
On Complexity and Efficiency of Mutual Information
Estimation on Static and Dynamic Data

Michael Vollmer

Karlsruhe Institute of Technology

Karlsruhe, Germany

michael.vollmer@kit.edu

Ignaz Rutter
∗

Eindhoven University of Technology

Eindhoven, The Netherlands

i.rutter@tue.nl

Klemens Böhm

Karlsruhe Institute of Technology

Karlsruhe, Germany

klemens.boehm@kit.edu

ABSTRACT
Mutual Information (MI) is an established measure for the de-

pendence of two variables and is often used as a generalization

of correlation measures. Existing methods to estimate MI focus

on static data. However, dynamic data is ubiquitous as well, and

MI estimates on it are useful for stream mining and advanced

monitoring tasks. In dynamic data, small changes (e.g., insertion

or deletion of a value) may often invalidate the previous estimate.

In this article, we study how to efficiently adjust an existing MI

estimate when such a change occurs. As a first step, we focus

on the well-known nearest-neighbor based estimators for static

data and derive a tight lower bound for their computational com-

plexity, which is unknown so far. We then propose two dynamic

data structures that can update existing estimates asymptotically

faster than any approach that computes the estimates indepen-

dently, i.e., from scratch. Next, we infer a lower bound for the

computational complexity of such updates, irrespective of the

data structure and the algorithm, and present an algorithm that

is only a logarithmic factor slower than this bound. In absolute

numbers, these solutions offer fast and accurate estimates of MI

on dynamic data as well.

1 INTRODUCTION
Motivation. Finding and quantifying dependencies between

variables is an essential task in data analysis. Conventional meth-

ods to detect (in)dependent attributes, like correlation coefficients

and covariance matrices, are limited in the types of dependencies

they detect. Mutual Information (MI) in turn is a notion from

Information Theory that captures both linear and arbitrary non-

linear dependencies. However, MI is defined on the probability

density of the data. This makes exact computation impossible on

samples. Nevertheless, existing MI estimators yield good results

even for small samples [13]. In consequence, a wide range of

applications, such as Feature Selection [22], Text Analysis [7]

and Computer Vision [23], uses MI.

A popular choice are estimators based on nearest-neighbor

distances [9, 16, 17]. This is because such estimators essentially

are non-parametric and yield very good results [13, 14, 21, 29].

Nearest-neighbor based estimation of MI is often perceived as

equivalent to the concrete estimation formula by Kraskov et

al. (KSG)[17]. However, the KSG is just one estimation formula for

MI using the nearest-neighbor entropy estimator by Kozachenko

and Leonenko [16]. There exists at least one other MI estimator

using a different formula, while relying on the same entropy

estimator (3KL)[9]. In the following, the term estimator names

∗
This work originated while the author was affiliated with Karlsruhe Institute of

Technology.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

concrete formulas that estimate the MI value (e.g., KSG, 3KL), and

nearest-neighbor based estimation is the group of these estimators.

So far, algorithms to compute nearest-neighbor based MI esti-

mates and thus their practical applications focus on static data.

However, data streams are ubiquitous as well and also require

suitable analysis methods. The problem studied in this article

is nearest-neighbor based estimation of MI on dynamic data. In

this setting, an elementary task called update is the incremental

maintenance of an estimate when adding or deleting a point.

With dynamic data, scalability with the number of data points

is crucial. A good, data-independentmeasure is the computational

complexity of the respective algorithms. In order to evaluate the

efficiency of a new solution, it also is important to know the

complexity of the problem. That is, a lower bound for any algo-

rithm that computes such estimates, independent of the concrete

approach. So far, no lower bound for nearest-neighbor based MI

estimation is known, be it for updating an existing estimate, be

it for computing the estimate on static data.

Challenges. Designing the estimators envisioned with con-

trolled complexity is challenging. Two reasons for this are as

follows: First, while nearest-neighbor based estimation of en-

tropy depends on distances to the nearest neighbor, this does not

imply that it has the same computational complexity as nearest-

neighbor search. Put differently, it may be possible to obtain the

same results using different methodologies. Consequently, one

must prove the complexity based only on the result and not hinge

on the complexity of certain tasks that seem mandatory in the

context at first sight, such as nearest-neighbor search.

Second, to design a dynamic data structure that answers cer-

tain queries faster than any static algorithm, it is necessary to

identify expensive computations whose results are relatively easy

to maintain in the presence of updates. This means that the time

required to incrementally maintain the results after a change

must be limited in all cases. But this is not obvious here. At the

same time, availability of these results must significantly speed

up the query.

Our Contributions. Our work focuses on the time required to

maintain an estimate of MI on dynamic data. We concentrate on

the computational efficiency of nearest-neighbor based estima-

tors on static data and the implications for dynamic estimation.

We present solutions for dynamic data that maintain an estimate

with the same estimation quality as static estimators, but with

less time required. Specifically, our contributions are as follows:

Computational complexity of nearest-neighbor based estimators.

In Section 4 we provide a complexity analysis of nearest-neighbor

based MI estimators. Using a proof by reduction, we establish

a lower bound in the algebraic computation tree model for any

algorithm estimatingMI using 3KL or KSG. To our knowledge, we

are the first to prove any lower bound for the time complexity of

such estimators. The lower bounds we prove are tight. This means

that there already exist algorithms that have this asymptotically

Series ISSN: 2367-2005 49 10.5441/002/edbt.2018.06

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.06

optimal running time. Additionally, we use this result to infer

lower bounds for the maintenance of KSG and 3KL estimates on

dynamic data.

Dynamic data structures. In this article, we present two dy-

namic data structures. The first one is DEMI, which estimates

nearest-neighbor based MI on a dynamic data set, see Section 5.

This data structure holds a set of data points and some interme-

diate computation results we use for the estimation. The data

structure allows insertion and deletion of data points and query-

ing the estimate using all data points stored. Both the 3KL and

the KSG estimator can use this data structure. We prove that

updating an estimate using DEMI is asymptotically faster than

the lower bound for static estimates, i.e., computing the estimate

from scratch. To our knowledge, we are first to present a way

of maintaining a KSG estimate on dynamic data that requires

asymptotically less time than static estimation and preserves the

estimate without any approximation.

Near-optimal computation time. The second data structure we

present, ADEMI, integrates existing state-of-the-art data struc-

tures and algorithms into DEMI to reduce computation time, see

Section 6. While the structure does not offer a speedup when

maintaining the KSG estimate, we can maintain the 3KL estimate

in polylogarithmic time. In particular, we are only a logarithmic

factor slower than the lower bound shown in Section 4.

Systematic experimental evaluation. Finally, we evaluate our

approaches experimentally, using a broad variety of dependency

types and noise levels, in Section 7. We show that both KSG

and 3KL converge to the true MI values with a good rate of con-

vergence. This is a stark contrast to another recently published

estimator for MI on sliding windows [3]. Additionally, we show

that our data structures perform very well when maintaining MI

estimates on large samples.

2 FUNDAMENTALS
We begin by revisiting the foundations of MI and its estimation.

Mutual Information. Introduced by Shannon [26], the notion of

entropy is a measure for the expected information from observing

the value of a random variable X , noted as H (X). The expected
information for observed values of two random variablesX andY
is the natural extension joint entropy H (X ,Y). This gives way to

the notion of Mutual Information

I (X ;Y) = H (X) + H (Y) − H (X ,Y), (1)

which describes the information shared between both variables.

Using the definition of entropy for continuous random variables

in Equation 1 yields the differential definition of MI

I (X ;Y) =

∫
Y

∫
X
p(x ,y) log

(
p(x ,y)

p(x)p(y)

)
dx dy (2)

where p(x), p(y) and p(x ,y) are the marginal and joint probability

density functions of X and Y , respectively [8]. Using the natural

logarithm, MI is then measured in the natural unit of information

(nat).

