
Improved Count Suffix Trees for Natural Language Data
Guido Sautter

Universität Karlsruhe (TH)
Am Fasanengarten 5

76128 Karlsruhe
+49-721-608-4066

sautter@ipd.uka.de

Cristina Abba
Reply S.p.a.

Corso Francia, 110
10143 TORINO

cristina.abba@gmail.com

Klemens Böhm
Universität Karlsruhe (TH)

Am Fasanengarten 5
76128 Karlsruhe

boehm@ipd.uka.de

ABSTRACT
With more and more natural language text stored in databases,
handling respective query predicates becomes very important.
Optimizing queries with predicates includes (sub)string estim-
ation, i.e., estimating the selectivity of query terms based on small
summary statistics before query execution. Count Suffix Trees
(CST) are commonly used to this end. While CST yield good
estimates, they are expensive to build and require a large amount
of memory to be stored. To fit in the data dictionary of database
systems, they have to be severely pruned. Existing pruning
techniques are based on suffix frequency or tree depth. In this
paper, we propose new filtering and pruning techniques that
reduce both the size of CST over natural-language texts and the
cost of building them. The core idea is to exploit features of the
natural language data, i.e., regarding only the suffixes that are
useful in a linguistic sense. The most important innovations are
(a) a new aggressive approximate syllabification technique to fil-
ter out suffixes, (b) a new affix and prefix stripping procedure that
conflates more terms than conventional stemming techniques, (c)
the deployment of state-of-the-art trigram techniques and a new
syllable-based mechanism to filter out non-words (i.e., misspel-
lings and other language anomalies like foreign words), which
would cause an over-proportional growth of the CST otherwise. –
Our evaluation with large English text corpora shows that our new
mechanisms in combination decrease the size of a CST by up to
80% and shorten the build phase significantly. From a different
perspective, if storage space remains unchanged, the accuracy of
selectivity estimates computed from the CST increases by up to
70%.

General Terms
Algorithms, Measurement, Experimentation, Languages, Theory

Keywords
Query Optimization, Selectivity Estimation, Text Data, Count
Suffix Tree, Pruning

1. INTRODUCTION
With more and more natural language data stored in databases,
query processing for this data type becomes highly important. To
optimize such queries, the (sub)string estimation problem is
essential, i.e., estimating the selectivity of natural language query
predicates (usually terms) based on small summary statistics
before the actual query execution. The selectivity of a term (or
substring) is the number of documents in the underlying
collection containing it. Count Suffix Trees (CST) are commonly
used for this estimation. According to [7], each CST node V
stores the selectivity of the string corresponding to the path from
the root to V, retrievable in a time linear to the string length.
Therefore, CST built over text data can efficiently solve the
selectivity-estimation problem.

However, CST have high memory requirements and are
expensive to build. The space complexity of a CST is proportional
to the number of strings stored in it. A CST built over a large
amount of text data may well exceed 1,000,000 nodes, i.e., 8.5
MB in the currently optimal implementation [20]. Since the
statistics used by query optimizers have to fit in the data
dictionary (a very limited amount of memory), CST used for
query optimization need to be reduced in size [3]. To make the
tree meet memory requirements, a common solution is pruning,
i.e., discarding some nodes to save space, e.g., the ones with the
lowest selectivities [6, 7]. But this also affects estimation
accuracy: The selectivities of strings not present in the Pruned
CST (PST) any more have to be estimated using algorithms like
KVI or MO [7, 6]. This incurs considerable estimation
inaccuracies. Pruning becomes even more problematic with non-
static document collections, e.g., forums or the Blogosphere,
because it makes updates impossible [1]. The only solution
currently known is to rebuild the CST over the updated collection.
Even though algorithms exist that reduce space and time
complexity [17, 18], CST construction remains expensive.

