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Tradition Cluster Detection

Abstract cluster definition
“Group similar objects in one group,
separating dissimilar objects in different groups.”

Several instances focus on:
different similarity functions, cluster characteristics, data types, . . .
Most definitions provide only a single clustering solution

For example, K -MEANS
Aims at a single partitioning of the data
Each object is assigned to exactly one cluster
Aims at one clustering solution
One set of K clusters forming the resulting groups of objects

⇒ In contrast, we focus on multiple clustering solutions...
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What are Multiple Clusterings?

Informally, Multiple Clustering Solutions are...
Multiple sets of clusters providing more insights than only one solution
One given solution and a different grouping forming alternative solutions

Goals and objectives:
Each object should be grouped in multiple clusters,
representing different perspectives on the data.
The result should consist of many alternative solutions.
Users may choose one or use multiple of these solutions.
Solutions should differ to a high extend, and thus,
each of these solutions provides additional knowledge.

⇒ Overall, enhanced extraction of knowledge.

⇒ Objectives are motivated by various application scenarios...
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Application: Gene Expression Analysis

Cluster detection in gene databases to derive multiple functional roles...

Objects are genes described by their
expression (behavior) under different
conditions.
Aim:
Groups of genes with similar function.
Challenge:
One gene may have multiple functions

⇒ There is not a single grouping.

Biologically motivated,
clusters have to represent multiple functional roles for each object.

Each object may have several roles in multiple clusters (1)
⇒ Multiple Clustering Solutions required...
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Application: Sensor Surveillance

Cluster detection in sensor networks to derive environmental conditions...

Objects are sensor nodes described by their
measurements.
Aim:
Groups of sensors in similar environments.
Challenge:
One cluster might represent high temperature,
another cluster might represent low humidity

⇒ There is not a single perspective.

Clusters have to represent the different sensor measurements, and thus,
clusters represent the different views on the data.

Clusters are hidden in different views on the data (2)
⇒ Multiple Clustering Solutions required...
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Application: Text Analysis
Detecting novel topics based on given knowledge...

Objects are text documents
described by their content.
Aim:
Groups of documents on similar topic.
Challenge:
Some topics are well known (e.g. DB/DM/ML).
In contrast, one is interested in detecting
novel topics not yet known.

⇒ There are multiple alternative clustering
solutions.

known:
DB

DM

ML

novel:
e.g. MultiClust
publications

Documents describe different topics: Some of them are well known,
others form the desired alternatives to be detected

Multiple clusters describe alternative solutions (3)
⇒ Multiple Clustering Solutions required...
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Application: Customer Segmentation
Clustering customer profiles to derive their interests...

profession
hobbies

Objects are customers described by profiles.
Aim:
Groups of customers with similar behavior.
Challenge:
Customers show common musical interest but
show different sport activities

⇒ Groups are described by subsets of attributes.

Customers seem to be unique on all available attributes, but show
multiple groupings considering subsets of the attributes.

Multiple clusterings hidden in projections of the data (4)
⇒ Multiple Clustering Solutions required...
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General Application Demands

Several properties can be derived out of these applications,
they raise new research questions and give hints how to solve them:

Why should we aim at multiple clustering solutions?
(1) Each object may have several roles in multiple clusters
(2) Clusters are hidden in different views of the data

How should we guide our search to find these multiple clusterings?
(3) Model the difference of clusters and search for alternative groups
(4) Model the difference of views and search in projections of the data

⇒ In general, this occurs due to
data integration, merging multiple sources providing a complete picture ...
evolutionary databases, providing more and more attributes per object...

... in high dimensional databases
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Integration of Multiple Sources

Usually it can be expected that there exist different views on the data:

Information about the data is collected from
different domains
→ different features are recorded

medical diagnosis (CT, hemogram,...)
multimedia (audio, video, text)
web pages (text of this page, anchor texts)
molecules (amino acid sequence, secondary
structure, 3D representation)

CT

hemogram

patient record

For high dimensional data different
views/perspectives on the data may exist
Multiple data sources provide us with
multiple given views on the data
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Lost Views due to Evolving Databases

Huge databases are gathered over time, adding more and more information
into existing databses...

Extending the stored information may lead to huge data dumps
Relations between individual tables get lost
Overall, different views are merged to one universal view on the data

⇒ Resulting in high dimensional data, as well.

Given some knowledge about one view on the
data, one is interested in alternative view on
the same data. w
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Challenge: High Dimensional Data

Considering more and more attributes...
Objects become unique, known as the

“curse of dimensionality” (Beyer et al., 1999)

lim
|D|→∞

maxp∈DB distD(o,p)−minp∈DB distD(o,p)

minp∈DB distD(o,p)
→ 0

Object tend to be very dissimilar to each other...
⇒ How to cope with this effect in data mining?

⇒ identify relevant dimensions (views/subspaces/space transformations)
⇒ restrict distance computation to these views
⇒ enable detection of patterns in projection of high dimensional data
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Challenge: Comparison of Clusterings

Requirements for Multiple Clustering Solutions:
Identify only one solution is too restrictive

⇒ Multiple solutions are desired
However, one searches for different / alternative / orthogonal clusterings

⇒ Novel definitions of difference between clusterings
Search for multiple sets of clusters (multiple clusterings),
in contrast to one optimal set of clusters

⇒ Novel objective functions required

In contrast to (dis-)similarity between objects
Define (dis-)similarity between clusters
Define (dis-)similarity between views
No common definitions for both of these properties!
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Example Customer Analysis – Abstraction

object ID age income blood pres. sport activ. profession

1 XYZ XYZ XYZ XYZ XYZ

2 XYZ XYZ XYZ XYZ XYZ

3 XYZ XYZ XYZ XYZ XYZ

4 XYZ XYZ XYZ XYZ XYZ

5 XYZ XYZ XYZ XYZ XYZ

6 XYZ XYZ XYZ XYZ XYZ

7 XYZ XYZ XYZ XYZ XYZ

8 XYZ XYZ XYZ XYZ XYZ

9 XYZ XYZ XYZ XYZ XYZ

Consider each customer as a row in a database table
Here a selection of possible attributes (example)
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Example Customer Analysis – Clustering

object ID age income blood pres. sport activ. profession

1

2

3 50 59.000 130 comp. game CS

4 51 61.000 129 comp. game CS

5 49 58.500 … … …

6 47 62.000 … … …

7 52 60.000 … … …

8

9

Group similar objects in one “cluster”
Separate dissimilar objects in different clusters
Provide one clustering solution, for each object one cluster
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Example Customer Analysis – Multiple Clusterings

object ID age income blood pres. sport activ. profession

1

rich oldies
2

healthy sporties
3

4 sport professionals

5

unhealthy gamers6
averagepeople

7

8
unemployedpeople

9

Each object might be clustered by using multiple views
For example, considering combinations of attributes

⇒ For each object multiple clusters are detected
⇒ Novel challenges in cluster definition, i.e. not only similarity of objects
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Example Customer Analysis – Multiple Views

Cluster of customers which show high similarity in health behavior
Cluster of customers which show high similarity in music interest
Cluster of customers which show high similarity in sport activities
Cluster of customers which show high similarity in . . .

⇒ Group all objects according to these criteria.

Challenge:
These criteria (views, perspectives, etc.) have to be detected
Criteria depend on the possible cluster structures
Criteria enforce different grouping although similarity of objects (without
these criteria) shows only one optimal solution

⇒ Task: Enforce clustering to detect multiple solutions
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Example Customer Analysis – Alternative Clusterings

object ID age income blood pres. sport activ. profession

1

rich oldies
2

healthy sporties
3

4 sport professionals

5

unhealthy gamers6
average people

7

8
unemployed people

9

already known before… 
(given knowledge)

Major task: detect multiple alternatives

Assume a given knowledge about one clustering
How to find the residual (alternative clustering solutions)
that describe additional knowledge?