Nearest-Neighbor based Estimation. Kozachenko and Leonen-

ko [16] presented a nearest-neighbor based estimator for (joint)

entropies for a given sample. They used the distance to the k-th
nearest neighbor as a means to approximate the density of the

distribution for that region. They also have proven that this

method yields a consistent estimator for entropy independent of

the choice of k . ‘Consistent’ means that, with increasing sample

0 1 2 3 4 5 6 7 8 9

1

2

4

3

5

6

X

Y
ε1P (pi) = 2

ε1X(xi) = 1

ε
1Y
(y

i)
=

0
.5

Figure 1: Illustration of the notation used for the 3KL.

size, the estimate converges towards the true entropy value. Their

method is as follows:

Let Q = {q1, . . . ,qn } ⊆ R
d
be a set of points in a d-dimen-

sional euclidean space, and let ϵkQ (qi) be the distance between

qi and its k-th nearest neighbor in Q using the L∞-norm, also

known as maximum distance. Using the notation by Kraskov et

al. [17], the entropy estimator by Kozachenko and Leonenko [16]

is

Ĥ (Q) = ψ (n) −ψ (k) + log(2d) +
d

n

n∑
i=1

log(ϵkQ (qi)), (3)

whereψ is the digamma function. That is,ψ (x) =
∑x−1
m=1(

1

m) −C ,
for x ≥ 1 with C ≈ 0.577 being the Euler-Mascheroni-Constant.

We now say how this entropy estimator is used to estimate

MI. Let P = {p1 = (x1,y1), . . . ,pn = (xn ,yn)} ⊆ R
2
be a sample

of a random variable with two attributes. Note that we use P for

the sample whose MI value we are interested in. This may be

the original, full data set as well as the set of the most recent

points of a data stream or any other subsample. Additionally, let

X = {x1, . . . ,xn } and Y = {y1, . . . ,yn } be the sets of all values

of the respective attribute in the sample. We use ϵkP (pi), ϵ
k
X (xi)

and ϵkY (yi) to refer to the distance of pi ,xi and yi to its k-th near-

est neighbor in P ,X and Y , respectively. Figure 1 illustrates an
exemplary set P , with k = 1 and pi ,xi and yi marked as squares.

Inserting Equation 3 into Equation 1 yields the MI estimator

Î3KL(P) = ψ (n) −ψ (k) +
1

n

n∑
i=1

log

(
ϵkX (xi) · ϵ

k
Y (yi)

(ϵkP (pi))
2

)
. (4)

Because this estimator estimates each of the three entropies in

Equation 1 separately with the estimator by Kozachenko and

Leonenko, we call the estimator 3KL. This estimator has also been

used by Evans [9] for MI estimation on static data. Additionally,

because each term in Equation 1 is estimated using a consistent

estimator, the 3KL also is a consistent estimator.

Varying numbers of nearest neighbors. A different approach to

use Equation 3 for MI estimation was proposed by Kraskov et

al. [17]. While the 3KL uses the same k when estimating Ĥ (X),
Ĥ (Y) and Ĥ (P) to obtain a compact formula, Kraskov et al. adjust

k for every point such that the logarithmic term is 0. The idea

is to make the distances ϵkP (pi), ϵ
k
X (xi) and ϵ

k
Y (yi) of a point to

its nearest neighbors in X ,Y and P identical. To achieve this,

the parameter k for ϵkX (xi) and ϵ
k
Y (yi) has to be set accordingly

and may be different for each point. Specifically, each nearest

neighbor pj of pi in P should result in x j being a nearest neighbor

50

0 1 2 3 4 5 6 7 8 9

1

2

4

3

5

6

X

Y

δ1y(pi)

C1
x(pi) = 3

δ1x(pi)

C1
y(pi) = 3

Figure 2: Illustration of the notation used for the KSG.

of xi in X and yj being a nearest neighbor of yi in Y . To this

end, the k-th nearest neighbor distance ϵkP (pi) is determined and

afterwards kx and ky for ϵkxX (xi) and ϵ
ky
Y (yi) is set accordingly.

Figure 2 features an illustration of the notation that follows, using

the same exemplary set P and k as Figure 1. As before, the set

kNN of k nearest neighbors of a point pi ∈ P using the L∞-norm

is determined first. Let δkx (pi) = maxpj ∈KNN |xi − x j | be the

greatest distance between xi and any other x-value among its k

nearest neighbors. Then themarginal count Ckx (pi) is the number

of elements in X as close to xi as this distance, i.e.,

Ckx (pi) = |{x ∈ X \ {xi } : |xi − x | ≤ δ
k
x (pi)}|. (5)

Another marginal count Cky (pi) is defined analogously using yi

and δky (pi). When these marginal counts are used as k per point

in the estimator Ĥ (X) and Ĥ (Y), the distances ϵX (xi), ϵY (yi) and
ϵP (pi) in Equation 4 (mostly) cancel out. However, one has to

adjust the formula for using a different k , i.e., the marginal counts,

for each point. The resulting estimator, called KSG due to its

inventors Kraskov, Stögbauer and Grassberger, is

�IKSG (P) = ψ (n) +ψ (k) − 1

k
−
1

n

n∑
i=1

ψ (Ckx (pi)) +ψ (C
k
y (pi)). (6)

While there exist many other approaches to estimateMI, we fo-

cus on nearest-neighbor based estimation due to its performance

in comparative studies [13, 14, 21, 29]. Because these studies con-

sider only the KSG, we use the same distributions in Section 7 to

assess the estimation quality of the 3KL.

Another point is that it is generally recommended [13, 14, 17]

to use a small k , that is k < 10. The choice of k has only been

studied extensively for the KSG but not for the 3KL. However,

because Equation 3 is consistent for any k [16], the 3KL is the

sum of three consistent estimators and thus consistent for any k
as well. Consequently, we assume k < 10 in this work, i.e., k is a

constant for asymptotic considerations.

3 RELATEDWORK
Data Streams. Data streams, a constantly growing form of

dynamic data, are ubiquitous. Because data streams grow over

time, and memory and storage is limited, it is impossible to store

all data points. This means that information is lost over time.

Nevertheless, there exist space-efficient estimators for entropy

of discrete distributions on streams. With Equation 1, entropy

estimators can also be used to estimate MI, but with accumulating

error. The estimator of Chakrabarti et al. [5] provides multiplica-

tive approximations of entropy on insert-only streams. In con-

trast, the estimator by Harvey et al. [10] offers multiplicative and

additive approximations of entropy on streams with insertions

and deletions, but requires knowledge about the maximum length

of the stream. However, both estimators are restricted to discrete

distributions. Estimating MI on discrete distributions is easier,

because their relative count of points is a good estimator for the

probability. Estimating the density of continuous distributions in

turn is not trivial.

The estimation of MI of continuous distributions on streams

has received less attention. The MISE framework [12] offers esti-

mates of MI between continuous variables for any time interval

on data streams. While both MISE and our approach offer nearest-

neighbor based MI estimation, the difference is as follows: Results

with MISE are approximations of the KSG estimate for consecu-

tive subsets of the data. We in turn provide exactly the estimates

of KSG and 3KL on a dynamic data set. Maintaining an accu-

rate KSG estimate for a dynamic set of data points, e.g., the last

1000 data points, would incur prohibitively high (and growing)

resource consumption with MISE. This is because it cannot ex-

plicitly delete points. In consequence, the target application and

the optimizations are too different to allow for a fair comparison.

SlidingWindows. A common approach to process data streams

are sliding windows. Maintaining only a fixed number of points

ensures a fixed problem size that allows for bounded resource

consumption. By construction, this technique rules out the usage

of any information outside the window, but allows for accurate

computations on data within it. There already are very good

general approaches for sliding-window aggregation [27]. How-

ever, no competitive MI estimator is known so far that can be

aggregated and thus used with this framework. Most MI estima-

tors have stronger relations to concrete items than to collective

values, e.g., distances to the nearest neighbor instead of distances

to the mean. In consequence, previous analytics tasks that use

MI estimates over a sliding window [15, 24] had to recompute

the estimate from scratch for each window.

There is little work regarding algorithmic optimization of the

computation time for such tasks. A very recent work by Boidol

and Hapfelmeier [3] has introduced an estimator that approxi-

mates the 3KL inside a sliding window. In contrast, our approach

allows for arbitrary insertions and deletions, and we provide the

exact results of the 3KL and KSG. To show the difference between

their approximation and accurate 3KL estimates, we include their

method in our experiments in Section 7.

