows the expected ProW cost.
Parameterp ranges from 0 to 0.2. Higher values forp are
not meaningful, in contrast to, say, existing file-sharing sys-
tems. Since cooperative behavior dominates, as we will show,
p will be small. The values of the other parameters are as in
Table 2. Figure 8 shows that a high global failure probabil-
ity reduces the costs of forwarding/answering queries. This
is because queries will get lost on the way from the issuer
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to the answerer. But this may go along with high ProW cost
for all peers (Figure 9). Thus, ProW cost may account for a
significant share of the cost of a cooperative node in a CAN
with a high global failure probability, at least if the parameter
settings have not been chosen carefully. We see that fort = 0
the ProW costs are independent ofp. This makes sense: A
node does not need to carry out a ProW, since it is deemed
reliable in any case.
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Fig. 9 Costs for answering ProW for cooperative nodes.

Let us now look at the costs of nodes that are uncoop-
erative. Figure 10 plots the total costc of an uncooperative
node as a function of its failure rateq and thresholdt. The
failure rate of an uncooperative peer, which we have chosen
arbitrarily for this particular plot, isq = p·2. In reality, an un-
cooperative peer is not likely to have such a low failure rate,
only marginally higher than the average rate. But this graph
is supposed to show that a small difference in the failure rates
already affects the total costs of uncooperative peers signif-
icantly. Let us first look at the case wheret is small. Every
node qualifies as reliable, even though the feedback reposito-
ries might contain hardly any positive feedback item. In this
case, costs are low since a node does not have to carry out
any ProW. According to Figure 8, costs even slightly decrease
with increasingq. The reason is that the node now processes
fewer queries and therefore has lower cost. But according to
Figure 10, this effect is insignificant, compared to ProW costs
whent is high. In other words, ift is too low, it pays off to be
uncooperative. On the other hand, Figure 9 tells us that large
t penalize cooperative nodes.
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Fig. 10 Total costs for uncooperative nodes.

Fortunately, Figure 11 tells us that there are parameter
settings where the discriminationc′ between cooperative and
uncooperative nodes is good and costs for cooperative peers
remain acceptable. Figure 11 shows the ratio of the total cost
of a peer with failure rateq and of one that is cooperative
(q = p·2). The z-axis is the total cost of an uncooperative peer
with failure rateq divided by the total cost of a cooperative

peer. For the protocol to work, the ratio should always be
significantly larger than 1. With the parameter settings chosen
for the experiment, this does not always hold, e.g., for small
t. Thus, to achieve the discrimination of uncooperative peers
sought, it is necessary to choose the parameter settings more
carefully. On the other hand, it seems that one can achieve the
discrimination envisioned: There is a large part of the domain
where the function value is larger than 1, and, according to
Figure 9, the ProW costs of cooperative peers are moderate.
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Fig. 11 Discrimination between cooperative and uncooperative
nodes.

Having said this, the crucial questions are: What is an op-
timal setting of the endogenous parameters? How does the
overall system behavior look like with such a setting? To an-
swer these questions, we must clarify first what we mean with
‘optimal’. Two objectives come to mind: (1) Discrimination
against nodes with a higher failure rate should be as good as
possible. (2) The additional overhead of cooperative nodes
should be minimal. – Obviously, we cannot achieve both ob-
jectives at the same time: We can achieve a good discrim-
ination against nodes that tend to be uncooperative by be-
ing strict, e.g., high value of thresholdt, higher weight for
negative feedback items, etc. But this means that cooperative
nodes are more likely to have to carry out ProW, since they
also obtain negative feedback. Their costs would increase.
This would run counter to Objective (2). Hence, we wonder:
Are there system states with good discrimination as well as
moderate overhead of cooperative nodes?
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Fig. 12 Discrimination, with overhead bounded.

Figure 12 shows the maximal discrimination against un-
cooperative nodes for a given overhead. In more detail, we
require that the overhead of cooperative nodes to work off
ProW requests must be less than 10%, compared to the cost of
forwarding and answering queries. ‘10%’ is arbitrarily cho-
sen; we want to show that even small additional expenses
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from cooperative nodes lead to an acceptable discrimination.
Other values yield similar effects.