The goal of our work is to find other ways of reducing the CST
size, i.e., filtering out suffixes. We focus on natural-language
texts. Our core idea is to find linguistic criteria that decide if a
string or suffix is likely to be queried, prior to insertion in the
CST. We insert only the suffixes that are likely to be queried and
deal with the rest separately. This reduces the size of the data
structures during construction already, before the actual pruning.
In particular, we apply syllabification, stemming, and non-word
detection. The combination of these mechanisms yields a CST
that requires significantly less memory than state-of-the-art ones.
More specifically, our contributions are as follows: (1) Because
suffixes that do not start at a syllable border carry little semantic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

IDEAS08 2008, September 10-12, Coimbra [Portugal]

Editor: Bipin C. DESAI

Copyright ©2008 ACM 978-1-60558-188-0/08/09 $5.00

meaning, we filter out these suffixes using a fast approximate
syllabification routine based on morphological structure of words.
To avoid filtering too many suffixes, our routine identifies
syllable boundaries more aggressively than conventional ones. (2)
Stemming, i.e., conflating different inflections of a term to the
same root form, reduces the number of suffixes. Traditional
stemming algorithms, like Porter’s stemmer [14], are rather
conservative, i.e., omit conflations to avoid errors. We propose a
new, more aggressive stemming procedure, which conflates more
terms and thus reduces the number of suffixes to store. Though
linguistic errors may occur, we show that their effect on
estimation quality is likely to be insignificant. (3) Non-words and
foreign words incur an over-proportional number of nodes in the
CST. We therefore deploy a q-gram based non-word detection
algorithm to prevent inserting non-words in the CST. To estimate
the selectivity of non-words, we use a variant of the q-gram
estimator [3] instead. The combination of our mechanisms
reduces the size of the CST by up to 70% without significantly
affecting estimation accuracy. With the same tree size on the
other hand, it reduces the relative estimation error by up to 80%.

Paper outline: Section 2 reviews related work. Section 3 describes
the design of the Syllable CST, Section 4 the estimation model
based on the Syllable CST. Section 5 features our evaluation.
Section 6 concludes.

2. RELATED WORK
The Count Suffix Tree (CST) [7] is the data structure commonly
used to estimate the selectivity of string predicates. Given a
collection of documents, the CST stores all terms and their
suffixes. Each node represents a suffix and has a counter that
stores the number of occurrences in the collection. Since CST
built over large text datasets are huge, pruning strategies are
essential to keep it in memory. Pruning requires estimating the
selectivity of the terms whose nodes have been discarded. [7]
proposes three estimation methods. Among these, the KVI
algorithm is the most accurate one. The MO (Maximal Overlap)
algorithm [6] outperforms KVI. It parses the searched pattern in
overlapping (when existing) substrings, which are considered to
be statistically dependent. Since both KVI and MO tend to
underestimate selectivities, [3] proposes a new estimation model
based on q-gram tables and a regression tree. [1] describes which
estimation inaccuracies may arise in the presence of pruning and
tries to overcome the problem by building a Count Q-gram tree.
While it is useful for DNA data (alphabet size 5), [1] also shows
that it is worse when the alphabet size increases. It is hardly
applicable for natural language data (alphabet size 26). – We refer
to further related work in Sections 3 and 4, in particular to
computational linguistics algorithms, which we adapt and deploy
in our context.

3. SYLLABLE COUNT SUFFIX TREE
This section proposes a new variant of the CST, the Syllable CST,
suited for selectivity estimation on natural-language data. Section
3.1 explains how syllabification reduces the tree size. Section 3.2
introduces a new aggressive stemming routine. Section 3.3 says
how we deal with non-words.

3.1 Syllabification
According to the original definition of suffix tree [19], inserting
an index term in the tree implies generating all of its suffixes and
inserting them as well. Given a string σ of length n, defined over
the alphabet Σ and a string terminator symbol $ (not in Σ and lexi-
cographically subsequent to any symbol in it), the i-th suffix is the
substring starting with the i-th character of σ and terminated by $.