Computational Complexity. There has been little research re-

garding the computational complexity of the KSG and 3KL. Sev-

eral proposals to compute the KSG appear in the original KSG ar-

ticle [17] with the claimed time complexity O(n) for their fastest,
so-called “box-assisted” algorithm on smooth distributions. Ve-

jmelka et al. [28] compare their own approach with the box-

assisted algorithm and cite [25] for different conditions for a

linear runtime of the box-assisted algorithm. In the end, the

best universal time complexity of their presented algorithms is

Θ(n logn). The same complexity is given for the algorithm com-

puting the 3KL by Evans [9]. In the following section we prove

that this limit is not a coincidence, i.e., we prove that no algo-

rithm computing these estimators can have a time complexity

lower than O(n logn).

4 LOWER BOUNDS
In this section we present our first contribution, the lower bounds

for computing and maintaining estimates using the KSG and 3KL.

51

All existing approaches to compute the 3KL and KSG follow

the original description in the sense that they first compute the

nearest neighbors of all points. In the case of the KSG, the mar-

ginal counts Ckx and Cky are computed afterwards. However, it is

not known if this is the only approach to compute Î3KL(P) and�IKSG (P), or if it is computationally optimal. For instance, there

could be a different formula for either of these estimators that

does not require explicit computation of the nearest neighbors.

Consequently, the complexity of computing the 3KL and KSG can

only be based on the result and not on intermediate steps such

as determining the nearest neighbors. The problems whose com-

plexities we want to study in general, i.e., without confinement

to specific algorithms, are the following ones.

Problem 1 (3KL-Estimation). For a set P ⊆ R2 of points, deter-

mine Î3KL(P).

Problem 2 (KSG-Estimation). For a set P ⊆ R2 of points, deter-

mine �IKSG (P).
In the following, we show the complexity of Problem 1. By

reducing a problem with known complexity to 3KL-Estimation,

we prove that it has a lower bound of Ω(n logn) in the algebraic

computation tree model [1]. For brevity, all formal proofs in

this article are available in Appendix A. We use the algebraic

computation tree model because it allows us to prove bounds

without assuming any statistical properties of the data. This is

important because we want general-purpose estimation of MI. If

knowledge regarding the data or its distribution was known, it

could be used to model the density function in Equation 2.

Theorem 4.1. The problem 3KL-Estimation has time complex-

ity Ω(n logn).

Proof. The formal proof is available in Appendix A.1. �

This lower bound matches the running time of the algorithm

presented by Evans [9] to solve 3KL-Estimation. Consequently,

this algorithms is already asymptotically optimal, and the lower

bound is tight.

Corollary 4.2. The computational complexity of 3KL-Estima-

tion is Θ(n logn).

We use the same approach to prove a lower bound for

KSG-Estimation. With the algorithms presented by Vejmelka et

al. [28] this lower bound is tight as well.

Theorem 4.3. The problem KSG-Estimation has a time com-

plexity in Ω(n logn).

Proof. The formal proof is available in Appendix A.2. �

Corollary 4.4. The computational complexity of KSG-Estima-

tion is Θ(n logn).

As a next step, we consider dynamic data. The distinctive

feature of dynamic data is that the data changes over time. For

a set P of points, all changes can be modeled using insertion of

new points and deletion of existing points. For instance, moving

a point from (x ,y) to (x ′,y′) can be modeled with one deletion of

(x ,y) and one insertion of (x ′,y′). To maintain an estimate of MI

with the 3KL or KSG, we need to adjust the estimate according

to such insertions or deletions. We see this as a problem for a

dynamic data structure and thus allow storage of some auxiliary

information about P , noted as state SP of a dynamic data structure.

The formal problem is then:

Problem 3 (3KL-Update). Let P ⊆ R2 be a set of points, SP
the state for P and p ∈ R2 a point. Determine Î3KL(P ∪ {p}) and

SP∪{p } if p is inserted and Î3KL(P \ {p}) and SP\{p } if p is deleted

using only SP and p.

Problem 4 (KSG-Update). Let P ⊆ R2 be a set of points, SP
the state for P and p ∈ R2 a point. Determine �IKSG (P ∪ {p}) and
SP∪{p } if p is inserted and �IKSG (P \ {p}) and SP\{p } if p is deleted

using only SP and p.

Because these problems can be used to solve 3KL-Estimation

and KSG-Estimation, respectively, we can use the previous re-

sults to infer lower bounds for their time complexities. If we

start with an empty set P and incrementally insert n points, the

total time required cannot generally be asymptotically faster

than Ω(n logn) by Theorem 4.1 and Theorem 4.3. Because this

includesn insertions, the time complexity of individual insertions

is in Ω(logn).

Corollary 4.5. The problem 3KL-Update has a time complex-

ity in Ω(logn).

Corollary 4.6. The problem KSG-Update has a time complex-

ity in Ω(logn).

In this section we have established formal problem descrip-

tions for the tasks of estimating and maintaining MI estimates

using the 3KL and KSG. Furthermore, we have proven lower

bounds for the time required to solve these problems. These

bounds are tight for computing estimates on static data. This

means that no asymptotic speed-up is achievable. In contrast,

we are not aware of any data structures or algorithms that solve

the problems of maintaining 3KL or KSG estimates when points

are inserted or deleted. In the following sections, we present two

data structures for these tasks, evaluate their time complexity

and compare them to the lower bounds presented in this section.

5 ESTIMATING MUTUAL INFORMATION
ON DYNAMIC DATA

Naturally, the simplest solution to KSG-Update and 3KL-Update

is storing exactly P in SP and computing Î3KL(·) and �IKSG (·),
respectively, with every change. The result from the previous

section is that any such approach would require Ω(n logn) time

for 3KL-Update and KSG-Update. In the following we show that

this is not optimal and present a more efficient solution.

We propose the data structure DEMI (Dynamic Estimation

of Mutual Information) that focuses on updating an estimate

of the 3KL or KSG for a single insertion or deletion. First, we

present how this data structure works with 3KL estimates. In

Section 5.2 we describe the differences when maintaining a KSG

estimate. In more detail, we describe the changes to the 3KL

estimate that can occur by inserting or deleting a point. Then we

describe which information our data structure stores and how

it determines the changes in the 3KL estimate efficiently. Lastly,

we evaluate the space complexity of our data structure as well as

the time complexity of adding or deleting a point.

5.1 Updating 3KL Estimates
Let P = {p1 = (x1,y1), . . . ,pn = (xn ,yn)} ⊆ R

2
be the set

of points in our sample and let X = {x1, . . . ,xn } and Y =
{y1, . . . ,yn } be the set of values per attribute. When we in-

sert a point pn+1 = (xn+1,yn+1) ∈ R
2
, let P ′ = P ∪ {pn+1},

X ′ = X ∪ {xn+1} and Y ′ = Y ∪ {yn+1} be the sets including

52

Data Structure 1: DEMI

struct {
real x ,y
real ϵkP , ϵ

k
X , ϵ

k
Y

} DemiPoint;

struct {
DemiPoint[] PD
BST<DemiPoint*> Tx ,Ty
real base, sum

} state;

pn+1,xn+1 and yn+1, respectively. Considering Equation 4, the

change from Î3KL(P) to Î3KL(P
′) consists of three partial changes:

(1) ψ (n) increases toψ (n + 1) = ψ (n) + 1

n ,

(2) the arithmetic mean includes n + 1 logarithms instead of

n,
(3) and the nearest-neighbor distances ϵkP (pi), ϵ

k
X (xi) and

ϵkY (yi) may change for any i ∈ {1, . . . ,n}.

While Change (1) is trivial, Change (2) requires the computa-

tion of ϵkP ′(pn+1), ϵ
k
X ′(xn+1) and ϵ

k
Y ′(yn+1). However, Change (3)

could require the re-evaluation of all nearest-neighbor distances.

Clearly, these changes apply analogously if p1 is removed from

P instead of inserting pn+1. Following these observations, we

propose a dynamic data structure that determines these changes

efficiently and evaluate its computation complexity.