Example 6Suppose that the expected overall cost of a coop-
erative node is 70 for a certain setting of the endogenous pa-
rameters. The expected ProW cost is 20. The ProW cost as a
ratio of the overall cost is 20/70. This is more than 0.1, which
is our upper bound. Thus, we would ignore this setting and
search for an other one.

Given this bound, Figure 12 shows the maximal discrim-
ination that is possible, i.e., the overall cost of an uncooper-
ative node divided by the overall cost of a cooperative node.
Because the protocol depends on the path lengths, the x-axis
is the number of zones in the CAN. This would be the num-
ber of peers if there was no replication. The y-axis is the fail-
ure rateq of the uncooperative node. Again, the private fail-
ure rate is set toq = p · 2. Parameters to be optimized are
t, qforward, qanswer , qpn, andqProW . From our cost model
it follows that cforward/canswer = qforward/qanswer. The
values ofcforward, canswer, andcProW are as in Table 2.
cforward, canswer andcProW are exogenous parameters (cf.
Subsection 5.1).

Figure 12 shows that the values are always larger than 1,
i.e., the discrimination sought does occur! The discrimination
is very good for small and medium values ofN and small
global failure probabilitiesp. However, it decreases with in-
creasingN . Note that the protocol works for CAN with many
nodes as well, as long as the path lengths are short enough.
Choosingr andd appropriately guarantees that. – The curve
is not as smooth as one might expect it to be. The reason is
that the domains of some parameters are discrete. In particu-
lar, t must be an integer. The result from Figure 12 is positive
since the discrimination envisioned does take place, with re-
alistic settings of the various parameters. The threshold value
for the additional cost of a cooperative node is very moderate
(0.1). The values ofq are conservative as well. If for instance
q = 0.1, this means that the node still processes 90% of the
incoming queries as requested. Discrimination against nodes
with a higher failure rate is much more distinct.
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Fig. 13 Overhead, with discrimination bounded.

Figure 13 is based on the inverse perspective. Now the
constraint is a minimum discrimination of 1.2 for partly un-
cooperative nodes. In other words, the expected total cost of
a node with failure rateq = p · 2 must be 20% more than
the expected total cost of a cooperative node. Again, 1.2 is an
arbitrary (bot moderate) value. Given this constraint, we look
for settings where the expected ProW costs of cooperative

nodes are minimal. Figure 13 shows the expected ProW cost
w of a cooperative node divided by its expected total cost.
In most cases, these additional costs are pleasingly low. They
increase with increasingp and increasingN , but stay within
a tolerable range. Thus, our protocol yields a good discrimi-
nation of partly uncooperative nodes with moderate effort.

In what follows, we investigate the influence of the re-
maining parameters. In particular, can they improve discrimi-
nation without increasing ProW costs? The role of Parameter
s, the size of the feedback repository, seems to be evident:
The largers, the easier for a peer to collect evidence for co-
operativeness and uncooperativeness, and the larger the ex-
pected discrimination. The opposite perspective is that small
values ofs might not result in good discrimination, at least
when the bound on the overhead is small.

Figure 14 graphs the optimal discrimination for a given
overhead of 10% and the private failure rateq (again,p =
q/2), for different values ofs. The grey color highlights val-
ues ofs andq which do not allow to meet the overhead con-
straint. The figure reveals a positive result: there are always
settings that fulfill the overhead bound, except for tiny repos-
itory sizes and very large failure rates.
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Fig. 14 Discrimination for different sizes of the repository.