According to the definition of the suffix tree [17], inserting an
index term in the tree implies inserting all of its suffixes as well.
Let s be a string of length n over an alphabet S ∪ $ ($ is the
termination symbol, $ ∉ S, $ > s ∀ s ∈ S). Example: Given s =
information$, its suffixes are: information$, nformation$,
formation$, ormation$, rmation$, mation$, ation$, tion$, ion$,
on$, n$, and $. Some of these suffixes are unlikely to be ever
queried by a user, e.g., -rmation$. Syllables are natural word
building blocks in many languages. Using syllabification points to
compute suffixes leaves only those carrying an enhanced
semantic meaning. Example: Given the syllabified string s = in-
for-ma-tion-$, its syllable suffixes are in-for-ma-tion-$, for-ma-
tion-$, ma-tion-$, tion-$, $.

The Syllabification Routine. The problem of syllabification is
strictly tied to the hyphenation task [12]. Syllabification
algorithms can be rule-based or dictionary-based. The latter ones
look up the syllable division points in a dictionary. But a
dictionary would be too large for our purpose, and, no matter its
actual size, will never contain all words (foreign language words,
proper names, etc.). Rule-based hyphenation systems (e.g., the
one in LATEX [12]) are typically faster and require less memory,
but are inherently error prone. Most of the rules are based on the
sound of the spoken word and are not easy to implement, e.g., the
VV rule [4]. Since our goal is exploiting syllabification to reduce
the size of the CST, we nevertheless adopt a rule-based solution.

The hyphenation routine of LATEX [12] is not applicable to our
problem right away, however. The representation of its 5,000
rules alone would consume half of the memory available for the
CST, and applying them all causes too much computational effort.
In addition, the LATEX hyphenation algorithm favors missing
some division points rather than erroneously dividing terms. We,
on the other hand, prefer faulty hyphenation to missed division
points to some extent. This is because we remove suffixes not
starting at syllable boundaries, and missing division points would
sort out too many suffixes.

To minimize the computation effort, we use a very small set of
rules. To miss as few division points as possible, our rules are
more aggressive than the ones in [4]. The core idea behind our
syllabification routine is to determine syllabification points
matching regular expressions over the consonant-vowel structure
of the word. In particular, we split blocks of consonants between
two vowels in the middle (even number of consonants), or right
before the middle (odd number of consonants). To prevent
dividing consonant blends and digraphs (couples of consonants
that sound together, e.g., th), we use exception rules. Finally, we
do not syllabify words shorter than four characters (e.g., box, cat).
The word information, for instance, would be syllabified like this:
information VCCVCCVCVVC VC-CVC-CV-CVVC in-
for-ma-tion.

Discussion. This approach is not limited to English; it is
applicable to any character-based language, provided that there is
a syllabification routine. Clearly, syllable-based filtering affects
selectivity estimation for substrings that do not start at syllable
boundaries: A Syllable CST on the word information$ would not
provide a selectivity estimate for the predicate LIKE ‘%nfo%’.
This is not a severe drawback: Queries over natural language text
are very likely to contain “natural” text fragments, e.g., LIKE
‘%info%’ or LIKE ‘%inform%’, as opposed to ‘%nfo%’. Traces
of web-search engines confirm this [21].

Compound words are a potential source of errors: They should be
divided between the words they consist of, but the sole analysis of
the word structure cannot locate the exact division point. The
word sandbox, for instance, will be erroneously divided into san-
dbox. Our experiments however show that these inaccuracies do
not affect estimation accuracy by much.

3.2 Stemming
Morphological variants of the same term (plural, past tense, third
person singular, etc.) let the CST grow considerably. A Syllable
CST built on the string ‘connect’, for instance, has 4 nodes. It
increases to 14 nodes when past tense and continuous forms are
included. Stemming conflates inflected terms to their root form
and thus reduces the number of suffixes. Conflating connected
and connecting with connect is reasonable since they convey the
same semantic message. Several stemming algorithms have been
proposed in literature [8, 14, 13]; Porter’s stemmer [14] probably
is most popular. However, the number of stems can be further
reduced: Porter’s algorithm does not deal with some common
suffixes (e.g., -less, -ution, -ary, etc.). [8] features a detailed
description of errors and wrong conflations. Furthermore, it does
not deal well with compound suffixes. The adverb increasingly,
for instance, is not stemmed because the suffix –ly is removed
only when it inflects adjectives ending with -ent or -al. Not con-
flating increasingly with its stem incurs more suffixes, i.e., nodes.