⇒ Novel challenges in defining differences between clusterings
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Overview of Challenges and Techniques

One can observe general challenges:
Clusters hidden in integrated data spaces from multiple sources
Single data source with clusters hidden in multiple perspectives
High dimensional data with clusters hidden in low dimensional projections

General techniques covered by this tutorial...
Cluster definitions enforcing multiple clustering solutions
Cluster definitions providing alternatives to given knowledge
Cluster definitions selecting relevant views on the data

First step for characterization and overview of existing approaches...
⇒ Taxonomy of paradigms and methods
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Taxonomy of Approaches I

Basic taxonomy
ONE database:
ONE clustering
(traditional clustering)
ONE database:
MULTIPLE clusterings
(tutorial: major focus)
MULTIPLE databases:
ONE clustering
(tutorial: given views)
MULTIPLE databases:
MULTIPLE clusterings
(? still unclear ?)

clustering

view 1

view 2

view m

DB

clustering 1

clustering 2

clustering n

multi‐source clustering

multiple clustering solutions

DB

single
clustering

traditional clustering

view 1

view 2

view m

clustering 1

clustering 2

clustering n

multi‐source multi‐clustering solutions

?
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Taxonomy of Approaches II

Taxonomy for MULTIPLE CLUSTERING SOLUTIONS
From the perspective of the underlying data space:

Detection of multiple clustering solutions...
in the Original Data Space
by Orthogonal Space Transformations
by Different Subspace Projections
in Multiple Given Views/Sources

search space taxonomy processing knowledge flexibility

algorithm1

original space

exch. def.

alg2 iterative given k.

specializedalg3
simultan. no given k.

alg4

alg5 orthogonal
transformations iterative given k. exch. def.

alg6

alg7

subspace projections

no given k.
specializedalg8

simultan.
alg9 given k.

alg10

no given k.

exch. def.

alg11

multiple views/sources
simultan. specialized

alg12

alg13 exch. def.

Se
c.
 2

Se
c.
 4

Se
c.
 3

Se
c.
 5
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Taxonomy of Approaches III

Further characteristics
From the perspective of the given knowledge:

No clustering is given
One or multiple clusterings are given

From the perspective of cluster computation:
Iterative computation of further clustering solutions
Simultaneous computation of multiple clustering solutions

From the perspective of parametrization/flexibility:
Detection of a fixed number of clustering solutions
The number of clusterings to be detected is not specified by the user
The underlying cluster definition can be exchanged (flexible model)
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Common Notions vs. Diversity of Terms I

CLUSTER vs. CLUSTERING
CLUSTER = a set of similar objects
CLUSTERING = a set of clusters

MULTIPLE CLUSTERING SOLUTIONS

alternative clusters
disparate clusters

different clusters

subspace clustering

orthogonal clustering

subspace search

multi-view clusteringmulti-source clustering
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Common Notions vs. Diversity of Terms II

ALTERNATIVE CLUSTERING
with a given knowledge used to find alternative clusterings

ORTHOGONAL CLUSTERING
transforming the search space based on previous results

SUBSPACE CLUSTERING
using different subspace projections to find clusters in lower dimensional
projections

SIMILARITY and DISSIMILARITY are used in several contexts:
OBJECTS: to define similarity of objects in one cluster
CLUSTERS: to define the dissimilarity of clusters in multiple clusterings
SPACES: to define the dissimilarity of transformed or projected spaces
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Motivation: Multiple Clusterings in a Single Space

A frequently used toy example
Note: In real world scenarios the clustering
structure is more difficult to reveal
Let’s assume we want to partition the data in
two clusters

multiple
meaningful
solutions
possible
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Abstract Problem Definition

General notions
DB ⊆ Domain set of objects (usually Domain = Rd )
Clusti clustering (set of clusters Cj ) of the objects DB
Clusterings theoretical set of all clusterings
Q : Clusterings → R function to measure the quality of a clustering
Diss : Clusterings × Clusterings → R function to measure the

dissimilarity between clusterings

Aim: Detect clusterings Clust1, . . . ,Clustm such that
Q(Clusti ) is high ∀i ∈ {1, . . . ,m}
Diss(Clusti ,Clustj ) is high ∀i , j ∈ {1, . . . ,m}, i 6= j
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Comparison to Traditional Clustering

Multiple Clusterings
Detect clusterings Clust1, . . . ,Clustm such that

Q(Clusti ) is high ∀i ∈ {1, . . . ,m}
Diss(Clusti ,Clustj ) is high ∀i , j ∈ {1, . . . ,m}, i 6= j

Traditional clustering
traditional clustering is special case
just one clustering, i.e. m = 1
dissimilarity trivially fulfilled
consider e.g. k-Means:

quality function Q → compactness/total distance
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First approach: Meta Clustering

Meta clustering (Caruana et al., 2006)
1 generate many clustering solutions

use of non-determinism or local minima/maxima
use of different clustering algorithms
use of different parameter settings

2 group similar clusterings by some dissimilarity function
e.g. Rand Index

intuitive and powerful principle
however: blind / undirected / unfocused /
independent generation of solutions
→ risk of determining highly similar clusterings
→ inefficient

⇒ more systematic approaches required

clustering clustering

DB

Clust1 Clust2

dissimilar?
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Clustering Based on Given Knowledge

Basic idea
generate a single clustering solution (or assume it is given)
based on first clustering generate a dissimilar clustering

→ check dissimilarity during clustering process
→ guide clustering process by given knowledge
→ similar clusterings are directly avoided

so far:

clustering clustering

DB

Clust1 Clust2

dissimilar?

now:
clustering

clustering
+ dissimilarity

DB

Clust1 Clust2

General aim of Alternative Clustering
given clustering Clust1 and functions Q, Diss
find clustering Clust2 such that Q(Clust2) & Diss(Clust1,Clust2) are high
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COALA (Bae & Bailey, 2006)

General idea of COALA
avoid similar grouping of objects by using instance level constraints

→ add cannot-link constraint cannot(o,p) if {o,p} ⊆ C ∈ Clust1
hierarchical agglomerative average link approach
try to group objects such that constraints are mostly satisfied

100% satisfaction not meaningful
trade off quality vs. dissimilarity of clustering

grouping
without
previous
knowledge

grouping
if all

constraints
fulfilled

previous grouping: C1={                         }, C2={              }
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COALA: Algorithm

Determine which sets to merge
given current grouping P1, . . . ,Pl

quality merge
assume no constraints are given
determine Pa,Pb with smallest average link distance dqual

dissimilarity merge
determine (Pa,Pb) ∈ Dissimilar with smallest average link distance ddiss

(Pi ,Pj ) ∈ Dissimilar ⇔ constraints between sets are fulfilled
⇔ ¬∃o ∈ Pi , p ∈ Pj : cannot(o, p)

if dqual < w · ddiss perform quality merge; otherwise dissimilarity merge

best quality merge

best dissimilarity merge
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COALA: Algorithm

Determine which sets to merge
given current grouping P1, . . . ,Pl

quality merge
assume no constraints are given
determine Pa,Pb with smallest average link distance dqual

dissimilarity merge
determine (Pa,Pb) ∈ Dissimilar with smallest average link distance ddiss

(Pi ,Pj ) ∈ Dissimilar ⇔ constraints between sets are fulfilled
⇔ ¬∃o ∈ Pi , p ∈ Pj : cannot(o, p)

if dqual < w · ddiss perform quality merge; otherwise dissimilarity merge

best dissimilarity
merge

best quality merge
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merge
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COALA: Algorithm

Determine which sets to merge
given current grouping P1, . . . ,Pl

quality merge
assume no constraints are given
determine Pa,Pb with smallest average link distance dqual

dissimilarity merge
determine (Pa,Pb) ∈ Dissimilar with smallest average link distance ddiss

(Pi ,Pj ) ∈ Dissimilar ⇔ constraints between sets are fulfilled
⇔ ¬∃o ∈ Pi , p ∈ Pj : cannot(o, p)

if dqual < w · ddiss perform quality merge; otherwise dissimilarity merge

best dissimilarity
merge

best quality merge

→
dissimilarity

merge
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COALA: Discussion

best dissimilarity
merge

best quality merge

large w : dqual < w · ddiss

small w : dqual 6< w · ddiss

Discussion
large w : prefer quality; small w : prefer dissimilarity

possible to trade off quality vs. dissimilarity

hierarchical and/or flat partitioning of objects
only distance function between objects required
heuristic approach
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Taxonomy