Another parameter iscProW , the cost of a proof of work.
It specifies the amount of work a node has to carry out in
order to signal its willingness to cooperate. Our expectations
regarding this parameter are as follows: if the ProW is too ex-
pensive, this will incur significant additional costs for coop-
erative nodes. If the ProW is too cheap, the number of ProW
requests might be high, and this might bring down query per-
formance.
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Fig. 15 Number of proofs for uncooperative peers.
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Figure 15 plots the number of ProW requested from un-
cooperative nodes for different ProW costs and different fail-
ure rates, again with a ProW overhead bound of 10% for co-
operative nodes. It meets our expectations in the following
respect: low ProW costs incur a high rate of ProW requests
and vice versa. But an unexpected result is that the number
of ProW requested is exponentially decreasing. The inflec-
tion point is near a cost value of 200. This has an important
implication: the problem of different private costs (cf. Sec-
tion 5.1) goes away if ProW costs are high. Namely, very
small intervals along the ’Number of ProW’ axis relate to
large intervals along thecProW -axis. Consequently, our pro-
tocol will remain effective in heterogeneous settings where
peers run on different hosts, endowed with different capaci-
ties for ProW computation.

8 Experimental Evaluation

Having carried out an extensive model-based analysis, we
want to verify that our reliability-aware CAN protocol is op-
erational under real-world assumptions as well. We have eval-
uated our protocol by means of numerous experiments. They
address the following issues:

– Does an implementation show the behavior predicted by
our model, i.e., is our model correct?

– How restrictive are our assumptions behind the algebraic
model (some of which are necessary to keep the formal
analysis manageable)? Does the protocol remain opera-
tional if we drop assumptions like regular zones or com-
pletely even distribution of queries issued at steady rates?

– How sensitive is the system regarding small changes of
the environment? In a living system, peers may alter their
behavior or join and leave the CAN. Thus, characteris-
tics like the failure probability, the number of peers, or
the length of forwarding paths may change over time. In
other words, assume that we have found the optimal val-
ues of the endogenous parameters for a given setting of
the exogenous parameters. Now the exogenous parame-
ters change. Do those values of the endogenous param-
eters still result in good discrimination and acceptable
overhead?
We have performed all experiments on a Linux cluster of

32 loosely coupled workstations equipped with 2 GHz CPU,
2 GB RAM and 100 MBit Ethernet each. Here we ran a Java-
based CAN implementation which we have implemented our-
selves. We have extended it for logging and management pur-
poses and stripped it from all unnecessary features (persistent
storage, repair mechanisms, etc.) [7] provides a detailed de-
scription of our experimental setup. Given this setting, weran
a 4-dimensional CAN consisting of up to 160,000 nodes. The
number of queries was 5,000,000. All parameters are set to
optimal values (cf. Table 2) according to our model if not ex-
plicitly stated otherwise. To ensure that we are in steady state,
we started measurements and statistics gathering only after an
initialization period of 500,000 queries.
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Fig. 16 Discrimination between cooperative and uncooperative
nodes in the experiment.

Effectiveness. The most urgent issue is to show that our reli-
ability-aware CAN protocol functions as envisioned – and as
predicted by our model. Remember Figure 11, which graphs
the calculated discrimination between cooperative and unco-
operative nodes. It tells us that uncooperative nodes have to
take significantly higher costs than cooperative ones if the
threshold value is adjusted to the global and the local failure
rate. We hope to see the same curve if we replay the analysis
with our prototype (cf. settings in Section 7). Figure 16 shows
the result of this experiment: leaving aside some smoothness
issues, both curves are congruent!

Effects of model assumptions.In order to ease the alge-
braic analysis we introduced some assumptions which do not
always hold in reality. We now want to show experimen-
tally that these simplifications do not result in a model thatis
oversimplified, and predictions are realistic. In other words,
the assumptions only hold for the derivation of the formal
cost model, and we will show that they are not necessary to
ensure functioning of the system. We have run experiments
with 10,000 peers and a rate of 10% uncooperative nodes us-
ing a local failure rate of 20%. The first experiment repro-
duces the setting from the algebraic analysis, i.e., it relies on
a completely regular zone-partition scheme and peers issuing
queries at regular rates for equally distributed query keys. In
subsequent experiments, we have replaced each of these sim-
plifications with assumptions closer to the real world:

– The completely regular zone partitioning is replaced by
a realistic zone scheme. It is the result of the split pro-
tocol of the original CAN (cf. Section 3). Peers are now
responsible for zones of different sizes and have different
numbers of neighbors.