Overview. Our data structure, DEMI, is given in Data Struc-

ture 1. For each point pi ∈ P of our sample, we store its at-

tributes xi ,yi and k-th nearest-neighbor distances ϵkP (pi), ϵ
k
X (xi)

and ϵkY (yi) as a DemiPoint. In addition, we store references to

all DemiPoints, ordered by the x-component and y-component

of the point, in binary search trees (BST) Tx and Ty , respec-
tively. Using self-balancing BST like red-black-trees, we can in-

sert, delete and search items in logarithmic time. Additionally,

we also maintain the values base = ψ (|P |) − ψ (k) and sum =∑n
i=1 log

(
ϵkX (xi)·ϵ

k
Y (yi)

(ϵkP (pi))
2

)
. The collection of all stored data is the

state SP of our data structure for the sample P . Because we store
a constant amount of information per point, the space complexity

of DEMI is Θ(n). Given State SP , one can query the 3KL estimate

on the set P in constant time as Î3KL = base+ sum

|P | . However, this

data structure requires adjustment of SP after every change of P .

Insertion Algorithm. To insert a point pn+1 into a state SP , il-
lustrated in Algorithm 2, we distinguish two phases of the update.

First (Lines 1-6), we add pn+1 as a DemiPoint to PD and update

base and sum accordingly. Second (Lines 7-18), we determine

which nearest-neighbor distances change and adjust sum accord-

ing to the changes. We now describe these steps in more detail,

together with the computational complexity of elementary op-

erations, to allow for an easier evaluation. We discuss possible

improvements in Section 6.

To add pn+1 to SP , we first compute its k-th nearest neigh-

bor in P ′ by linear search and derive the k-th nearest-neighbor

distance ϵkP ′(pn+1) (O(n), Line 1). To determine the k-th near-

est neighbor distances ϵkX ′(xn+1) and ϵ
k
Y ′(yn+1) we can use the

binary search tree and evaluate the distance to the next k and

preceding k elements (O(k · logn), Line 2). With this information

we construct the DemiPoint for pn+1 and insert it into PD (O(1),

Algorithm 2: Insert(SP ,pn+1)

1 Compute ϵkP ′(pn+1) O(n)

2 Compute ϵkX ′(xn+1) and ϵ
k
Y ′(yn+1) O(k · logn)

3 Insert pn+1 into PD O(1)

4 Reference pn+1 in Tx , Ty O(logn)

5 base← base + 1

n O(1)

6 sum← sum + log

(
ϵkX ′ (xn+1)·ϵ

k
Y ′ (yn+1)

(ϵkP ′ (pn+1))
2

)
O(1)

7 A← {pi ∈ P : max(|xi − xn+1 |, |yi − yn+1 |) < ϵ
k
P (pi)} O(n)

8 B ← {pi ∈ P : |xi − xn+1 | < ϵ
k
X (xi)} O(n)

9 C ← {pi ∈ P : |yi − yn+1 | < ϵ
k
Y (yi)} O(n)

10 forall pi ∈ A do
11 Compute ϵkP ′(pi) O(|A| · n)

12 sum← sum + log((ϵkP (pi))
2) − log((ϵkP ′(pi))

2) O(|A|)

13 forall pi ∈ B do
14 Compute ϵkX ′(xi) O(|B | · k · logn)

15 sum← sum − log(ϵkX (xi)) + log(ϵ
k
X ′(xi)) O(|B |)

16 forall pi ∈ C do
17 Compute ϵkY ′(yi) O(|C | · k · logn)

18 sum← sum − log(ϵkY (yi)) + log(ϵ
k
Y ′(yi)) O(|C |)

Line 3). References to this point are then inserted into Tx and

Ty (O(logn), Line 4). Then, we add the appropriate terms to base

and sum (O(1), Lines 6 and 7), respectively.
Next, we find all previous nearest-neighbor distances that

changed, by linear search. For each i ∈ {1, . . . ,n}we test whether

pn+1,xn+1 and yn+1 is closer than ϵ
k
P (pi), ϵ

k
X (xi) and ϵ

k
Y (yi), re-

spectively. This takes time in O(n) and yields the sets A, B and

C (Lines 7-9), respectively. For each point pi ∈ A we compute

ϵkP ′(pi) analogously to ϵkP ′(pn+1), which takes O(n) each. Then
we adjust sum accordingly (O(1), Line 12). The sets A and B are

handled in an analogous way, using ϵkX ′(xi) and ϵ
k
Y ′(yi), respec-

tively, instead (Lines 13-18). Note that these distances can be

computed in timeO(k · logn) each, instead ofO(n), analogous to

ϵkX ′(xn+1) and ϵ
k
Y ′(yn+1).

Computational Complexity. The total runtime for inserting a

point into our structure therefore is in O(k · n + |A| · n + (|B | +
|C |) · k · logn). In the following theorem we show that |A|,|B |
and |C | are in O(k), because there are at most 8 · k points for

which pn+1 is one of the k nearest neighbors. Consequently, our

insertion time is inO(k ·n+k2 · logn). Since k is suggested to be a

small constant, e.g. less than 10, in the literature, we can assume

k to be constant. This means that an insertion is in O(n). This
results in the total time complexity of O(n). Because deleting a
point changes the estimate analogously, we can use an analogous

algorithm with the same complexity, i.e., O(n).

Theorem 5.1. Let P ⊆ R2 be a set of points. For any point p ∈ P
there exist at most 8k points q ∈ P such that p is one of the k nearest

neighbors of q using the L∞-norm.

Proof. The formal proof is available in Appendix A.3. �

As context for the update time of O(n), Theorem 4.1 proves

that any algorithm requires time in Ω(n logn) to compute the

3KL from scratch. As a result, updating an estimate using DEMI

is asymptotically faster than recomputing it, independently of

the method used. In Section 6 we show how the time for updates

53

Data Structure 3: DEMI-KSG

struct {
real x ,y
real ϵkP ,δ

k
x ,δ

k
y

int Ckx ,Cky
} DemiPointKSG;

struct {
DemiPointKSG[] PD
BST<DemiPointKSG*> Tx ,Ty
real base, sum

} state;

on the 3KL can be improved even further. However, we will first

discuss how we use the same approach to update KSG estimates.

5.2 Updating KSG Estimates
In this section, we describe how we achieve the same results, that

is linear space and linear time for updates, using KSG estimates

instead of 3KL estimates. As with the 3KL, we decompose the

KSG estimate into �IKSG = base + sum

|P | . Comparing Equation 4

and Equation 6, it follows that base and sum need to maintain

different values when maintaining 3KL or KSG estimates. The

change for base, that is base = ψ (|P |)+ψ (k)− 1

k instead of base =

ψ (|P |) −ψ (k), does not have any influence on the overall proce-

dure. However, the change from sum =
∑n
i=1 log

(
ϵkX (xi)·ϵ

k
Y (yi)

(ϵkP (pi))
2

)
to sum = −

∑n
i=1ψ (C

k
x (pi))+ψ (C

k
y (pi)) has stronger implications.

Most notably, we do not require explicit nearest neighbor dis-

tances per point but need marginal counts. We need to update a

marginal count Ckx (pi) if and only if the nearest neighbors of pi
in P changes, or a point (x ,y) with |x − xi | ≤ δ

k
x (pi) is inserted

or deleted, see Figure 2. As a consequence, per point pi we do

not store ϵkX (xi) and ϵ
k
Y (yi) but the distances to the furthest x-

and y-values among the k nearest neighbors in P , i.e., δkx (pi)

and δky (pi). Additionally we track the marginal counts Ckx (pi)

and Cky (pi). These slight changes are displayed in Data Struc-

ture 3. Furthermore, this means that we still store a constant

amount of information per point, and the space complexity of

the data structure remains Θ(n).
Updating the data structure follows the same principles as

before, that is, we include the new point into the data structure

and evaluate its impact on other marginal counts afterwards. In

the following we describe the changes in specific steps between

the update algorithm for 3KL estimates and KSG estimates, that

is, Algorithm 2 and Algorithm 4.