Classification into taxonomy
COALA:

clustering
clustering
+ dissimilarity

DB

Clust1 Clust2

assumes given clustering
iteratively computes alternative
two clustering solutions are achieved

further approaches from this category
(Chechik & Tishby, 2002; Gondek & Hofmann, 2003; Gondek & Hofmann,
2004): based on information bottleneck principle, able to incorporate
arbitrary given knowledge
(Gondek & Hofmann, 2005): use of ensemble methods
(Dang & Bailey, 2010b): information theoretic approach, use of kernel
density estimation, able to detect non-linear shaped clusters
(Gondek et al., 2005): likelihood maximization with constraints, handels only
binary data, able to use a set of clusterings as input
(Bae et al., 2010): based upon comparison measure between clusterings,
alternative should realize different density profile/histogram
(Vinh & Epps, 2010): based on conditional entropy, able to use a set of
clusterings as input
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Information Bottleneck Approaches

information theoretic clustering approach
enrich traditional approach by given knowledge/clustering

Information bottleneck principle
two random variables: X (objects) and Y (their features/attribute values)
find (probabilistic) clustering C that minimizes
F (C) = I(X ,C)− βI(Y ,C)

trade-off between
compression ≈ minimize mutual information I(X ,C)
and preservation of information ≈ maximize mutual information I(Y ,C)

mutual information I(Y ,C) = H(Y )− H(Y |C) with entropy H
intuitively: how much is the uncertainty about Y decreased by knowing C
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IB with Given Knowledge

Incorporate given clustering
assume clustering D is already given, X objects, Y features
(Chechik & Tishby, 2002): minimize F1(C) = I(X ,C)− βI(Y ,C) + γI(D,C)

(Gondek & Hofmann, 2003): minimize F2(C) = I(X ,C)− βI(Y ,C|D)

(Gondek & Hofmann, 2004): maximize F3(C) = I(Y ,C|D) such that
I(X ,C) ≤ c and I(Y ,C) ≥ d

I(X ,C) ≈ compression, I(Y ,C) ≈ preservation of information
I(D,C) ≈ similarity between D and C
I(Y ,C|D) ≈ preservation of information if C and D are used

Discussion
able to incorporate arbitrary knowledge
joint distributions have to be known
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Drawbacks of Alternative Clustering Approaches

Drawback 1: Single alternative
usually only one alternative is extracted
given Clust1 → extract Clust2
thus, two clusterings determined
however, multiple (≥ 2) clusterings possible

naive extension problematic
given Clust1 → extract Clust2, given Clust2 → extract Clust3, ...
one ensures: Diss(Clust1,Clust2) and Diss(Clust2,Clust3) high
but no conclusion about Diss(Clust1,Clust3) possible
often/usually they should be very similar

more complex extension necessary
given Clust1 → extract Clust2
given Clust1 and Clust2 → extract Clust3
...
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Drawbacks of Alternative Clustering Approaches

Drawback 2: Iterative processing
already generated solutions cannot be modified anymore
greedy selection of clustering solutions∑

i Q(Clusti ) need not to be high
clusterings with very low quality possible

clustering
clustering
+ dissimilarity

DB

Clust1 Clust2

Q=19
Clust1
Q=20

Q=5

Clusterings

Q=18

Q=16

Q=16
Q=17

Q=17

Q=3

Q=2Q=4

✔ ✘

✘

✘
✘

✘

✘

Other approach: Detect all clusterings simultaneously
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already generated solutions cannot be modified anymore
greedy selection of clustering solutions∑

i Q(Clusti ) need not to be high
clusterings with very low quality possible

clustering
clustering
+ dissimilarity

DB

Clust1 Clust2

Q=19
Clust1
Q=20Clust2

Q=5

Clusterings

Q=18

Q=16

Q=16
Q=17

Q=17

Q=3

Q=2Q=4

✔ ✘

✘

✘
✘

✘

✘

✔

Other approach: Detect all clusterings simultaneously
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Simultaneous Generation of Multiple Clusterings

Clust1
Q=19

Q=20
Q=5

Clusterings

Q=18

Clust2
Q=16

Q=16
Q=17

Q=17

Q=3

Q=2Q=4

✔

✘

✘
✘

✘

✘

✔✘

✘

✘

✘
✘

clustering
+ dissimilarity

DB

Clust1 Clust2

clustering
+ dissimilarity

Basic idea
simultaneous generation of clusterings Clust1, . . . ,Clustm
make use of a combined objective function
informally: maximize

∑
i Q(Clusti ) +

∑
i 6=j Diss(Clusti ,Clustj )
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Decorrelated k-Means (Jain et al., 2008)

Decorrelated k-Means: Notions
k clusters of Clust1 are represented by vectors r1, . . . , rk

objects are assigned to its nearest representative
yielding clusters C1, . . . ,Ck

note: representatives may not be the mean vectors of clusters
means denoted with α1, . . . , αk

analogously: representatives s1, . . . , sl for Clust2
clusters D1, . . . ,Dl and mean vectors of clusters β1, . . . , βl

2

1

1

2

intuition:
each cluster should be
compact and
representatives should be
different (mostly orthogonal)
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Decorrelated k-Means: Objective Function

minimize objective function G(r1, . . . , rk , s1, . . . , sl ) =∑
i

∑
x∈Ci

‖x − ri‖2 +
∑

j

∑
x∈Dj

‖x − sj‖2

︸ ︷︷ ︸
compactness of both clusterings

+λ
∑
i,j

(βT
j · ri )

2 + λ
∑
i,j

(αT
i · sj )

2

︸ ︷︷ ︸
difference/orthogonality of representatives

2

2

3

1

3

1

r2

2

r3

r1

3

1

2

s2

3

1

s3

s1

r2

s2

r3

r1

s3

s1

intuition of
orthogonality:
cluster labels
generated by

nearest-neighbor
assignments are

independent
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Decorrelated k-Means: Discussion

Discussion
enables parametrization of desired number of clusterings

T ≥ 2 clusterings can be extracted

discriminative approach

Classification into taxonomy
Decorrelated k-Means:

clustering
+ dissimilarity

DB

Clust1 Clust2

clustering
+ dissimilarity

no clustering given
simultaneous computation of clusterings
T alternatives

further approaches from this category
CAMI (Dang & Bailey, 2010a): generative model based approach, each
clustering is a Gaussian mixture model
(Hossain et al., 2010): use of contingency tables, detects only 2 clusterings,
can handle two different databases (relational clustering)
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A Generative Model Based Approach

Idea of CAMI (Dang & Bailey, 2010a)
generative model based approach
each clustering Clusti is a Gaussian mixture model (parameter Θi )

p(x |Θi ) =
∑k

j=1 λ
j
iN (x , µj

i ,Σ
j
i ) =

∑k
j=1 p(x |θj

i )

quality of clusterings is measured by likelihood
L(Θi ,DB) =

∑
x∈DB log p(x |Θi )

(dis-)similarity by mutual information (KL divergence)
I(Clust1,Clust2) =

∑
j,j′ I(p(x |θj

1), p(x |θj′

2 ))

combined objective function
maximize L(Θ1,DB) + L(Θ2,DB)︸ ︷︷ ︸

likelihood

− µI(Θ1,Θ2)︸ ︷︷ ︸
mutual information

expectation maximization framework to determine clusterings
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Contingency tables to model dissimilarity

Idea of (Hossain et al., 2010)
contingency table for clusterings: highest dissimilarity if uniform
distribution

→ maximize uniformity of contingency table
however: arbitrary clusterings not meaningful
due to quality properties
solution: represent clusters by prototypes
→ quality of clusterings ensured

determine prototypes (and thus clusterings) that maximize uniformity

Discussion
detects only 2 clusterings
but presents more general framework

can handle two different databases→ relational clustering
also able to solve dependent clustering (diagonal matrix)
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Preliminary Conclusion for this Paradigm

clustering clustering

DB

Clust1 Clust2

dissimilar?

clustering
clustering
+ dissimilarity

DB

Clust1 Clust2

clustering
+ dissimilarity

DB

Clust1 Clust2

clustering
+ dissimilarity

independent
computation focused on dissimilarity

iterative computation simultaneous computation

based on previous knowledge no knowledge required

usually just 2 clusterings often ≥ 2 clusterings possible

arbitrary clustering
definition specialized clustering definitions

methods are designed to detect multiple clusterings in the
same data space
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Open Challenges w.r.t. this Paradigm

methods are designed for individual clustering algorithms
can good alternatives be expected in the same space?

consider clustering as aggregation of objects
main factors/components/characteristics of the data are captured
alternative clusterings should group according to different characteristics
main factors obfuscate these structures in the original space