– Instead of peers issuing the same number of queries at
regular rates, we assign a factor to each peer whose dis-
tribution is Gaussian. It determines the number of queries
issued in each round. The factor has mean value 1.0 and
ranges from 0 to 2. Hence, the number of queries each
peer issues per round remains 1.0 on average.

– The equally distributed query points are replaced by po-
ints whose distribution is Gaussian as well. Here, the mean
value is the center of the 4d-hypercube of the key space.
Thus, more queries go to the nodes in the center than the
peers at the sides5.

5 Note that the key space is a d-torus. ’sides’ is the part of the
space close to the wrap-around from 1 to 0 and vice versa in each
dimension.
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We now turn off those simplifications, each one in iso-
lation as well as all of them at the same time. Our expec-
tations are minor deterioration in the discrimination and the
cost measures, but the protocol should remain effective in
each setting.
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Fig. 17 Do our assumptions affect the costs?

Figure 17 plots the costs for cooperative and uncoopera-
tive nodes with some of these simplifications in place/turned
off. It tells us that the largest change is due to the realistic
assignment of zones to peers. This is reasonable: with the re-
alistic partition scheme, zones are now different in size. With
larger zones, a message forward covers a larger distance. If
the number of uncooperative nodes remains constant, shorter
paths decrease the global failure probability. Therefore,the
ProW costs as well as the ones of forwarding messages de-
crease (cf. Figures 9 and 10). In contrast, sending queries at
different rates to query points unevenly distributed in thekey
space does not make much of a difference. If a node issues
queries at a rate different from the other nodes, say, at a higher
rate, its feedback will be updated at a higher rate as well. But
this does not affect the global behavior. The diagram confirms
this.
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Fig. 18 Do our assumptions affect the discrimination?

Figure 18 shows the discrimination for the same settings.
Removing the simplifications affects cooperative nodes and
uncooperative ones as well. Thus, the discrimination remains
nearly unchanged. Summing up, the result of these experi-
ments is again positive. The protocol is effective, even when
dropping the model assumptions.

Does the protocol penalize the neighbors of uncooperative
nodes? A crucial point of the reliability-aware protocol is
the following one: each peer in a chain of forwarders is pe-
nalized with negative feedback if the issuer does not receive
an answer for its query. The rationale for this has been to
guarantee that the node ignoring the query obtains negative
feedback in any case. However, one might think that peers
close to uncooperative nodes are ’punished’ as well, and that
they fare significantly worse than nodes which are not in the
neighborhood of such peers. But the following experiment
shows that our protocol copes well with these cases. We used
a CAN consisting of 9,500 cooperative and 500 uncoopera-
tive (q = 0.2) nodes in a 4-dimensional key space.
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Fig. 19 Relation between costs and the distance to the closest unco-
operative peer.

Figure 19 graphs the costs of nodes as a function of the
distance to the closest uncooperative node. The costs dis-
played are the average costs of all nodes with the same dis-
tance to the closest uncooperative node, the standard devi-
ation and the absolute maximum and minimum values. Be-
cause of the regular zone model there is a small finite number
of distances to the closest uncooperative node. The distance
metric is the Euclidean one, which is used for query forward-
ing as well. If the distance to the closest uncooperative node
is 0, the node itself is uncooperative. If the distance is 0.5, the
closest uncooperative node is an immediate neighbor. With a
distance of 0.7, the peer and an uncooperative node have one
corner in common, etc. The solid black line in Figure 19 con-
nects the average cost values for each group of peers with the
same distance.