Stemming Routine. Our algorithm invokes Porter’s algorithm as
a preprocessing step. It then removes common English suffixes
that may not have been stripped by Porter iteratively, until it finds
no more suffixes, or the rest of the term would be shorter than
three characters.

Prefix Stripping. Traditionally, stemming only deals with
inflectional or derivational suffixes, but rarely attempts to remove
prefixes [10]. However, we observe that removal of prefixes
would further reduce the number of nodes of a suffix tree. If we
conflate disconnect with its stem connect, we save the space
required by the additional suffix dis-con-nect. However, removing
prefixes would incur a significant loss of information because
they add a specific connotation to the meaning of the word.
Instead, we move prefixes behind the stem, which further reduces
the size of the CST. Example: From the word undoubtedly, the
algorithm would produce doubt-un-ed-ly. The number of nodes of
a CST built on un-doubt-ed-ly decreases from 8 to 7 thanks to this
strategy: We can omit the tree branch generated by the prefix un.
Moving prefixes behind the stem shows another benefit: In case
of pruning, the stem is last to be pruned, preserving its distinctive
semantics as long as possible.

3.3 Non-Word Detection
Typographical errors are a serious problem. They result in
undesirable suffixes, i.e., CST nodes. The CST built on the sting
development, for instance, has 12 nodes; adding the incorrect term
developement inflates it to 21 nodes. Thus, not inserting mistyped
variants of index terms in the CST saves space. According to
preliminary experiments, the benefit of non-word detection grows
with the amount of noise in the text: The more misspellings, the
more nodes there are. As long as misspellings are not repeated,
these nodes are useless because they are pruned after the CST is
built. Thus, it is beneficial to exclude them right away.

A common technique for detecting misspellings is n-gram
analysis [10]. n-gram analysis requires a set of training words,
which must be sufficiently representative of the language. From
these words, n-grams are extracted and inserted into a table
(Dictionary Table). We investigate four techniques to detect non-
words. Two of them, Trigram Analysis (TA) and Positional
Trigram Analysis (PTA), use conventional trigram analysis, the
other two, Syllable Analysis (SA) and Positional Syllable
Analysis (PSA), are more recent and are similar to [2]. In order to
determine if a given term is a non-word, we extract its trigrams
(in TA, PTA) or syllables (in SA, PSA), and look up these parts in
the dictionary table. We consider a term a non-word if it contains
at least one trigram (or syllable, respectively) that is not present in
the table. Table 1 illustrates which strings are inserted in the
dictionary table for the word inform according to each strategy.

Table 1: n-grams generated from the stem inform

Trigram
analysis
(TA; n=3)

Positional
trigram
analysis

(PTA; n=3)

Syllable
analysis

(SA)

Positional
syllable
analysis

(PSA)

inf, nfo,
for, orm

inf_0, nfo_1,
for_2,
orm_3

in, form in_0,
form_1

N-grams characterize the morphological structure of a language
well [18]. However, out-of-dictionary n-grams do not necessarily
identify a mistyped word. Foreign language words, for instance,
show a different morphological structure and could go as errors.
Terms such as Albuquerque or Afghanistan, which contain the
uncommon trigrams uqu and fgh respectively, are considered
invalid and are not inserted in the CST, no matter their selectivity.
We therefore introduce a so-called Invalid N-gram Table to
store invalid n-grams and their selectivity. This table lets us
estimate the selectivity of non-words, as we will explain in
Section 4. Memory requirements of this additional structure are
significantly lower than the overhead of storing non-words and
their suffixes in the CST. Note that the dictionary is a temporary
data structure for testing the validity of index terms and is
discarded after the CST has been completely built.

4. SYLLABLE CST CONSTRUCTION AND
SELECTIVITY ESTIMATION
This section describes how to build the Syllable CST and the
Invalid N-gram Table, how to estimate selectivity based on them,
and how to prune them.