Tracking marginal counts, instead of nearest-neighbor dis-

tances, per attribute allows for faster updates, because the counts

only need increments and decrements (O(1) each, Lines 16 and
18), instead of recomputation. However, a change of nearest

neighbors does also invalidate the marginal counts and requires

computing them and correct adjustment of sum (Lines 11-14).
Computing marginal counts from scratch can be done with linear

search (O(n) each, Lines 2 and 13).
Regarding the time complexity of Algorithm 4, it is important

to note that B and C are not sets of points with changed nearest

neighbors. As a consequence, only the size of A has an upper

bound of 8 · k by Theorem 5.1. In the worst case, B andC contain

all points, that is, |B | ≤ n and |C | ≤ n. The total time complexity

Algorithm 4: Insert-KSG(SP ,pn+1)

1 Compute δkx (pn+1),δ
k
y (pn+1) and ϵ

k
P ′(pn+1) O(n)

2 Compute Ckx (pn+1) and C
k
y (pn+1) O(n)

3 Insert pn+1 into PD O(1)

4 Reference pn+1 in Tx , Ty O(logn)

5 base← base + 1

n O(1)

6 sum← sum − psi(Ckx (pn+1)) − psi(C
k
y (pn+1)) O(1)

7 A← {pi ∈ P : max(|xi − xn+1 |, |yi − yn+1 |) < ϵ
k
P (pi)} O(n)

8 B ← {pi ∈ P : |xi − xn+1 | < δ
k
x (pi)} O(n)

9 C ← {pi ∈ P : |yi − yn+1 | < δ
k
y (pi)} O(n)

10 forall pi ∈ A do
11 sum← sum + psi(Ckx (pi)) + psi(C

k
y (pi)) O(|A|)

12 Compute δkx (pi),δ
k
y (pi) and ϵ

k
P ′(pi) O(|A| · n)

13 Compute Ckx (pi) and C
k
y (pi) O(|A| · n)

14 sum← sum − psi(Ckx (pi)) − psi(C
k
y (pi)) O(|A|)

15 forall pi ∈ B do
16 sum← sum − 1

Ck
x (pi)

; Ckx (pi) ← Ckx (pi) + 1 O(|B |)

17 forall pi ∈ C do
18 sum← sum − 1

Ck
y (pi)

; Cky (pi) ← Cky (pi) + 1 O(|C |)

therefore is O(n + |A| · n) = O(k · n). As before, k is taken as

constant, which yields the time complexity O(n). This is asymp-

totically faster than recomputing the estimate by Theorem 4.3.

6 POLYLOGARITHMIC UPDATES
Because DEMI relies only on simple algorithms like linear search

and binary search trees during insertions and deletions, faster

solutions might exist. In this section we determine which parts

of our insertion algorithm have a high computational cost and

present solutions for these tasks. There are two factors that lead

to the linear time complexity of Algorithm 2.

(1) Computing the nearest neighbors, with linear search

(2) Finding the points whose nearest neighbors changed by

linear search

6.1 Geometric Structures
Computing the nearest neighbors. Computing the k nearest

neighbors of a point is a classic problem of computational ge-

ometry, which has received a lot of research. While there exist

many solutions, most of them are built for static data and are

not compatible with the incremental changes in dynamic data.

But there also exist solutions that allow for insertions and dele-

tions. Chan [6] proposed a dynamic data structure that computes

nearest neighbors in two-dimensional spaces with sub-linear

times for insertion, deletion and queries. However, the computa-

tional complexity of deletions is O(log6 n), which is quite high.

Kapoor and Smid [11] provide an alternative based on dynamic

range trees [30]. With dynamic fractional cascading [20] the time

complexities for insertions, deletions and querying the nearest

neighbor of a point are inO(logn log logn). To query two nearest
neighbors, we can query one nearest neighbor, delete this point

from the tree, query the new nearest neighbor and insert the

deleted point. Querying the k nearest neighbors can thus easily

be achieved through a sequence of k queries, k − 1 deletions, and
k − 1 insertions, with total time in O(k · logn log logn).

54

Finding the points whose nearest neighbors have changed. Find-

ing all points whose nearest neighbors have changed is also a

geometric problem, that is, finding the reverse nearest neighbors

of the inserted or deleted point. For each point p = (x ,y) with
nearest neighbor distance ϵ , all nearest neighbors of p (using the

L∞-norm) are within the square [x −ϵ,x +ϵ]× [y−ϵ,y+ϵ] ⊆ R2.
To find all points whose nearest neighbors contain a point p′, the
task is to determine which squares contain p′. One data structure
to solve this problem is the segment tree by Bentley [2]. The

technique of dynamic fractional cascading is also applicable for

segment trees [20] and yields the time complexities for inser-

tions and deletions in O(logn log logn). Queries require time in

O(logn log logn+m), wherem is the number of squares returned.

6.2 Improving DEMI
To achieve sublinear time complexity for updates, we integrate

a two-dimensional dynamic range tree and a two-dimensional

dynamic segment tree into DEMI. We call this the augmented

version of DEMI (ADEMI). The insertion algorithm is nearly iden-

tical to Algorithm 2, except for changes in time complexities and

insertions and deletions to the integrated tree structures. In con-

sequence, we only mention the changes relative to Algorithm 2

in this section. The full data structure and insert algorithm can

be found in Appendix B.

Using the dynamic range tree, Line 1 requires only time in

O(k · logn log logn), and Line 11 requires time in O(|A| · k ·
logn log logn). Using the dynamic segment tree, Line 7 can be

done in time O(logn log logn + |A|). Additionally, B and C can

only contain elements that are at most k positions before and

after xn+1 and yn+1 in Tx and Ty , respectively. Consequently,
Lines 8-9 can also be done using the binary search trees in time

O(k · logn).
Additionally, we need to maintain the integrated tree struc-

tures. Specifically, we insert pn+1 into the dynamic range tree

and insert the square of its nearest neighbors, that is,

square(pn+1, P
′) = [xn+1 − ϵ

k
P ′(pn+1),xn+1 + ϵ

k
P ′(pn+1)]

× [yn+1 − ϵ
k
P ′(pn+1),yn+1 + ϵ

k
P ′(pn+1)], (7)

into the dynamic segment tree. The dashed lines in Figure 1 illus-

trate this square. Both insertions require time inO(logn log logn).
Finally, for each point pi ∈ A we delete its old square of nearest

neighbors square(pi , P) from the dynamic segment tree and in-

sert the new square square(pi , P
′). This requires time in O(|A| ·

logn log logn).
For an overview of the new time complexity, the updated inser-

tion algorithm can be found in Appendix B. Because |A|, |B |, |C | ∈
O(k), the total time complexity of an insertion is O(k2 · logn ·
log logn). As before, k can be assumed to be a small constant,

which leads to an insertion time of O(logn log logn). Deleting
a point is completely analogous to insertions in (A)DEMI, and

the used tree structures have the same complexity for insertions

and deletions. Consequently, deletions in ADEMI also have a

deletion time of O(logn log logn). Since the time complexity of

queries is in O(1), ADEMI solves problem 3KL-Update in time

O(logn log logn). This means that ADEMI is a nearly optimal,

since its time complexity is only a factor log logn higher than

the lower bound from Corollary 4.6.

The drawback of ADEMI is an increased space complexity.

The space complexity of the two-dimensional range tree and

segment tree are O(n logn) and O(n log2 n), respectively. Addi-
tionally, the improvements to the time complexity cannot be used

when maintaining KSG estimates. This is because the number of

points whose marginal counts change during an update has no

bound lower than n. Additionally, the impact of incrementing or

decrementing a marginal count on the overall estimate depends

on the current count, which can be any value between k and n.
As a consequence, it remains unclear whether any dynamic data

structure can solve KSG-Update in sublinear time, or whether

there exists a stronger lower bound.

7 EXPERIMENTS
In this section we empirically validate the estimation quality and

time efficiency of our approach. To this end, we use data with

knownMI values and show that the 3KL converges to these values

even with small samples. We also do so for the KSG. For brevity

we only present the results for k = 4, since this value offers

good rates of convergence for both the KSG and 3KL and follows

the general recommendation of small values for k . Additionally,
we compare the runtimes for maintaining 3KL estimates using

ADEMI, DEMI and repeated estimation from scratch (REFS). For

REFS we compute Equation 4 repeatedly with a state-of-the-art

static approach [9], i.e., using sorting and space-partitioning trees

for nearest-neighbor searches. While we have already proven a

clear hierarchy regarding their asymptotic scalability, the com-

plexity classes neglect constant factors. So it remains interesting

how their concrete runtimes compare.