0

0.5

1

1.5

2

0 1 2 3 4 5 6
size

co
lo

r
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Overview

1 Motivation, Challenges and Preliminary Taxonomy

2 Multiple Clustering Solutions in the Original Data Space

3 Multiple Clustering Solutions by Orthogonal Space Transformations

4 Multiple Clustering Solutions by Different Subspace Projections

5 Clustering in Multiple Given Views/Sources

6 Summary and Comparison in the Taxonomy
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Motivation: Multiple Clusterings by Transformations

previously: clustering in the same data space
→ explicit check of dissimilarity during clustering process
→ dependent on selected clustering definition

now: iteratively transform and cluster database
"learn" transformation based on previous clustering result

→ transformation can highlight novel structures
→ any algorithm can be applied to (transformed) database
→ dissimilarity only implicitly ensured

transformation

novel structure
alternative grouping
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General idea

now:

DB1

Clust1 Clust2

clustering

DB2
transformation

clustering

previously:
clustering

clustering
+ dissimilarity

DB

Clust1 Clust2

General aim
given database DB and clustering Clust1
find transformation T , such that

clustering of DB2 = {T (x) | x ∈ DB} yields Clust2 and
Diss(Clust1,Clust2) is high

Observation: One has to avoid complete distortion of the original data
approaches focus on linear transformations of the data
find transformation matrix M; thus, T (x) = M · x
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A Metric Learning Approach

Basic idea of approach (Davidson & Qi, 2008)
given clustering poses constraints

similar objects in one cluster (must-link)
dissimilar objects in different clusters (cannot-link)

make use of any metric learning algorithm
learn a transformation D such that known clustering is easily observable

determine "alternative" transformation M based on D

learned
transformation

D =

(
1.5 −1
−1 1

)
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Transformation

Determine the "alternative" transformation
given learned transformation metric D
SVD provides a decomposition: D = H · S · A
informally: D = rotate · stretch · rotate

→ invert stretcher matrix to get alternative M
M = H · S−1 · A

D =

(
1.5 −1
−1 1

)
= H · S · A =

(
0.79 −0.62
−0.62 −0.79

)( 2.28 0
0 0.22

)(
0.79 −0.62
−0.62 −0.79

)

M =

(
2 2
2 3

)
= H · S−1 · A = H ·

(
0.44 0

0 4.56

)
· A
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Exemplary transformations
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Taxonomy

Classification into taxonomy

(Davidson & Qi, 2008): DB1

Clust1 Clust2

clustering

DB2
transformation

clusteringassumes given clustering
iteratively computes alternative
two clustering solutions are achieved

further approach from this category: (Qi & Davidson, 2009)
constrained optimization problem

transformed data should preserve characteristics
but distance of points to previous cluster means should be high

able to specify which parts of clustering to keep or to reject
trade-off between alternativeness and quality
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A Constraint based Optimization Approach

Basic idea (Qi & Davidson, 2009)
transformed data should preserve characteristics as much as possible

p(x) is probability distribution of the original data space
pM (y) of the transformed data space

find transformation M that minimizes Kullback-Leibler divergence
minMKL(p(x)||pM(y))

keep in mind: original clusters should not be detected

→ add constraint 1
n

∑n
i=1
∑k

j=1,xi /∈Cj
‖xi −mj‖B ≤ β

with B = MT M and Mahalanobis distance ‖·‖B

intuition:
‖xi −mj‖B is distance in transformed space
enforce small distance in new space only for xi /∈ Cj

→ distance to ’old’ mean mi should be high after transformation
→ novel clusters are expected
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Resulting Transformation

Solution
optimal solution of constraint optimization problem

M = Σ̃−1/2 with Σ̃ =
1
n

n∑
i=1

k∑
j=1,xi /∈Cj

(xi −mj )(xi −mj )
T

advantage: closed-form

Discussion
paper presents more general approach

able to specify which parts of clustering to keep or to reject
trade-off between alternativeness and quality

as the previous approach: just one alternative
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Drawbacks of previous approaches

The problem of just one alternative
extension to multiple views non-trivial

cf. alternative clustering approaches in the original space

how to obtain novel structure after each iteration?

DB1

Clust1 Clust2

clustering

DB2 DB3 DB4

Clust3 Clust4

transformation transf. transf.

clustering clust. clust.
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Dimensionality Reducing Transformation

How to obtain novel structure after each iteration?
make use of dimensionality reduction techniques
first clustering determines main factors/principle components of the data
transformation "removes" main factors
retain only residue/orthogonal space
previously weak factors are highlighted

remove
main factors
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Orthogonal Subspace Projections (Cui et al., 2007)

Step 1: Determine the ’explanatory’ subspace
given Clusti of DBi → determine mean vectors of clusters µ1, . . . , µk ∈ Rd

find feature subspace A that captures clustering structure well
e.g. use PCA to determine strong principle components of the means
A = [φ1, . . . , φp] ∈ Rd×p p < k , p < d
intuitively: DBA

i = {A · x | x ∈ DBi} yields the same clustering

project

same
grouping

extended version: (Cui et al., 2010)
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Orthogonalization

Step 2: Determine the orthogonal subspace
orthogonalize subspace A to get novel database

Mi = I − A · (AT · A)−1 · AT ∈ Rd×d

DBi+1 = {Mi · x | x ∈ DBi}

orthogonal space

project

different
grouping

orthogonal space
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Examples & Discussion

orthogonal space
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2 2.5 3

00.511.522.5
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orthogonal space
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2 2.5 3
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0
0.5

1
1.5

2
2.5

3

3

Discussion
potentially not appropriate for low dimensional spaces

dimensionality reduction problematic

independent of reduction techniques, e.g. use PCA, LDA
more than two clusterings possible

advantage: number of clusterings automatically determined
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Preliminary Conclusion for this Paradigm

DB1

Clust1 Clust2

clustering

DB2
transformation

clustering

DB1

Clust1 Clust2

clustering

DB2 DB3 DB4

Clust3 Clust4

transformation
+dim. reduction

transf.
+d. red.

transf.
+d. red.

clustering clust. clust.

focused on dissimilarity (implicitly by transformation)

iterative computation

(transformation is) based on previous knowledge

2 clusterings extracted ≥ 2 clusterings extracted
(by using dimensionality reduction)

independent of the used clustering algorithm

detect multiple clusterings based on space transformations

Müller, Günnemann, Färber, Seidl Discovering Multiple Clustering Solutions 61 / 140



Motivation Original Data Space Orthogonal Spaces Subspace Projections Multiple Sources Summary

Open Challenges w.r.t. this Paradigm

potentially very similar/redundant clusterings in subsequent iterations
dissimilarity only implicitly ensured for next iteration

only iterative/greedy processing
cf. alternative clustering approaches in a single space

difficult interpretation of clusterings based on space transformations
initial clustering is based on the full-dimensional space

in high-dimensional spaces not meaningful

DB1

Clust1 Clust2

clustering

DB2 DB3 DB4

Clust3 Clust4

transformation transf. transf.

clustering clust. clust.
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Overview

1 Motivation, Challenges and Preliminary Taxonomy

2 Multiple Clustering Solutions in the Original Data Space

3 Multiple Clustering Solutions by Orthogonal Space Transformations

4 Multiple Clustering Solutions by Different Subspace Projections

5 Clustering in Multiple Given Views/Sources

6 Summary and Comparison in the Taxonomy
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Motivation: Multiple Clusterings in Subspaces

traveling frequency

in
co

m
e

"traveling subspace"

age

bl
oo

d 
pr

es
su

re

"health subspace"

Clustering in Subspace Projections
Cluster are observed in arbitrary attribute combinations (subspaces)
using the original attributes (no transformations)

⇒ Cluster interpretation based on relevant attributes
Detect multiple clusterings in different subspace projections
as each object can be clustered differently in each projection

⇒ Detect a group of objects and subset of attributes per cluster
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Abstract Problem Definition

Abstract subspace clustering definition

Definition of object set O
clustered in subspace S

C = (O,S) with O ⊆ DB,S ⊆ DIM

Selection of result set M
a subset of all valid subspace clusters ALL

M = {(O1,S1) . . . (On,Sn)} ⊆ ALL

1 432

1,2 1,4 2,3 3,4

1,2,3 2,3,41,3,41,2,4

1,2,3,4

1 432

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 2,3,41,3,41,2,4

1,2,3,4

Overview of paradigms:
Subspace clustering: focus on definition of (O,S)

⇒ Output all (multiple) valid subspace clusters M = ALL
Projected clustering: focus on definition of disjoint clusters in M

⇒ Unable to detect objects in multiple clusterings
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Contrast to the Projected Clustering Paradigm

First approach:
PROCLUS (Aggarwal et al., 1999)

Based on iterative processing of k-Means
Selection of compact projection
Exclude highly deviating dimensions

⇒ Basic model, fast algorithm

⇒ Only a single clustering solution!