Building the Syllable CST. Prior to the insertion in the SylCST,
we decompose every term in its trigrams or syllables, according to
one of the strategies described in Section 3.3, and check if it is a
non-word using the Dictionary Table. If it is, we store all invalid
n-grams in the Invalid N-gram Table, together with their
selectivity. The rationale is that we can identify a non-word with
its invalid n-grams and use their selectivity to estimate the
selectivity of the entire word. This is similar to the data structure
[3] refers to as a q-gram estimator. As opposed to [3], however,
we do not expect severe overestimations because we deem the
invalid n-grams distinctive. In particular, the more characteristic
the n-grams of a non-word, the more accurate is the estimation:
The out-of-dictionary trigram fgh, for instance, strongly identifies
Afghanistan. We can reasonably assume that its selectivity is
close to the one of the word itself. If a word is valid, in turn, we
stem and syllabify it and finally insert the syllable suffixes in the
CST.

Selectivity Estimation. Once the CST has been built, it can be
used for selectivity estimation. The string in question is first
decomposed in its n-grams. This is to determine if its structure
respects the morphological profile described by n-gram analysis.
This means searching for the presence of any of its n-grams in the
Invalid N-gram Table. If no match is found, then the string, if
present, must have been stored in the CST. The tree is traversed
from the root to the node labeled with the string, and its count
stores the selectivity sought. Conversely, if the string contains at
least one invalid n-gram, then its selectivity estimate is the
minimum of the selectivities of its invalid n-grams.

Pruning. Since both the Invalid N-gram Table and the Syllable
CST built over large text corpora have high memory
requirements, we cannot do without pruning. We use common
frequency-based pruning. Given the maximum size of a CST (in
nodes), we iteratively remove nodes whose count is less than a
threshold T. We increase T until the CST has the desired size. To
estimate the selectivity of a valid string s that is not in the PST,
we introduce a syllable-based variant of the MO estimator [6]. If s
is syllabified as sA-sB-sC, its estimated selectivity (ESel) is: ESel =
Sel(sAB) × (Sel(sBC) / Sel(sB)), where sAB = sAsB, sBC = sBsC. If any
of the previous terms is not in the CST because it has been
pruned, then the selectivity of the string is estimated as the value
of the pruning threshold T. Given a non-word, if the Invalid Table
has to be pruned as well, and none of its invalid n-grams is found,
its selectivity is set to the pruning threshold.

Table 2: Corpora statistics

 Documents Distinct
Terms CST size

Reuters 21578 32554 86772
APW 239576 207616 558633
XIE 479433 243932 633899
NYT 314452 352404 979383

5. EXPERIMENTAL EVALUATION
We evaluate the performance of our Syllable CST both in terms
of memory reduction and of selectivity-estimation accuracy. For
our experiments we use four English newswire text corpora,
Reuters-21578 (Reuters) [11] and three datasets of the Aquaint
Corpus (APW, XIE, NYT) [5]. We tokenize the text to extract

single words, filter out stop words, and convert all terms to
lowercase. Table 2 contains statistics of our test data.

5.1 Effect of Syllabification
The Syllable CST requires significantly less memory than the
CST. Table 3 shows that the size is roughly halved. The figures
quantify size as the number of nodes. The actual memory
footprint is implementation-specific; the currently optimal
implementation [20] takes 8.5 KB per node. However, the size
reduction means that we need less memory to build the tree, and
that we can prune it at a lower threshold, resulting in higher
estimation accuracy.

Table 3: CST size reduction (in nodes)

 CST’s size SylCST’s size

Reuters 86772 41565 (52,1%)

APW 558633 308764 (44,7%)

XIE 633899 307001 (51,6%)

NYT 979383 526955 (46,2%)

5.2 Effect of N-gram Analysis
We initialize n-gram analysis with a small reference dictionary of
common English words (69004 terms, 650 KB). We Porter stem
each dictionary entry, compute its n-grams according to one of
the strategies from Section 3.3 and store them in the Dictionary
N-gram Table. We then process each index term, inserting out-of-
dictionary n-grams in the Invalid N-gram Table. Table 4 lists the
number of entries of each table.