Setup. All approaches are implemented in C++ and compiled

using the Gnu Compiler (v. 5.4) with optimization (-O3) enabled.

We use the non-commercial ALGLIB
1
implementation of KD-

Trees as space-partitioning trees in REFS. We conduct all exper-

iments on Ubuntu 16.04.2 LTS using a single core of an AMD

Opteron™ Processor 6212 clocked at 2.6 GHz and 128GB RAM.

7.1 Data
For our evaluation, we use synthetic and real data sets. In par-

ticular, we use the dependent distributions with noise used for

comparing MI estimators [13]. These distributions have a noise

parameter σr , which we vary from 0.1 to 1.0. Thus, we use 10

distributions for each of these dependency types. Additionally,

we use the uniform distributions used to compare MI with the

maximal information coefficient [14] as well as independent uni-

form and normal distributions. As real data sets, we use sensor

data of randomly charged and discharged batteries [4] and time

series of household power consumption [18]. Monitoring MI on

such data could be useful to monitor the condition of battery cells

for maintenance or to infer knowledge about the behavior of the

households inhabitants. In the following, we briefly describe the

different distributions and data sets.

Linear. To construct the point pi ∈ P , we draw the value xi
from the normal distribution N (0, 1). Additionally, we draw some

noise ri from the normal distribution N (0,σr), where σr is the
noise parameter of the distribution. This yields the point pi =
(xi ,xi + ri).

Quadratic. This distribution is generated analogously to the lin-

ear distribution, except that the point is pi = (xi ,x
2

i + ri).

Periodic. For each point pi ∈ P , we draw the value xi from the

uniform distributionU [−π ,π]. Additionally, we draw some noise

ri from the normal distribution N (0,σr), where σr is the noise
parameter. This yields the point pi = (xi , sin(xi) + ri).

1
ALGLIB (www.alglib.net), Sergey Bochkanov

55

X

Y

10

1
A

10

1
B

X

Y

10

1
C

X

Y

10

1
F

X

Y

10

1
E

X

Y

10

1
D

X

Y

10

1
G

X

Y

10

1
H

X

Y

Figure 3: An overview of the uniform distributions used.

Chaotic. This distribution uses the classical Hénon Map, that is,

hxi+1 = 1 − α · h2xi + hyi

hyi+1 = β · hxi ,

with α = 1.4, β = 0.3 and (hx0 ,hy0) = (0, 0). For a point pi we
additionally independently draw noise rxi , ryi from the distribu-

tion N (0,σr), where σr is the noise parameter. Each point pi ∈ P
is then pi = (hxi + rxi ,hyi + ryi).

Uniform. The uniform distributions A to H we use are illustrated

in Figure 3. Note that the striped areas contain twice as many

points as the dotted areas. For these distributions, each striped

area with size 0.25 · 0.25 contains 25% of all points, while dotted

areas of the same size contain 12.5% of all points. The distribution

A simply draws values vi from U[0,1] and constructs the points

pi = (vi ,vi).

Independent. Lastly, we use the distributions UInd and NInd,

where each point consists of two values drawn independently

and identically distributed fromU [0, 1] and N (0, 1), respectively.

Battery Data. This data set, available at the NASA Prognostics

Center of Excellence [4], monitors voltage, current and tempera-

ture of battery cells during random loads. We use the data corre-

sponding to battery cell “RW9” and use each combination of the

attributes as bivariate sample.

Power Consumption. This data set, available at the UCI Machine

Learning Repository [18], monitors the power consumption of a

household in France. We use each combination of global active

power, global reactive power and voltage as a bivariate sample.

Data Precision. The nearest-neighbor based entropy estimator,

and by consequence the 3KL and KSG, expects samples from

continuous distributions and require samples without duplicate

values. Because of the limited precision of the battery and the

power consumption data, we add noise to the sample. Kraskov

et al. also have observed this issue and recommend the addition

of low intensity noise, e.g., a normal distribution with variance

10
−10

, to eliminate duplicate points [17]. However, we think that

filling the missing precision with uniform noise is a better com-

pensation for rounded or imprecise data. Figure 4 illustrates both

approaches with the number of duplicates per value of an im-

precise data set in parentheses. For our experiments we use the

second approach.

7.2 Quality of Estimation
To evaluate the quality of estimation, we use all data sets with

well-defined MI values. That is, all synthetic data sets except the

chaotic distributions, whose probability densities are unknown,

X

p(x)
X

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
(2) (3) (1) (2) (2) (3)(1)(4)

Figure 4: Avoiding duplicates in a sample by adding mini-
mal noise (top) or filling the missing precision uniformly
(bottom).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 100 1000 10000

A
ve

ra
g
e

E
rr

or
 [

n
at

]

Sample Size

DIMID
3KL (k=4)
KSG (k=4)

Figure 5: Average difference of estimates to trueMI values
depending on sample size.

and the uniform distribution A, whose MI is infinite. We use these

distributions to evaluate the consistency and the rate of conver-

gence of the KSG, 3KL and the estimator used by DIMID [3].

Specifically, we are interested in the difference between the es-

timated MI and true value for the distribution as well as the

variance of estimates for samples of the same distribution. Since

the behavior has turned out to be very homogeneous across the

different distributions, we restrict our presentation to selected

results.

Development with sample size. For each distribution we cre-

ated samples with sample sizes between 10 and 10000 and 1000

repeats per size. Figure 5 graphs the average difference between

the estimate and the true MI value of the respective distribution.

Additionally, Figure 6 shows the standard deviation of estimates

of the same distribution and sample size, averaged across all

distributions. One can see in these diagrams, that both the 3KL

and the KSG converge quickly to the true values and have only

small variance. In contrast, the approximate estimator in DIMID

has a strong variance and difference. We think the reason is the

random projection used by that estimator. It may retain enough

information such that estimates are comparable to each other,

as shown in their work [3]. However, we think that the projec-

tion loses too much information regarding the joint probability

density to allow for good MI estimates.

Different dependency types. We also studied whether the qual-

ity of estimation changes for different dependency types. As we

have seen in the previous paragraph, both the 3KL and KSG are

very consistent even with moderate sample sizes. As a result we

will use a small sample size, i.e. 100, to highlight differences. Fig-

ure 7 shows the average estimation error and standard deviation

of estimates using 3KL, KSG and DIMID for each dependency

type. While the variance of both KSG and 3KL are comparable

56

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 100 1000 10000

S
ta

n
d
ar

d
 D

ev
ia

ti
on

 [
n
at

]

Sample Size

DIMID
3KL (k=4)
KSG (k=4)

Figure 6: Standard deviation of estimates depending on
sample size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Lin
ear

Quad
rat

ic

Per
iod

ic

Unifo
rm

Indep
en

den
t

Lin
ear

Quad
rat

ic

Per
iod

ic

Unifo
rm

Indep
en

den
t

In
fo

rm
at

io
n
 [

n
at

] KSG (k=4)
3KL (k=4)

DIMID

Standard DeviationAverage Error

Figure 7: Average difference (left) and standard deviation
(right) of estimates to true MI values on distribution type.

for all dependency types, the difference to the true value is im-

balanced for the KSG but not the 3KL. Unfortunately, we do not

have any explanation for this difference. As before, we notice

strong differences between the DIMID approximation and the

results of KSG and 3KL.