ORCLUS: arbitrary oriented projected clusters (Aggarwal & Yu, 2000)
DOC: monte carlo processing (Procopiuc et al., 2002)
PreDeCon/4C: correlation based clusters
(Böhm et al., 2004a; Böhm et al., 2004b)
MrCC: multi-resolution indexing technique (Cordeiro et al., 2010)
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Subspace Cluster Models (O,S)

Clusters are hidden in arbitrary subspaces with individual (dis-)similarity:

distS(o,p) =
√∑

i∈S(oi − pi )2

traveling frequency
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m
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ts
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reg
ular
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t 
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traveling frequency
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no hidden clusters

⇒ How to find clusters in arbitrary projections of the data?
⇒ Consider multiple valid clusters in different subspaces
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Challenges

Traditional focus on (O ⊆ DB, S ⊆ DIM)
Cluster detection in arbitrary subspaces S ⊆ DIM

⇒ Pruning the exponential number of cluster candidates
Clusters as subsets of the database O ⊆ DB

⇒ Overcome excessive database access for cluster computation

DB 2|DIM| DBs

...ALL = Clust1 Clustn

Surveys cover basically this
traditional perspective on subspace clustering:
(Parsons et al., 2004; Kriegel et al., 2009)

Additional challenge: (M ⊆ ALL)
Selection of meaningful (e.g. non-redundant) result set
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First approach: CLIQUE (Agrawal et al., 1998)

First subspace clustering algorithm
Aims at automatic identification of
subspace clusters in high dimensional
databases
Divide data space into fixed grid-cells
by equal length intervals in each
dimension

Cluster model:
Clusters (dense cells) contain more objects than a threshold τ
Search for all dense cells in all subspaces...
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Multiple Clusters in Any Subspace Projection

Multiple clustering solutions
CLIQUE detects each object in multiple dense cells...

Based on definition of dense cells one has to search in all subspaces...
Do we have to check all of the 2|DIM| projections?
No. The search space can be pruned (without loss of results).
Interleaved processing (object set and dimension set):
Detection of dense cells in a bottom-up search on the subspace lattice...
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Basic Idea for Search Space Pruning

1 432
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Pruning based on monotonicity
Monotonicity (e.g. in CLIQUE):

O is dense in S ⇒ ∀T ⊆ S : O is dense in T

Higher dimensional projections of a non-dense region are pruned.
Density has to be checked via an expensive database scan.
Idea based on the apriori principle (Agrawal & Srikant, 1994)
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Enhancements based on grid-cells

SCHISM (Sequeira & Zaki, 2004)
Observation in subspace clustering:
Density (number of objects) decreases with increasing dimensionality
Fixed thresholds are not meaningful,
enhanced techniques adapt to the dimensionality of the subspace
SCHISM introduced the first decreasing threshold function

MAFIA: enhanced grid positioning (Nagesh et al., 2001)
P3C: statistical selection of dense-grid cells (Moise et al., 2006)
DOC / MineClus: enhanced quality by flexible positioning of cells
(Procopiuc et al., 2002; Yiu & Mamoulis, 2003)
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SCHISM - Threshold Function
Goal: define efficiently computable threshold function

Idea: Chernoff-Hoeffding bound: Pr [Y ≥ E [Y ] + nt ] ≤ e−2nt2

Xs is a random variable denoting
the number of points in grid-cell of dimensionality s

⇒ A cluster with ns objects has Pr [Xs ≥ ns] ≤ e−2nt2
s ≤ τ

i.e. the probability of observing so many object is very low...

Derive τ(|S|) as a non-linear monotonically decreasing function in the
number of dimensions

τ(s) =
E [Xs]

n
+

√
1

2n
ln

1
τ

Assumption: d-dimensional space is independent and uniformly
distributed and discretized into ξ intervals

⇒ Pr [a point lies in a s-dimensional cell] = ( 1
ξ )s

⇒ E [Xs]
n = ( 1

ξ )s

Müller, Günnemann, Färber, Seidl Discovering Multiple Clustering Solutions 73 / 140



Motivation Original Data Space Orthogonal Spaces Subspace Projections Multiple Sources Summary

Density-Based Subspace Clustering

SUBCLU (Kailing et al., 2004b)
Subspace clustering extension of
DBSCAN (Ester et al., 1996)
Enhanced density notion compared to
grid-based techniques
Arbitrary shaped clusters and noise
robustness
However, highly inefficient for subspace
clustering

INSCY: efficient indexing of clusters (Assent et al., 2008)
FIRES: efficient approximate computation (Kriegel et al., 2005)
DensEst: efficient density estimation (Müller et al., 2009a)
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Preliminary Conclusion on Subspace Clustering

Benefits of subspace clustering methods:
each object is clustered in multiple subspace clusters
selection of relevant attributes in high dimensional databases
focus on cluster definitions (O,S) in any subspace S

Drawbacks of subspace clustering methods:
Provides only one set of clusters {(O1,S1), (O2,S2), . . . , (On,Sn)}
Not aware of the different clusterings:
{(O1,S1), (O2,S2)}vs.{(O3,S3), (O4,S4)}
Not aware of the different subspaces:
S1 = S2 and S3 = S4 while S2 6= S3

⇒ Does not ensure dissimilarity of subspace clusters
⇒ Not able to compute alternatives w.r.t. a given clustering

⇒ This research area is contributing by a variety of
established clustering models detecting multiple clustering solutions.
However, enforcing different clustering solutions is not in its focus!
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Open Challenges for Multiple Clusterings

Ensuring the difference of subspace projections
Eliminating redundancy of subspace clusters

Results out of evaluation study (Müller et al., 2009b)
Redundancy is the reason for:

low quality results
high runtimes (not scaling to high dimensional data)
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Non-Redundant Subspace Clustering Overview

Redundant results
Exponentially many redundant projections
of one hidden subspace cluster

– No benefit by these redundant clusters
– Computation cost (scalability)
– Overwhelming result sets

C1

C4

C3

income

# boats 
in Miami

# carsfre
q. fly

er m
iles

# 
ho

rs
es

Subspace Cluster:
(rich; boat owner; car fan; 
globetrotter; horse fan)

Exp. many projections
(rich)
(boat owner)
(rich; globetrotter)

...

⇒ Novel (general) techniques for redundancy elimination required...

DUSC: local pairwise comparison of redundancy (Assent et al., 2007)
StatPC: statistical selection of non-redundant clusters
(Moise & Sander, 2008)
RESCU: including interesting and excluding redundant clusters
(Müller et al., 2009c)
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STATPC: Selection of Representative Clusters

General idea:
Result should be able to explain all other clustered regions

Underlying cluster definition
Based on P3C cluster definition (Moise et al., 2006)
Could be exchanged in more general processing...

Statistical selection of clusters
A redundant subspace cluster can be explained by
a set of subspace clusters in the result set
Current subspace cluster result set defines a mixture model
Test explain relation by statistical significance test:
Explained, if the true number of clustered objects is not significantly
larger or smaller than what can be expected under the given model
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Result Optimization for Multi View Clustering

Removing redundancy
Including multiple views

+ Model the difference between subspaces
⇒ Exclude redundant clusters in similar

subspaces
Allow novel knowledge represented in
dissimilar subspaces

DB 2|DIM| DBs

M = Clust1 , Clust2

result 
optimization

...ALL = Clust1 Clustn

subspace 
clustering

Abstract redundancy model: RESCU (Müller et al., 2009c)

all possible 
clusters
ALL

relevance model

interestingness 
of clusters

redundancy
of clusters

relevant clustering
M ALL

...does not include similarity of subspaces!
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Orthogonal Concepts in Subspace Projections

OSCLU (Günnemann et al., 2009)
Orthogonal concepts share no or only few common attributes

⇒ We prune the detection of similar concepts (in similar subspaces)
⇒ We select an optimal set of clusters in orthogonal subspaces
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Optimal Choice of Orthogonal Subspaces

Abstract subspace clustering definition
Definition of object set O clustered in subspace S

C = (O,S) with O ⊆ DB,S ⊆ DIM

Selection of result set M a subset of all valid subspace clusters ALL

M = {(O1,S1) . . . (On,Sn)} ⊆ ALL

Definition of cluster C = (O,S) and clustering M = {C1, . . . ,Cn} ⊆ All

⇒ Choose optimal subset Opt ⊆ All out of all subspace clusters

1 avoid similar concepts
(subspaces) in the result

2 each cluster should provide novel
information
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Almost Orthogonal Concepts

Extreme cases:
1 Allow only disjoint attribute selection
2 Exclude only lower dimensional projections
⇒ allow overlapping concepts, but avoid too many shared dimensions
⇒ similar concepts: high fraction of common dimensions

Covered Subspaces (β fraction of common dimensions)

coveredSubspacesβ(S) = {T ⊆ Dim | |T ∩ S| ≥ β · |T |}

with 0 < β ≤ 1. For β → 0 we get the first, for β = 1 the second definition.