Table 4: Dictionary and Invalid N-gram Table size

 TA SA PTA PSA
Dictionary 5888 10305 22880 15101

Invalid Table Reuters 3954 9240 11868 11071
Invalid Table APW 6873 39728 41803 51726
Invalid Table XIE 7517 49179 45601 62277
Invalid Table NYT 8421 68914 63951 88623

We retain the Invalid Table since we use it to estimate the
selectivity of non-words. Table 5 shows that the greater the
corpus size, the larger is the Invalid N-gram Table, and its
memory requirements may become non-negligible. To limit its
size, we set its maximum number of entries to an eighth of the
tree size. This is roughly the acceptable size ratio proposed in [3]
for the n-gram table. We follow the frequency-based approach
proposed in [3] to prune the Invalid Table. This increases the
estimation error only insignificantly because the pruning
threshold is very low, compared to that of the CST. It turns out
that n-gram analysis alone reduces the size of the CST
considerably. The size reduction increases with the number of
non-words in the corpus. Thus, non-word filtering is particularly
beneficial if the data is not very clean. We omit the numbers for
n-gram analysis alone due to lack of space. Table 5 gives the size
of the Syllable CST built exclusively over valid words. These
results show that syllable analysis filters out more words and
yields a smaller CST than state-of-the-art techniques in the non-
positional case. In the positional case, it does not improve the

results obtained with positional trigram analysis. Table 5 further
shows that positional non-word filtering and syllabification
together shrink the CST to at most 35% of its original size. This
means that, compared to existing techniques, (a) building the CST
requires significantly less memory, and (b) for a given memory
size, we can significantly lower the pruning threshold. The latter
lets the MO algorithm better estimate the selectivity of pruned
suffixes.

Table 5: Syllable CST size in nodes

Corpus Non-Word
Detection SylCST

TA 34538 (-60,2%)
SA 29191 (-66,4%)

PTA 26454 (-69,5%)
Reuters

PSA 25847 (-70,2%)
TA 239898 (-57,1%)
SA 197059 (-64,7%)

PTA 153005 (-72,6%)
APW

PSA 154910 (-72,3%)
TA 216907 (-65,8%)
SA 179375 (-71,7%)

PTA 126221 (-80,1%)
XIE

PSA 132886 (-79,0%)
TA 419359 (-57,2%)
SA 340327 (-73,9%)

PTA 255629 (-65,3%)
NYT

PSA 261281 (-73,3%)

5.3 Accuracy of Estimations
We now report on experimental results on the selectivity-
estimation accuracy of the Syllable CST. We follow the approach
adopted in [7, 6, 3] and evaluate positive queries (i.e., terms that
are contained in the corpus) and negative queries (i.e., terms with
a 0 selectivity). Finally, we demonstrate that estimation inaccu-
racies due to pruning are less severe on the Syllable CST.

Evaluation Metrics. For positive queries, we use the average
relative error (ARE) to measure estimation accuracy, as suggested
in [3]. It is defined as: ARE = |ESel – Sel| / Sel, where ESel is the
estimated selectivity and Sel the actual selectivity of a string. We
correct this metric, as suggested in [3], to overcome the
penalizing effect on low selectivity strings: Given a corpus of
size C, if the actual selectivity of a string is smaller than 100/|C|,
then the denominator is set to 100/|C|. Following again [3], we use
the average absolute error and its percentage of the corpus size as
evaluation metric for negative queries.