7.3 Runtime Analysis
We have benchmarked runtimes of our data structures for all data

sets. Because we are not aware of any competitor that offers good

MI estimates on dynamic data, we compare our performance to

naïve recomputation of the estimate when an update occurs. We

compare the runtime to maintain 3KL estimates using DEMI and

ADEMI as well as repeated recomputation (REFS). We use a slight

simplification of the ADEMI trees, compared to the description in

Section 6. Specifically, we did not implement dynamic fractional

cascading and relied only on the technique of Willard [30] for

insertion and deletion of nodes. The reason is that dynamic frac-

tional cascading provides a small asymptotic benefit, i.e. reducing

a factor logn to log logn, but requires a lot of overhead. As a re-
sult, the structure labeled ADEMI in this section has insertion

and deletion time in O(log2 n) instead of O(logn log logn).
By design, both DEMI and ADEMI require only constant time

for querying the current MI value, but require more time to

update the data structure during insertions and deletions. The

repeated static estimation REFS has inverse properties, i.e., con-

stant time insertions and deletions but expensive queries. To

provide a good overview we use the task of monitoring the MI

of a changing data set of fixed size. That is, each update consists

of deleting one point, inserting a different point and querying

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1×106

T
im

e
p
er

 U
p
d
at

e
[m

s]

Sample Size

DEMI (k=4)
ADEMI (k=4)

REFS (k=4)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1×106

T
im

e
p
er

 U
p
d
at

e
[m

s]

Sample Size

0.0006·x·log(x)
0.0004·x

0.2·log(x)·log(x)

Figure 8: Average time for an update depending on sample
size for the synthetic distributions.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1×106

T
im

e
p
er

 U
p
d
at

e
[m

s]

Sample Size

DEMI (k=4)
ADEMI (k=4)

REFS (k=4)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1×106

T
im

e
p
er

 U
p
d
at

e
[m

s]

Sample Size

0.0006·x·log(x)
0.0004·x

0.2·log(x)·log(x)

Figure 9: Average time for an update depending on sample
size for the used real data set.

the current MI estimate. For these experiments we averaged the

time required per update using 1000 updates per distribution and

sample size.

Figure 8 shows the average update time required across all

synthetic distributions per sample size. The same graph based on

the real data sets instead of the synthetic distributions is Figure 9.

As expected, the time complexity of each approach translates

directly to asymptotic scaling with sample sizes, that is, steepness

of the curve in the double log plot. To highlight this, the graphs

include different asymptotic functions with dashed and dotted

lines. An interesting result is that ADEMI has by far the worst

performance for small windows and by far the best performance

for large ones. Our explanation is as follows: The maintenance of

the range trees and even more so the segment trees is expensive,

even if it scales favorably. For instance, when inserting a square

into a two-dimensional segment tree, 8 · (1 + logn) nodes are
created in the tree. This is a lot even for small n but does not

increase significantly for large n.

7.4 Discussion
To summarize this section, we confirmed the estimation quality of

3KL and KSG across all dependency types tested. Additionally, we

compared the performance of DEMI, ADEMI and REFS both on

synthetic and real data. As expected, DEMI consistently outper-

forms the SE. The evaluation of ADEMI depends on the context

and application. While it is slow for small window sizes, it barely

slows down for larger sizes. On the one hand, this means that

it is often recommendable to use DEMI if the data size is small.

On the other hand, ADEMI can be used for very data-intensive

57

tasks such as monitoring high-throughput streams. A problem

with stream monitoring often is the multiplicative cost of high

temporal resolutions: A stream with frequent items permits less

time to process a new item, and a window with fixed time length

contains more items. This leads to increased time to process a

new item. As we have seen, the second factor is nearly negligible

when using ADEMI.

8 CONCLUSIONS
In this work we have studied the efficiency of estimating mutual

information using nearest-neighbor distances. We have consid-

ered the estimator by Kraskov et al. [17](KSG) and the direct

application of the entropy estimator [9, 16](3KL). We have in-

vestigated the computational complexity of these estimators on

static data and have proven a tight lower bound for both in the

algebraic computation tree model. Next, we have turned to the

maintenance of 3KL and KSG estimates on dynamic data and

have examined possible optimizations and limitations. We have

inferred a lower bound for the computational complexity of this

task. We also have presented two dynamic data structures DEMI

and ADEMI that maintain 3KL and KSG estimates. We have

proven that both data structures require asymptotically less time

to update their estimate than the lower bound to recompute it.

Additionally, for maintenance of 3KL estimates, the time com-

plexity of ADEMI is near optimal. Finally, we have validated the

performance of our approach empirically. We have shown that

the 3KL has a good rate of convergence for various dependen-

cies. We also have benchmarked our data structure using both

synthetic and real data and have shown that ADEMI is very fast

for large data sets.

Future Work. In this work we have focused on exact computa-

tions of nearest-neighbor based MI estimators for dynamic data.

It remains open whether our approach offers the best trade-off

between estimation quality and computation time.

For one, it would be interestingwhich results one could achieve

by binning the data and using estimators for discrete distribu-

tions [5, 10]. However, it is unclear how the bin width should be

chosen, given the evolving nature of a stream. If the bin width

needs adjustment, this is computationally expensive or reduces

the quality of estimation if there is no adjustment.

It would also be interesting to study which provable quality

one might achieve with approximations. While there exist ap-

proximations of static estimators [3, 12], there are no bounds

for additive or multiplicative errors. But these would be very

important because there exists a lot of work comparing static

estimators. In addition, empirical assessments of new estimators

often cover only some of the dependencies that MI quantifies.

A FORMAL PROOFS
A.1 Proof of Theorem 4.1

Theorem 4.1. The problem 3KL-Estimation has time complex-

ity Ω(n logn).

Proof. The proof is by reduction from the problem Inte-

gerElementDistinctness. Given a multiset A = {a1, . . . ,an }
of integers, are there two indices i , j such that ai = aj are
duplicates. The problem IntegerElementDistinctness has a

known lower bound of Ω(n logn) in the algebraic computation

tree model [19]. For an instance A of IntegerElementDistinct-

ness, we construct an instance of 3KL-Estimation P as follows.

For ai ∈ A, the set P contains two points pi = (i,ai +
1

4+i) and

0 1 2 3 4 5

1

2

4

3

X

Y

ε1P (p1) = 0.25

ε1X(x1) = 0.25

ε
1Y
(y

1)
=

15 −
19

p1

p6
p2

p7

p3
p8

p4
p9

p5
p10

Figure 10: An illustration of the construction of P in Ap-
pendix A.1.

pn+i = pi + (0.25, 0.25). Note that pi and pn+i are closer than
any other pair, because i and ai are integers. Additionally, we
add the offset

1

4+i to the y-coordinates, because duplicates in A
would otherwise lead to a nearest-neighbor distance of 0 and

thus log(0) in Equation 4. Figure 10 features an example for this

construction for the IntegerElementDistinctness instance

A = {1, 2, 4, 3, 1}. The point p1 is highlighted as circle and its

nearest-neighbor distances are highlighted.

Claim 1. A contains a duplicate if and only if Î3KL(P) , ψ (|P |)−
ψ (1) for k = 1.

Subproof. Let i, j ∈ {1, . . . ,n} be two integers with i , j.
Based on the construction of P , it follows that |xi −x j | = |xn+i −
xn+j | ≥ 1. Additionally, it is |xi − xn+i | = |yi − yn+i | = 0.25.

Using the reverse triangle inequality, it is |xi −xn+j | ≥ |xi −x j | −
|x j − xn+j | ≥ 0.75. This holds for any i , j , which means that pi
is the nearest neighbor of pn+i and vice versa, because we use

the L∞ norm. As a consequence the nearest neighbor distances

are ϵ1P (p) = 0.25 for all p ∈ P and ϵ1X (x) = 0.25 for all x ∈ X .
Note that this means that the nearest neighbor distances in P and

X are independent of the existence of duplicates in A.
If A does not contain any duplicates, it follows that |yi −

yj | = |yn+i − yn+j | ≥
4

5
, since A only contains integers and the

difference between
1

4+i and
1

4+j is less than 0.2. By the same

arguments as above it follows that |yi − yn+j | ≥ 0.55 and that

ϵ1Y (y) = 0.25 for all y ∈ Y . We can then use these values in

Equation 4, which yields:

Î3KL(P) = ψ (|P |)−ψ (1)+
1

|P |

|P |∑
m=1

log

(
0.25 · 0.25

(0.25)2

)
= ψ (|P |)−ψ (1).

(8)

Conversely, if A contains the duplicates ai = aj , it is |yi −

yj | = |
1

4+i −
1

4+j | ≤ 0.2 and |yi − yn+j | ≥ |0.25 −
1

4+j | and thus

ϵ1Y (yi) ≤ 0.2. Additionally, because of j , i it also is ϵ1Y (yi) > 0.