{1,2}����covers {3,4} different concepts ,
{1,2}����covers {2,3,4} different concepts ,

{1,2,3,4} covers {1,2,3} similar concepts ,
{1, . . . ,9,10} covers {1, . . . ,9,11} similar concepts ,
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Allowing overlapping clusters

1 avoid similar subspaces
(concept group)

2 each cluster should
provide novel information
(within its concept group)

Global interestingness
Cluster C = (O,S) and clustering M = {C1, . . . ,Cn} ⊆ All

Iglobal (C,M) = fraction of new objects in C within its concept group

Orthogonal clustering
The clustering M = {C1, . . . ,Cn} ⊆ All is orthogonal iff

∀C ∈ M : Iglobal (C,M\{C}) ≥ α
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Optimal Orthogonal Clustering

Formal Definition
Given the set All of all possible subspace clusters, a clustering Opt ⊆ All is an
optimal orthogonal clustering iff

Opt = arg max
M∈Ortho

{∑
C∈M

Ilocal (C)

}

with
Ortho = {M ⊆ All | M is an orthogonal clustering}

Local interestingness
dependent on application, flexibility
size, dimensionality, ...
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NP-hard Problem

Theorem: Computing an Optimal Orth. Clustering is NP-hard
Idea of Proof: Reduction to SetPacking problem

given several finite sets Oi

find maximal number of disjoint sets

each set Oi is mapped to the cluster Ci = (Oi , {1})
disjoint sets: choose α = 1
maximal number of sets: Ilocal (C) = 1

⇒ our model generates valid SetPacking solution

Optimal Orthogonal Clustering is a more general problem

Optimal Orthogonal Clustering is NP-hard⇒ approximate algorithm
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Alternative Subspace Clustering

ASCLU (Günnemann et al., 2010)
Aim: extend the idea of alternative clusterings to subspace clustering
Intuition: subspaces represent views; differing views may reveal different
clustering structures
Idea: utilize the principle of OSCLU to find an alternative clustering Res
for a given clustering Known

A valid clustering Res has to fulfill all properties defined in OSCLU but
additionally has to be a valid alternative to Known.

1

2 3

5

4

7

6
dim 1

dim 2

dim 3

dim 4

E.g.: If Known = {C2,C5}, then Res = {C3,C4,C7} would be a valid clustering.
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Extending Subspace Clustering by Given Knowledge
A valid clustering Res has to fulfill all properties defined in OSCLU but
additionally has to be a valid alternative to Known.

Given a cluster C ∈ Res, C = (O,S) is a valid alternative cluster to Known iff

|O\AlreadyClustered(Known,C)|
|O|

≥ α

where 0 < α ≤ 1 and

AlreadyClustered(Known,C) =⋃
(O,S)=K∈Known

{O | K ∈ ConceptGroup(C,Known)}

Valid alternative subspace Clustering
Given a clustering Res ⊆ All , Res is a valid alternative clustering to Known iff
all clusters C ∈ Res are valid alternative clusters to Known.
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Subspace Search: Selection Techniques

Estimating the quality of a whole subspace
Selection of interesting subspaces

⇒ Decoupling subspace and cluster detection
However, quality might be only locally visible in
each subspace

⇒ Is global estimation meaningful?
Subspace Clustering: individual subspace per cluster

Subspace Search: restricted set of subspaces

DB 2|DIM| DBs

DB1 DBT

subspace 
selection

...Clust1 ClustT

clustering

...

ENCLUS: entropy-based subspace search (Cheng et al., 1999)
RIS: density-based subspace search (Kailing et al., 2003)
mSC: multiple spectral clustering views
enforce different subspaces (Niu & Dy, 2010)
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ENCLUS: Subspace Quality Estimation

Based on the CLIQUE subspace clustering model
Entropy as a measure for:

High coverage of the CLIQUE clustering
High density of individual subspace clusters
High correlation between the relevant dimensions

⇒ Low entropy indicates highly interesting
subspaces...

Entropy of a subspace

H(X ) = −
∑
x∈X

d(x) · log d(x)

with the density d(x) of each cell x ∈ grid X
(i.e. percentage of objects in x)
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mSC: Enforcing Different Subspaces

General idea:
Optimize cluster quality and subspace difference
(cf. simultaneous objective function (Jain et al., 2008))

Underlying cluster definition
Using spectral clustering (Ng et al., 2001)
Could be exchanged in more general processing...

Measuring subspace dependencies
Based on the Hilbert-Schmidt Independence Criterion
(Gretton et al., 2005)
Measures the statistical dependence between subspaces
Steers subspace search towards independent subspaces
Includes this as penalty into spectral clustering criterion
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Overview for this Paradigm

DB 2|DIM| DBs

...ALL = Clust1 Clustn

DB 2|DIM| DBs

M = Clust1 , Clust2

result 
optimization

...ALL = Clust1 Clustn

subspace 
clustering

DB 2|DIM| DBs

DB1 DBT

subspace 
selection

...Clust1 ClustT

clustering

...

no dissimilarity
(ALL)

consider dissimilarity
(e.g. redundancy)

first approach
with dissimilarity

simultaneous processing

only recent approaches use previous knowledge

too many clusters optimized result size (clustering step)

dependent on the used clustering algorithm independent step

enable interpretation of multiple clusterings
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Open Challenges w.r.t. this Paradigm

Awareness of different clusterings
dissimilarity only between clusters not between clusterings
grouping of clusters in common subspaces required

Simultaneous processing
decoupling of existing solutions with high interdependences

Including knowledge about previous clustering solutions
steering of subspace clustering to alternative solutions

DB 2|DIM| DBs

DBB DBC

ClustB ClustC

ClustA
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Overview

1 Motivation, Challenges and Preliminary Taxonomy

2 Multiple Clustering Solutions in the Original Data Space

3 Multiple Clustering Solutions by Orthogonal Space Transformations

4 Multiple Clustering Solutions by Different Subspace Projections

5 Clustering in Multiple Given Views/Sources

6 Summary and Comparison in the Taxonomy
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Motivation: Multiple Data Sources

Usually it can be expected that there exist different data sources:

Information about the data is collected from
different domains
→ different features are recorded

medical diagnosis (CT, hemogram,...)
multimedia (audio, video, text)
web pages (text of this page, anchor texts)
molecules (amino acid sequence, secondary
structure, 3D representation)

CT

hemogram

patient record

⇒ Multiple data sources provide us with
multiple given views on the data
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professional view view of leisure
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Given Views vs. Previous Paradigms

Multiple Sources vs. One Database
Each object is described by multiple sources
Each object might have multiple representations

⇒ Multiple views on each object are given in the data

Given Views vs. View Detection
For each object the relevant views are already given
Traditional clustering can be applied on each view

⇒ Multiple clusterings exist due to the given views

Consensus Clustering vs. Multiple Clusterings
Clusterings are not alternatives but parts of a consensus solution

⇒ Focus on techniques to establish a consensus solutions
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Consensus Clustering on Multiple Views

Generate one consistent clustering from multiple views of the data

clustering

view 1

view 2

view m

DB

clustering 1

clustering 2

clustering n

multi‐source clustering

multiple clustering solutions

DB

single
clustering

traditional clustering

view 1

view 2

view m

clustering 1

clustering 2

clustering n

multi‐source multi‐clustering solutions

?