Positive Queries. We evaluate the accuracy of our estimator for
positive queries by estimating the selectivities of corpus terms as
described in Section 4. The average relative error for the Syllable
CST, without non-word filtering, is minimal for Reuters (3.5%)
and maximal for NYT (11%). These results indicate that
conflations due to our stemming algorithm do not introduce
significant errors. Non-word detection in turn does incur some
errors: For all test corpora but Reuters, the average relative error
increases to 13-17%. Further, there are more errors with n-gram

analysis. Overestimations, due to multiple invalid words iden-
tified by the same invalid n-gram, penalize the estimation of non-
words, especially with the non-positional techniques: Consider
the terms Albuquerque and the German word Unterbau-
querträger. They both are identified as non-words due to trigram
uqu. Non-positional trigram analysis conflates these terms in the
uqu bucket. In consequence, their selectivity is over-estimated, as
the sum of their selectivities. Positional trigram analysis avoids
this by taking the in-word position into account. However, the
average relative error is always under 20%.

Table 6: Average Relative Error and Pruning Threshold
for different CST sizes

CST Size (Nodes)
Corpus

CST
Type /
Non-

Words
32000 16000 8000 4000

CST 21,5%
(7)

38,0%
(29)

83,5%
(109)

143,6%
(332)

CST / NW 19,7%
(5)

31,9%
(23)

55,8%
(97)

89,8%
(310)

SylCST 10,0%
(1)

10,0%
(4)

24,0%
(14)

46,2%
(53)

Reuters

SylCST /
NW

7,01%
(0)

7,01%
(2)

21,4%
(10)

40,9%
(46)

CST 52,4%
(61)

91,0%
(214)

173,1%
(666)

325,8%
(1726)

CST / NW 48,3%
(44)

76,8%
(179)

129,4%
(607)

228,8%
(1635)

SylCST 16,6%
(8)

52,6%
(31)

104,4%
(113)

164,2%
(355)

APW

SylCST /
NW

19,9%
(4)

42,4%
(22)

91,2%
(95)

143,2%
(319)

CST 33,3%
(22)

50,5%
(90)

98,4%
(313)

186,8%
(863)

CST / NW 36,5%
(14)

49,0%
(68)

73,0%
(266)

126,8%
(779)

SylCST 12,0%
(3)

14,7%
(11)

40,6%
(44)

76,6%
(152)

XIE

SylCST /
NW

17,7%
(1)

18,8%
(6)

40,3%
(31)

72,6%
(127)

CST 80,5%
(122)

150,2%
(413)

278,0%
(1220)

562,4%
(3016)

CST / NW 71,8%
(101)

124,8%
(364)

223,5%
(1142)

428,8%
(2917)

SylCST 49,4%
(16)

125,3%
(65)

208,3%
(223)

307,4%
(663)

NYT

SylCST /
NW

32,6%
(10)

110,0%
(54)

186,6%
(199)

276,4%
(628)

Negative Queries. The selectivity of negative patterns should be
estimated as close to zero. We generate negative strings by
introducing random errors into corpus words. The error ranges
between 0,02% (Reuters) and 0.15% (NYT). This is one fourth of
the 0.6% worst case reported in [4]. This shows that our model
does not induce significant errors. We omit the result graphs here.

5.4 Pruning
Despite all reductions, the Syllable CST still occupies a lot of
memory and thus requires pruning. Our experiments show that the
pruning threshold is lower for a Syllable CST, compared to the
standard CST, due to its inherently reduced size. As a result,
estimations are significantly more accurate. We iteratively prune
the CST and the Syllable CST to meet the same final size of 4000
nodes. Table 6 lists the average relative error and the respective
pruning threshold (in brackets) for each tree size. For Reuters, the
Syllable CST provides good estimates even with the minimum
required size: about 40% average relative error. In general, the
Syllable CST always gives the better estimations, due to the lower
pruning thresholds: The value of the latter decreases by up to
80%, compared to standard CST. This leaves a more accurate
basis for the MO algorithm: The relative estimation error is
reduced by up to 70%, compared to the technique from [4].