The figure reveals the following information: on average,
a node is not penalized at all for being close to an uncoop-
erative node. A detail observation is that there is a signifi-
cant spread in the costs, according to the standard deviations
and the extrema values. This is due to the fact that Figure 19
considers only the closest uncooperative peer. In some cases,
there may be several uncooperative peers quite close to the
current node. In some cases, there may be only one uncoop-
erative peer that is rather close. Another much more impor-
tant finding from this experiment is that cooperative behav-
ior dominates, except for extreme cases. However, the mean
value minus the standard deviation of the costs of uncoop-
erative peers are always larger than the maximum costs of
cooperative peers, irrespective of their distance to the clos-
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est uncooperative node. This is a positive result. Admittedly,
one can construct special cases where this does not hold, e.g.,
a peer completely blocked in all directions by uncooperative
nodes. But this is will virtually never happen under normal
conditions. For example, the probability that all neighbors
on one side of a peer are uncooperative is less than 0.5%
for a 4-dimensional CAN with a rate of 50% uncooperative
nodes, and this rate is unrealistically large. Further, replica-
tion brings down this probability to arbitrarily small numbers.

Rate of feedback creation.An important question is whether
the number of feedback items in the repositories of the peers
is sufficient. The amount of feedback generated depends on
qforward and qanswer, which are external parameters cou-
pled with the costs of forwarding and answering queries, and
qProW andqpn. The parameterqProW controls the number
of feedback items generated for each proof of work. For in-
stance, a value ofqProW = 1 means that for each proof
result the peer who has requested it will generate one posi-
tive feedback item.qpn specifies the amount of feedback cre-
ated if peers do not seem to follow the protocol. For example,
qpn = 2 states that for each query that remains unanswered
each peer along the routing path receives twice the amount of
feedback (of negative type), compared to the amount of pos-
itive feedback it would have obtained otherwise. Thus, the
parameter controls how severely ’not forwarding’ is actually
punished.

Because of the complexity of the protocol, it is difficult to
anticipate the effects of specific values ofqProW andqpn. We
expect that a small number of feedback items generated for
one ProW would lead to a high number of ProW requests. We
further expect a largeqpn to penalize all nodes along the rout-
ing path with proofs for every message that has been rejected.
Only experiments will shed light on these issues. Figure 20
graphs the number of proofs requested from a cooperative
peer per round as a function of the two parameters. The rate of
uncooperative peers is 50% (q = 0.2). We chose such an ex-
treme rate for this particular plot in order to obtain results that
expressive. Lower rates result in curves that are much flatter.
Figure 20 shows that increasingqProW rapidly decreases the
number of proofs requested (note that the scale of the z-axis
is logarithmic). In contrast, smallqProW and largeqpn lead
to a very high number of proofs. As a result, the figure tells
us that the range of parameter values that are viable is rather
wide. Leaving aside extreme values below 0.5, the effect of
both parameters is negligible, in particular when comparedto
thresholdt. This result allows us to set the parameters to ar-
bitrary, average values and to focus on the other parameters.
Given the complexity of the system, this is helpful.

Scalability. Our model allows to adjust all parameters to
optimal values if the degree of cooperativeness of the unco-
operative nodes and the number of peers are known exactly.
Both the algebraic analysis and the experiments we have pre-
sented so far indicate that our protocol is stable against chang-
es in the behavior of the nodes. But what happens if the num-
ber of nodes changes? To investigate this, we calculated opti-
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mal parameter settings for a CAN of 10,000 nodes, and varied
the network size from 81 to 160,000 nodes including a rate of
10% uncooperative nodes with a local failure rate of 20%.

We anticipate that the best discrimination will occur at
the number of nodes the parameters are optimized for, and
increasing the number of nodes will increase the costs or de-
crease the discrimination. We will already declare success
if the discrimination between cooperative and uncooperative
nodes remains significant, and if the additional costs of co-
operative nodes will not skyrocket for a wide range of CAN
sizes.
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Fig. 21 Scalability of our protocol.