⇒ How to combine results from different views
1 By merging clusterings to one consensus solution
2 Without merging the given sources
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Challenge: Heterogeneous Data

Information about objects is available from different sources
Data sources are often heterogeneous (multi-represented data)

⇒ Traditional methods do not provide a solution...

Reduction to Traditional Clustering
Clustering multi-represented data by traditional clustering methods requires:

Restriction of the analysis to a single representation / source
→ Loss of information

Construction of a feature space comprising all representations
→ Demands a new combined distance function
→ Specialized data access structures (e.g. index structures)

for each representation would not be applicable anymore
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General Idea of Multi-Source Clustering

Aim: determine a clustering that is consistent with all sources
⇒ Idea: train different hypotheses from the different sources, which

bootstrap by providing each others with parameters
⇒ Consensus between all hypotheses and all sources is achieved

General Assumptions:
Each view in itself is sufficient for
a single clustering solution
All views are compatible
All views are conditional independent

DBA

HypA HypB

DBB

Clust

cons.
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Principle of Multi-Source Learning

Co-Training (Blum & Mitchell, 1998)
Bootstrapping method, which trains two hypotheses on distinct views

originally developed for classification
the usage of unlabeled together with labeled data has often shown to
substantially improve the accuracy of the training phase
multi-source algorithms train two independent hypotheses, that bootstrap
by providing each other with labels for the unlabeled data
the training algorithms tend to maximize the agreement between the two
independent hypotheses
disagreement of two independent hypothesis is an upper bound on the
error rate of one hypothesis
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Overview of Methods in Multi-Source Paradigm

Adaption of Traditional Clustering
co-EM: iterates interleaved EM over two given views
(Bickel & Scheffer, 2004)
multi-represented DBSCAN for sparse or unreliable sources
(Kailing et al., 2004a)

Further Approaches:
Based on different cluster definitions:
e.g. spectral clustering (de Sa, 2005; Zhou & Burges, 2007)
or fuzzy clustering in parallel universes (Wiswedel et al., 2010)
Consensus of distributed sources or distributed clusterings
e.g. (Januzaj et al., 2004; Long et al., 2008)
Consensus of subspace clusterings
e.g. (Fern & Brodley, 2003; Domeniconi & Al-Razgan, 2009)
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co-EM Method (Bickel & Scheffer, 2004)

Assumption: The attributes of the data are given in two disjoint sets V (1), V (2).
An object x is defined as x := (x (1), x (2)), with x (1) ∈ V (1) and x (2) ∈ V (2).

For each view V (i) we define a hypothesis space H(i)

the overall hypothesis will be combined of two consistent hypotheses
h1 ∈ H(1) and h2 ∈ H(2).
To restrict the set of consistent hypotheses h1,h2, both views have to be
conditional independent:

Conditional Independence Assumption
Views V (1) and V (2) are conditional independent given the target value y , if
∀x (1) ∈ V (1),∀x (2) ∈ V (2): p(x (1), x (2) |y) = p(x (1) |y) ∗ p(x (2) |y ).

the only dependence between two objects
from V (1) and V (2) is given by their target
value.
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co-EM Algorithmic Steps

EM revisited:
Expectation: calculate the expected posterior probabilities of the objects
based on the current model estimation (assignment of points to clusters)
Maximization: recompute the model parameters θ by maximizing the
likelihood of the obtained cluster assignments

Now bootstrap this process by the two views:
For v = 0,1

1 Maximization: maximize the likelihood of the data over the model
parameters θ(v) using the posterior probabilities according to view V (v̄)

2 Expectation: compute the expectation of the posterior probabilities
according to the new obtained model parameters
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co-EM Example
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Discussion on co-EM Properties

Clustering on a single view yields a higher likelihood
However, initializing single-view with final parameters
of multi-view yields even higher likelihood

⇒ Multi-view techniques enable higher clustering quality

Termination Criterion
Iterative co-EM might not terminate
Additional termination criterion required

P2
P3

P1
P4

P7
P8

P5 P6

P3
P4

P1

P5
P6

P2

P8

P7

view 1 view 2
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Multi-View DBSCAN (Kailing et al., 2004a)

Idea: adapt the core object property proposed for DBSCAN
Determine the local ε-neighborhood of each view independently

N V (i)

εi
(o) =

{
x ∈ DB

∣∣disti (o(i), x (i)) ≤ εi
}

Combine the results to a global neighborhood
Sparse spaces: union method
Unreliable data: intersection method

view 1 view 2
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Union of Different Views

especially useful for sparse data, where each single view provides
several small clusters and a large amount of noise

two objects are assigned to the same cluster if
they are similar in at least one of the views

union core object
Let ε1, . . . εm ∈ R+, k ∈ N. An object o ∈ DB is formally defined as union core
object as follows: COREUk

ε1,...εm
(o)⇔

∣∣∣⋃o(i)∈oN V (i)

εi
(o)
∣∣∣ ≥ k

direct union-reachability
Let ε1, . . . εm ∈ R+, k ∈ N. An object p ∈ DB is directly union-reachable from
q ∈ DB if q is a union core object and p is an element of at least one local
N V (i)

εi
(q), formally:

DIRREACHUk
ε1,...εm

(q,p)⇔ COREUk
ε1,...εm

(q) ∧ ∃i ∈ {1, . . . ,m} : p(i) ∈ N V (i)

εi
(q)
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Intersection of Different Views

well suited for data containing unrealiable views (providing questionable
descriptions of the objects)

two objects are assigned to the same cluster only
if they are similar in all of the views
→ finds purer clusters

intersection core object
Let ε1, . . . εm ∈ R+, k ∈ N. An object o ∈ DB is formally defined as intersection
core object as follows: COREISk

ε1,...εm
(o)⇔

∣∣∣⋂i∈{1,...,m}N V (i)

εi
(o)
∣∣∣ ≥ k

direct intersection-reachability
Let ε1, . . . εm ∈ R+, k ∈ N. An object p ∈ DB is directly intersection-reachable
from q ∈ DB if q is a intersection core object and p is an element of all local
N V (i)

εi
(q), formally:

DIRREACHISk
ε1,...εm

(q,p)⇔ COREISk
ε1,...εm

(q)∧∀i ∈ {1, . . . ,m} : p(i) ∈ N V (i)

εi
(q)
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Consensus Clustering on Subspace Projections

Motivation
One high dimensional data source (cf. subspace clustering paradigm)
Extract lower dimensional projections (views)

⇒ In contrast to previous paradigms, stabilize one clustering solution
⇒ One consensus clustering not multiple alternative clusterings

General Idea (View Extraction + Consensus)
Split one data source in multiple views (view extraction)
Cluster each view, and thus, build multiple clusterings
Use external consensus criterion as post-processing
on multiple clusterings in different views

⇒ One consensus clustering over multiple views of a single data source
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Given vs. Extracted Views

Given Sources
Clustering on each given source
Consensus over multiple sources

Extracted Views
One high dimensional data source
Virtual views by lower dimensional
subspace projections Clust

DB 2|DIM| DBs

DB1 DBT...

cons.Clust1 ClustT

Enable consensus mining on one data source:
⇒ Use subspace mining paradigm for space selection
⇒ Use common objective functions for consensus clustering
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Consensus on Subspace Projections

Consensus Mining on One Data Source
Create basis for consensus mining:

By random projections + EM clustering (Fern & Brodley, 2003)
By soft feature selection techniques (Domeniconi & Al-Razgan, 2009)

Consensus objectives for subspace clusterings

Consensus objective from ensemble clustering (Strehl & Ghosh, 2002)
Optimizes shared mutual information of clusterings:
Resulting clustering shares most information with original clusterings

Instantiation in (Fern & Brodley, 2003)
Compute consensus by
similarity measure between partitions and reclustering of objects
Probability of objects i and j in the same cluster under model θ:

Pθ
i,j =

∑k
l=1 P(l |i , θ) · P(l |j , θ)
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Overview for this Paradigm

DBA

HypA HypB

DBB

Clust

cons.

Clust

DB 2|DIM| DBs

DB1 DBT...

cons.Clust1 ClustT

consensus basis: sources are known low dimensional projections

consensus transfer: internal cluster model
parameter external objective function

consensus objective: stable clusters enable clustering in high
dimensions

cluster model: specific adaption generalized consensus

⇒ consensus solution for multiple clusterings
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Open Challenges w.r.t. this Paradigm

Generalization to Multiple Clustering Solutions
Incorporate given/detected views into consensus clustering
Generalize post-processing steps to multiple clustering solutions

Utilize consensus techniques in redundancy elimination
Consensus clustering vs. different clustering solutions

⇒ Highlight alternatives by compressing common structures

DBA

HypA HypB

DBB

cons. Clust. vs. alt. Clust.