6. CONCLUSIONS
Estimating the selectivity of query terms is essential for query
optimization. For string predicates, estimation frequently relies on
Count Suffix Trees (CST) [3, 6, 7]. While CST provide good
estimates, their memory consumption is prohibitively high.
Pruning tries to solve this problem, by trading in estimation
accuracy. So far, pruning strategies are mostly based on
frequency and tree depth. In this paper, we have proposed new
techniques that reduce the size of CST over natural-language
texts. We exclude suffixes that do not make sense from a lin-
guistic point of view, regardless of their frequency.
Syllabification is suitable to filter out suffixes with little semantic
meaning. Aggressive stemming further reduces the CST size.
Finally, a very concise n-gram data structure allows for
(a) filtering out non-words during CST construction, and for (b)
estimating their selectivity well. The various filtering techniques
are independent from each other. They are applicable to other
languages as well, provided that there is a stemming procedure, a
syllabification routine, or a dictionary for the n-gram filtering.
Since all the filtering takes place during CST construction,
building the tree requires significantly less memory. For English
text, the combination of the filtering mechanisms yields a CST
35% the size of the classical one, with the same estimation
accuracy. From another perspective, with the same number of
nodes, the new techniques reduce the average estimation error by
up to 70%.

7. REFERENCES
[1] J. Bae and S. Lee. Substring count estimation in extremely

long strings. IEICE - Trans. Inf. Syst., E89-D(3):1148–1156,
2006.

[2] S. Bressan and R. Irawan. Morphologic non-word error
detection. Proceedings of the 15th International Workshop
on Database and Expert Systems Applications (DEXA ’04),
pages 31–35, 2004.

[3] S. Chaudhuri, V. Ganti, and L. Gravano. Selectivity
estimation for string predicates: Overcoming the
underestimation problem, in Proceedings of ICDE 2004,
Boston, MA, USA, 2004.

[4] D. W. Cummings. American English Spelling: An Informal
Description. Johns Hopkins University Press, 1988.

[5] D. Graff. The aquaint corpus of english news text. Linguistic
Data Consortium, Philadelphia, 2002.

[6] H. Jagadish, O. Kapitskaia, and D. Srivastava. One-
dimensional and multi-dimensional substring selectivity
estimation. The VLDB Journal The International Journal on
Very Large Data Bases, 9(3):214–230, 2000.

[7] P. Krishnan, J. S. Vitter, and B. Iyer. Estimating
alphanumeric selectivity in the presence of wildcards. In
ACM SIGMOD International Conference on Management of
Data, pages 12–13. ACM, 1996.

[8] R. Krovetz. Viewing Morphology as an Inference Process,.
In Proceedings of the Sixteenth Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 191–203, 1993.

[9] K. Kukich. Techniques for automatically correcting words in
text. ACM Computer Surveys, 24:379–439, 1992.

[10] M. Lennon, D. Pierce, B. Tarry, and P. Willett. An
evaluation of some conflation algorithms for information
retrieval. Journal of Information Science, 3(177–183), 1981.

[11] D. D. Lewis. Reuters-21578.
http://www.daviddlewis.com/resources/testcollections/reuter
s21578/.

[12] F. M. Lian. Word hy-phen-a-tion by com-put-er. PhD thesis,
Stanford University, Stanford, August 1983.

[13] J. B. Lovins. Development of a stemming algorithm.
Mechanical Translation and Computational Linguistics,
11:22–31, 1968.

[14] M. F. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, 1980.

[15] Y. Tian, S. Tata, R. A. Hankins, and J. M. Patel. Practical
methods for constructing suffix trees. The VLDB Journal,
14(3):281–299, 2005.

[16] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14(3):249–260, 1995.

[17] P. Weiner. Linear pattern matching algorithms. In
Proceedings of the 14th Annual Symposium on Switching
and Automata Theory, pages 1–11, 1973.

[18] E. M. Zamora, J. Pollock, and A. Zamora. The use of trigram
analysis for spelling error detection. Information of
Processing and Management, 17:305–316, 1981.

[19] C. Silverstein, H. Marais, M. Henzinger, M. Moricz.
Analysis of a Very Large Web Search Engine Query Log.
ACM SIGIR Forum, Vol. 33, pp. 6 - 12, 1999, ISSN:0163-
5840

[20] R. Giegerich, S. Kurtz, J. Stoye, Efficient Implementation of
Lazy Suffix Trees, Software: Practice and Experience, Vol.
33, No 11, 2003