The graphs in Figure 21 show the discrimination between
cooperative and uncooperative nodes (left axis and solid line)
and the average costs for both kind of nodes (right axis and
dashed line). The solid line is the quotient of the dashed lines.
Our first prediction is true: the maximum of the discrimina-
tion is reached at approximately 10,000 nodes. The algebraic
model tells us that increasing the number of nodes leads to
increased path lengths for forwarding. Because the ratio of
uncooperative nodes remains constant, i.e., the number of
these nodes is increased as well, the effort for detecting un-
cooperative behavior will also increase. But our ’criterion for
success’ is met: the total costs for cooperative nodes remain
significantly below the costs for uncooperative nodes for the
numbers of CAN nodes observed. Furthermore, the graphs
demonstrate that the discrimination continues to stay above a
value of two, even for a number of nodes which is 16 times
larger than the number of nodes used for the optimization.
This is a result that we have not anticipated. Of course, ad-
justing the parameter values (e.g., by using self-tuning mech-
anisms or schemes from organic computing) would bring the
discrimination to an optimum and would allow the protocol
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to cope with an even larger number of nodes. But our experi-
ment shows that this issue is not particularly urgent.

Figures 17 and 18 show that the model assumptions do
not affect the global behavior at large. At most, they decrease
the path length a little. But this shows that our model assump-
tions are rather conservative. We anticipate that the protocol
remains scalable in the real world as well as in our experi-
ments.

Why should a peer share feedback?With our protocol, a
peer forwards feedback to its neighbors. But why should it do
this? At first glance, this does not bring a direct advantage.

However, a simple ’Tit-for-Tat’ extension of the proto-
col, i.e., a peer which does not disseminate feedback does not
receive feedback in turn, changes things significantly, as we
will show. A peer that does not exchange feedback with its
neighbors will have to issue many more ProW requests than
peers which do exchange feedback. The neighbors can eas-
ily detect this and refuse to carry out the ProW and exchange
messages with that peer. Since a peer has at least(3d − 1)/2
other neighbors suitable to forward a certain message to, this
is feasible.

In the experiment that follows, we consider a simple Tit-
for-Tat scenario, i.e., a peer which does not disseminate feed-
back does not receive feedback in turn. How does the rate of
ProW requested differ between peers which share feedback
and peers that are isolated?
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Fig. 22 ProW requested with and without disseminating feedback
items between the peers.

Figure 22 graphs the outcome of an experiment where
10% of all nodes do not share feedback. In order to have ex-
pressive results, we varied the global failure probability(x-
axis) from zero (no uncooperative peers, no ProW should be
requested) to 20%. The y-axis is the number of ProW re-
quested per round. Figure 22 tells us that peers which do not
receive feedback from others (dashed line) issue many more
ProW requests than peers sharing feedback (solid line). In
settings with a low global failure probability, the difference
of the rates is remarkably high. Therefore a node that wants
to remain part of the network must decrease its extraordinary
rate of ProW requests and share feedback.

9 Attacks

A crucial issue is the behavior of our protocol under different
kinds of attacks, be they by free riders which want to save
resources, be they by malicious nodes trying to harm other
peers. In the presence of m-of-n data coding techniques and
replication, we can neglect that other peers might be unable
to access (key, value)-pairs in the zones of malicious nodes.
Furthermore, we exclude problems arising from an incorrect
implementation. In what follows, we look at different attacks
and examine how they affect our system. Some of these at-
tacks are well known from other contexts, others are specific
to our protocol.

Spoof query results. In order to save the costs of data stor-
age, an uncooperative node could send back a spoof query
result.

On the other hand, the issuer of a query can verify the
correctness of the result. This can take place in two ways.
(1) In the case of replication, the issuer collects the queryre-
sult from more than one node and forms a quorum. (2) In
some applications, any peer can verify the correctness of a
query result. For instance, if the CAN is used as a directory
for object lookup or web-page annotations, a peer could al-
ways check if directory entries are valid. Our protocol as well
as the formal analysis in Section 6 could be extended with
negative feedback on spoof query results.

Man-in-the-middle attacks. A node could manipulate the
content of messages it forwards to other nodes. [25] features a
detailed discussion of this attack in CAN. The receiver of the
message is supposed to think that the sender of the message
gave false information. It might then give negative feedback.