?
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Overview

1 Motivation, Challenges and Preliminary Taxonomy

2 Multiple Clustering Solutions in the Original Data Space

3 Multiple Clustering Solutions by Orthogonal Space Transformations

4 Multiple Clustering Solutions by Different Subspace Projections

5 Clustering in Multiple Given Views/Sources

6 Summary and Comparison in the Taxonomy
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Scope of the Tutorial

Focus of the tutorial
ONE database:
MULTIPLE CLUSTERINGS

+ extensions to
MULTIPLE SOURCES

Major objective
Overview of

Challenges
Taxonomy / notions

Comparison of paradigms:
Underlying techniques
Pros and Cons

clustering

view 1

view 2

view m

DB

clustering 1

clustering 2

clustering n

multi‐source clustering

multiple clustering solutions

DB

single
clustering

traditional clustering

view 1

view 2

view m

clustering 1

clustering 2

clustering n

multi‐source multi‐clustering solutions

?
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Discussion of Approaches based on the Taxonomy I

Taxonomy for MULTIPLE CLUSTERING SOLUTIONS
From the perspective of the underlying data space:

Detection of multiple clustering solutions...
in the Original Data Space
by Orthogonal Space Transformations
by Different Subspace Projections
in Multiple Given Views/Sources

Main focus on this categorization...
Differences in cluster definitions
Differences in modeling the views on the data
Differences in similarity between clusterings
Differences in modeling alternatives to given knowledge
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Discussion of Approaches based on the Taxonomy II

space processing given know. # clusterings subspace detec. flexibility
(Caruana et al., 2006) original m >= 2 exchang. def.
(Bae & Bailey, 2006) original iterative given clustering m == 2 specialized
(Gondek & Hofmann, 2004) original iterative given clustering m == 2 specialized
(Jain et al., 2008) original simultaneous no m >= 2 specialized
(Hossain et al., 2010) original simultaneous no m == 2 specialized
(Dang & Bailey, 2010a) original simultaneous no m >= 2 specialized
(Davidson & Qi, 2008) transformed iterative given clustering m == 2 dissimilarity exchang. def.
(Qi & Davidson, 2009) transformed iterative given clustering m == 2 dissimilarity exchang. def.
(Cui et al., 2007) transformed iterative given clustering m >= 2 dissimilarity exchang. def.
(Agrawal et al., 1998)… subspaces no m >= 2 no dissimilarity specialized
(Sequeira & Zaki, 2004) subspaces no m >= 2 no dissimilarity specialized
(Moise & Sander, 2008) subspaces simultaneous no m >= 2 no dissimilarity specialized
(Müller et al., 2009b) subspaces simultaneous no m >= 2 no dissimilarity specialized
(Günnemann et al., 2009) subspaces simultaneous no m >= 2 dissimilarity specialized
(Günnemann et al., 2010) subspaces simultaneous given clustering m >= 2 dissimilarity specialized
(Cheng et al., 1999) subspaces no m >= 2 no dissimilarity specialized
(Niu & Dy, 2010) subspaces no m >= 2 dissimilarity exchang. def.
(Bickel & Scheffer, 2004) multi‐source simultaneous no m = 1 given views specialized
(Kailing et al., 2004) multi‐source simultaneous no m = 1 given views specialized
(Fern & Brodley, 2003) multi‐source no m = 1 no dissimilarity exchang. def.

Let us discuss the secondary characteristics of our taxonomy...
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Discussion of Approaches based on the Taxonomy III

From the perspective of the given knowledge:
No clustering is given
One or multiple clusterings are given

If some knowledge is given
it enables alternative cluster detection
Users can steer algorithms to novel
knowledge

How is such prior knowledge provided?
How to model the differences
(to the given and the detected clusters)?
How many alternatives clusterings are
desired?

DB

Clustgiven Clustdetected
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Discussion of Approaches based on the Taxonomy IV

From the perspective of how many clusterings are provided:
m = 1 (traditional clustering) VS. m = 2 OR m > 2 (multiple clusterings)
m = T fixed by parameter OR open for optimization

DB

Clust1 Clust2 ...

Multiple clusterings are enforced (m ≥ 2)

Each clustering should contribute!
⇒ Enforcing many clusterings leads to

redundancy

How set the number of desired clusterings
(automatically / manually)?
How to model redundancy of clusterings?
How to ensure that the overall result is
a high quality combination of clusterings?
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Discussion of Approaches based on the Taxonomy V

From the perspective of cluster computation:
Iterative computation of further clustering solutions
Simultaneous computation of multiple clustering solutions

Iterative techniques are useful in generalized
approaches
However, iterations select one optimal
clustering and might miss the global optimum
for the resulting set of clusterings

⇒ Focus on quality of all clusterings

How to specify such an objective function?
How to efficiently compute global optimum
without computing all possible clusterings?
How to find the optimal views on the data?

DB

Clust1 Clust2 ...

simul.

Clust1 Clust2 ...

DB

iter.

Müller, Günnemann, Färber, Seidl Discovering Multiple Clustering Solutions 119 / 140



Motivation Original Data Space Orthogonal Spaces Subspace Projections Multiple Sources Summary

Discussion of Approaches based on the Taxonomy VI

From the perspective of view / subspace detection:
One view vs. different views
Awareness of common views for several clusters

DBA

ClustA ClustB

DBB
different views

DBA DBB

Cluster1

...
Cluster4

...
Cluster2

Cluster3

Multiple views might lead to better distinction
between multiple different clusterings
Transformations based on given knowledge or
search in all possible subspaces?

Definition of dissimilarity between views?
Efficient computation of relevant views?
Groups of clusters in common views?
Selection of views independent of cluster models?

Müller, Günnemann, Färber, Seidl Discovering Multiple Clustering Solutions 120 / 140



Motivation Original Data Space Orthogonal Spaces Subspace Projections Multiple Sources Summary

Discussion of Approaches based on the Taxonomy VII

From the perspective of flexibility:
View detection and multiple clusterings are bound to the cluster definition
The underlying cluster definition can be exchanged (flexible model)

Specialized algorithms are hard to adapt
(e.g. to application demands)

⇒ Tight bounds/integrations might be decoupled

How to detect orthogonal views only based on
an abstract representation of clusterings?
How to define dissimilarity between
views and clusterings?
What are the common objectives
(independent of the cluster definition)?

DBA

ClustA ClustB

DBB
different views

model
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Correlations between taxonomic views

search space taxonomy processing knowledge flexibility

algorithm1

original space

exch. def.

alg2 iterative given k.

specializedalg3
simultan. no given k.

alg4

alg5 orthogonal
transformations iterative given k. exch. def.

alg6

alg7

subspace projections

no given k.
specializedalg8

simultan.
alg9 given k.

alg10

no given k.

exch. def.

alg11

multiple views/sources
simultan. specialized

alg12

alg13 exch. def.

Se
c.
 2

Se
c.
 4

Se
c.
 3

Se
c.
 5

⇒ Might reveal some open research questions... (?)

Müller, Günnemann, Färber, Seidl Discovering Multiple Clustering Solutions 122 / 140



Motivation Original Data Space Orthogonal Spaces Subspace Projections Multiple Sources Summary

Open Research Questions I

Most approaches are specialized to a cluster model
Even more important: Most approaches focus on
non-naive solutions only in one part of the taxonomy!

Generalization as major topic...
Exchangeable cluster model, decoupling view and cluster detection
Abstraction from how knowledge is given
Enhanced view selection (aware of differences between views)
Simultaneous computation with given knowledge

Open challenges to the community:
Common benchmark data and evaluation framework
Common quality assessment (for multiple clusterings)
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Open Research Questions II

How multiple clustering solutions can contribute to enhanced mining?

First solutions...
Given views/sources for clustering
Stabilizing results (one final clustering)

Further ideas
Observed in ensemble clustering

⇒ Summarizing multiple clustering solutions
⇒ Converging multiple clustering solutions

clustering 1

clustering 2

clustering n

view 1

view 2

view m

clustering

clustering 1

clustering 2

clustering n

clustering
DB

Multiple clustering solutions is still an open research field...
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