We see three answers to this kind of attack: (1) The is-
suer could append a cryptographic signature to the message
that allows the receiver to verify its correctness. Here, ’cor-
rectness’ means that the message has not been tampered with
since the send. This is in contrast to the notion of correct-
ness used in the context of the previous attack. There, cor-
rectness referred to the quality of the query result from an
application point of view. (2) The issuer could send multiple
replicas along disjoint paths. This would require only a minor
change of our routing protocol. (3) With our protocol, penal-
ization with negative feedback extends to all peers in a chain
of forwarders. As an extension of this idea, the forwarders of
a query result that has been tampered with during forward-
ing will obtain negative feedback as well. Peers that modify
query results repeatedly will then end up with a standing that
is worse than the one of average cooperative peers.

Dissemination of spoof feedback.With our protocol, a peer
accepts feedback only if

– its forwarder is deemed reliable, and
– it does not rate the forwarder itself.

In addition, a peer should accept feedback only if
– the frequency of feedback being generated and forwarded

is comparable to the rate of other peers, and
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– each feedback item contains plausible values, e.g., feed-
back comes from peers which could have made observa-
tions on the feedback subject in the first place.

Given this, what is the impact of a single peer disseminating
spoof feedback?

Assume a peer tries to harm one of its neighbors by dis-
seminating false negative feedback about it. The number of
neighbors of a peer with regular partitioning of the key space
is a = 3d − 1. In the worst case, the malicious peer always
generates negative feedback. How does the probability thata
random feedback item whose subject is the attacked peer is
positive change? It becomespm =

ppos·(a−1)+0·1
a .

Using the setting from Table 2 in a CAN with a global
failure probability of 5%, Equation 23 tells us that the average
number of ProW requested from a cooperative peer will rise
from from 0.0098 to 0.0114 per round. We have conducted
experiments which confirm this value. Here, the increase is
even smaller than the standard deviation (σ = 0.0068). Sum-
ming up, the impact of a single peer which disseminates spoof
feedback is small. Further, a peer can only attack its direct
neighbors in the key space.

Collaboration attacks. Compared to the last attack, mali-
cious peers that collude are more ’promising’. Think of a set-
ting with the protocol extensions described in the context of
the last attack and suppose that there is a group of collud-
ing peers. Each of these peers only forwards requests from
other colluding peers, and these peers steadily generate pos-
itive feedback about each other at a normal rate. As a pre-
requisite to do so, the colluding peers must have adjacent
zones in the key space. Thus, the attackers must have tam-
pered with the feedback mechanism as well as with the join
protocol (cf. Section 3). The following questions arise: How
many peers are necessary to form a group that allows to ben-
efit from the CAN without participating in the work (or with
less work than regular)? How does the CAN react to such a
group of colluding peers?

We hypothesize that a large number of peers is able to
keep the number of positive feedback items above the thresh-
old t in the repositories of other peers. In addition, we sup-
pose that the number of ProW requested from neighbors of
the colluding peers will rise to the level of an uncooperative
peer. We now want to validate these expectations by experi-
ments. We again use the parameter values from Table 2, i.e.,
N = 10, 000, each peer hasa = 80 contacts, and the thresh-
old for reliability is t = 4. We run experiments with different
numbers of colluding peers which form one tight group in
the key space. In order to make it more difficult to distinguish
between reliable peers and attackers,10% of the peers are
uncooperative with a local failure probability of50%.

Figure 23 shows the results of the experiments. The x-
axis is the size of the group of colluding peers, the y-axis
shows the average total costs of cooperative, uncooperative
and colluding peers as well as the ones of the cooperative
neighbors of the colluding peers. The result is surprisingly
positive: in the range examined, the average costs of an at-
tacker are always higher than the costs of a cooperative node,

and the effect on cooperative nodes receiving spoof feedback
from colluding peers are only moderate! A further analysis
(not explicitly described here) has shown that the attackers
at the ’outside’ of the group, i.e., colluding peers with many
cooperative neighbors receive much more negative feedback
than spoof positive feedback disseminated by other collud-
ing peers. Obviously, colluding peers completely surrounded
by other peers from the coalition do not have to perform any
ProW. But in our four-dimensional setting each peer has 80
neighbors. For instance, assume that we want to construct a
coalition where 10 peers are completely surrounded by other
peers from the coalition. Then the coalition must contain at
least 270 peers. Thus, to profit from that effect significantly,
the groups of peers that collude would have to be huge.
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Fig. 23 Impacts of collaboration attacks.

Proxy attack. Another way to decrease the cost of participa-
tion is to have one peer as a proxy for many nodes. The proxy
participates cooperatively in the work. But it issues queries
as a substitute for many nodes which are not registered in the
CAN. It returns the query results to the original issuers.

From our perspective, it is subject to a philosophical
discussion whether this is legitimate behavior or an attack.
Clearly, a lot of selfish users can benefit from the CAN at
the cost of operating a single node. On the other hand, the
peer that is visible in the CAN behaves cooperatively, and
the integrity of the CAN is not affected. Furthermore, think
of nodes located in a private network. A proxy on the fire-
wall could be the only way out. A potential solution to the
problem seem to be load balancing mechanisms for P2P data
structures. The design of such mechanisms in a tamper-proof
way is a major issue that goes well beyond the scope of this
current article.

Infrequent queries, batching of queries.From the perspec-
tive of a single peer, it might be more efficient not to cooper-
ate, but issue a batch of queries from time to time and carry
out one or several ProW in order to obtain most query results.
In other words, let us know drop the assumption of frequent
queries that cannot be issued as a batch (cf. Subsection 5.1).
How does the dominant strategy now look like?

The costs of an entirely untrusted node to become trusted
by carrying out proofs of work arecu = cProW · t/qProW . In
one round, a cooperative peer must bear the following costs:
cc = cforward·h

n,d
forward+canswer ·h

n,d
answer+cProW ·hn,d

ProW .
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Therefore, the break-even between cooperative nodes and
nodes that issue queries as a batch is atcu/cc rounds. Using
the values from Table 2, the break-even lies at 24 rounds,
i.e., a node that can wait for more than 24 rounds can be
better off by batching queries and complying with ProW re-
quests instead of behaving cooperatively all the time. Clearly,
it is application-specific if a node can wait that long to have
its queries answered. There are applications where such long
waits are not practical (cf. Subsection 5.1).

To sum up this discussion on potential attacks, we no-
tice that: (1) Leaving aside extreme scenarios, e.g., attackers
have virtually unlimited resources, our protocol remains op-
erational in the presence of malicious nodes. (2) Individual
uncooperative peers or medium-sized groups of peers are un-
likely to profit from attacks on the feedback mechanism. An
exception is the proxy situation, which does not necessarily
count as an attack. (3) The presence of malicious nodes in
the neighborhood does not significantly affect the costs of
cooperative nodes. (4) Repair mechanisms and data coding
techniques that already exist in the literature and that areap-
plicable here as well avoid that data may be lost.

10 Conclusions

Free riding in P2P data structures is an important problem
that has not received much attention so far. The problem is
difficult because the degree of free riding of individual nodes
is not readily observable, among other reasons. Further, there
exists no centralized instance that might act as an authorita-
tive coordinator. Payment mechanisms do not solve the prob-
lem, since they require such a centralized instance. In addi-
tion, infrastructure costs would simply be too high. Our so-
lution is a new CAN protocol where peers generate and dis-
seminate feedback, and only peers with mostly positive feed-
back have their queries processed right away. All other peers
must provide proofs of work from time to time, depending on
their reliability. This mechanism is necessary to deter defec-
tion. The protocol does not guarantee that cooperative nodes
will not have to carry out any proofs of work. But this arti-
cle provides a formal analysis and extensive experiments that
show the following: the protocol can differentiate fairly well
between cooperative and uncooperative peers, and additional
costs of cooperative peers are moderate. This holds true for
many realistic settings of the exogenous parameters. In other
words, cooperative behavior dominates, at least under the as-
sumptions listed in the body of this article.

Many issues remain for future work, including the design
of protocols for other P2P data structures. Since the contact
list of a peer is not restricted to its neighbors any more, feed-
back dissemination is a more difficult problem. The interde-
pendencies with applications on top of the P2P data struc-
tures also require more attention. Finally, while our protocol
is robust against most kinds of malicious behavior, there are
variants that remain to be explored.
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