It follows that

log

(
ϵ1Y (yi) · ϵ

1

X (xi))

(ϵ1P (pi))
2

)
<0⇒

1

|P |

|P |∑
m=1

log

(
ϵ1X (xm) · ϵ

1

Y (ym)

ϵ1P (pm))
2

)
<0

(9)

and analogously to Equation 8 we obtain Î3KL(P) < ψ (|P |)−ψ (1).
This concludes the subproof. �

It is clear that P can be constructed in time O(|A|), which

means |P | ∈ O(|A|). After computing Î3KL(P), the result is only
compared to a sum over |P | numbers, because ψ (|P |) −ψ (1) =∑ |P |−1
m=1

1

m by definition of the digamma function. Note that this

58

1

2

3

4

5

1 2 3 4 5 6
0
0

p3 p9

p1 p7

p2
p8

p4 p10

p5 p11

p6 p12

X

Y

Figure 11: An illustration of the construction of P in Ap-
pendix A.2.

reduction works analogously for any fixed k > 0 by placing

k − 1 points evenly spaced on the diagonal between each pair

pi and pn+i . Because k is fixed, the size of P increases only by a

constant factor. Therefore, the complexity of the reduction is in

O(n). This means that determining Î3KL(P) has a lower bound of

Ω(n logn). �

A.2 Proof of Theorem 4.3
Theorem 4.3. The problem KSG-Estimation has a time com-

plexity in Ω(n logn).

Proof. Similarly to the Proof of Theorem 4.1, see Appen-

dix A.1, we reduce the problem to IntegerElementDistinct-

ness. For any instance A of IntegerElementDistinctness, we

construct an instance of KSG-Estimation P as follows. For

ai ∈ A, the set P contains two points pi = (i,ai) and pn+i =
(i + 0.25,ai + 0.25). We use 0.25 because it means that this pair

of points is closer than any other pair, because i and ai are in-
tegers. Figure 11 features an example for this construction for

the IntegerElementDistinctness instance A = {1, 4, 2, 5, 3, 2}.
The dashed lines in the figure illustrate the areas of the marginal

counts C1

x (p3) and C
1

y (p3).

Claim 2. A contains a duplicate if and only if �IKSG (P) ,∑ |P |−1
m=1 (

1

m) − 1 for k = 1.

Subproof. Let i, j ∈ {1, . . . ,n} be two integers with i , j.
Based on the construction of P , it follows that |xi −x j | = |xn+i −
xn+j | ≥ 1. Additionally, it is |xi − xn+i | = |yi − yn+i | = 0.25.

Using the reverse triangle inequality, it is |xi −xn+j | ≥ |xi −x j | −
|x j − xn+j | ≥ 0.75. This holds for any i , j , which means that pi
is the nearest neighbor of pn+i and vice versa, because we use

the L∞ norm. As a consequence, the marginal countsC1

x (p) are 1
for all p ∈ P , independent of the existence of duplicates in A.

If A does not contain any duplicates, it follows that |yi −yj | =
|yn+i − yn+j | ≥ 1, since A only contains integers. By the same

arguments as above it follows that |yi − yn+j | ≥ 0.75 and that

C1

y (p) = 1 for allp ∈ P . We can then use these values in Equation 6

and because ofψ (x) =
∑x−1
m=1(

1

m) −C it is:

�IKSG (P) = ψ (1)+ψ (|P |)− 1
1

−
1

|P |

|P |∑
m=1

ψ (1)+ψ (1) =

|P |−1∑
m=1

(
1

m

)
−1

(10)

Conversely, if A contains the duplicates ai = aj , it is |yi −

yj | = 0 and |yi − yn+j | = 0.25 and thus C1

y (pi) ≥ 3. Because

of ψ (x + 1) = ψ (x) + 1

x > ψ (x) for all x ≥ 0, it is, analogously

to Equation 10, �IKSG (P) < ∑ |P |−1
m=1 (

1

m) − 1. This concludes the

subproof. �

p QR

QU

QL

QD

QLD QRD

QRUQLU

Figure 12: The partioning
of Q in Appendix A.3.

p
r

s

X

Y

∆

∆

Figure 13: An example for
QRU .

It is clear that P can be constructed in time O(|A|), which
means |P | ∈ O(|A|). Note that this reduction works analogously

for any fixed k > 0 by placing k − 1 points evenly spaced on the

diagonal between each pair pi and pn+i . Because k is fixed, the

size of P increases only by a constant factor. After computing�IKSG (P), the result is only compared to a sum over |P | numbers.

Therefore the complexity of the reduction is inO(n). This means

that determining �IKSG (P) has a lower bound of Ω(n logn). �

A.3 Proof of Theorem 5.1
Theorem 5.1. Let P ⊆ R2 be a set of points. For any point p ∈ P

there exist at most 8k points q ∈ P such that p is one of the k nearest

neighbors of q using the L∞-norm.

Proof. Let p = (x ,y) ∈ P be a point and Q ⊆ P be the

set of points such that for each point q ∈ Q , p is one of the k
nearest neighbors of q. We separate Q into eight sets based on

their relative location to p, as illustrated in Figure 12. There are

four axis-aligned rays QL ,QR ,QU ,QD ⊆ Q centered at p such

that points on any of these rays share one component with p
and differ in the other one. Additionally, there are four quad-

rants QRU ,QLU ,QLD ,QRD ⊆ Q centered at p excluding the

axis-aligned rays. Because p cannot be its own nearest neighbor,

these eight sets partition Q . To prove the lemma we proceed to

show that each of these eight sets contains at most k points.

Let r = (xr ,yr) be the most distant point to p in the axis-

aligned ray QR , that is, |x − xr | = max(xi ,yi)∈QR |x − xi |. Then
all other points in QR are on the line between p and r and thus

closer to r thanp. This means thatQR cannot contain more thank
points, because p would not be a nearest neighbor of r otherwise.
By symmetry, this result also holds for the sets QL ,QU ,QD .

Similarly, Let r = (xr ,yr) be the most distant point to p in the

quadrant QRU and let ∆ be that distance. More formally, it is

∆ = max(|x − xr |, |y −yr |) = max

(xi ,yi)∈QRU
max(|x − xi |, |y −yi |).

An exemplary illustration can be found in Figure 13 with the

set QRU = {s, r }. For any other point qi = (xi ,yi) ∈ QRU with

qi , r it is x < xi ≤ x + ∆ and y < yi ≤ y + ∆, because r is the
point most distant to p. Figure 13 illustrates this by delimiting the

area in which all points of QRU lie with dashed lines. Because of

xr > x and yr > y, it follows that |xr −xi | < ∆ and |yr −yi | < ∆.
This means that qi is a nearest neighbor of r . Figure 13 shows this
by highlighting the area of nearest neighbors of r with dotted

lines. Analogously to the axis-aligned rays, QRU cannot contain

more than k points, because p would not be a nearest neighbor

of r otherwise. By symmetry, this result also holds for the sets

QLU ,QLD ,QRD . �

59

B ADEMI

Data Structure 5: ADEMI

struct {
real x ,y
real ϵkP , ϵ

k
X , ϵ

k
Y

} DemiPoint;

struct {
DemiPoint[] PD
BST<DemiPoint*> Tx ,Ty
real base, sum
2D dynamic range tree Tranдe
2D dynamic segment tree Tseд

} state;

Algorithm 6: ADEMI-Insert(SP ,pn+1)

1 Compute ϵkP ′(pn+1) O(k · logn log logn)

2 Compute ϵkX ′(xn+1) and ϵ
k
Y ′(yn+1) O(logn)

3 Insert pn+1 into PD O(1)

4 Reference pn+1 in Tx , Ty O(logn)

5 Insert pn+1 into Tranдe O(logn log logn)

6 Insert square(pn+1, P
′) into Tseд O(logn log logn)

7 base← base + 1

n O(1)

8 sum← sum + log

(
ϵkX ′ (xn+1)·ϵ

k
Y ′ (yn+1)

(ϵkP ′ (pn+1))
2

)
O(1)

9 A← {pi ∈ P : max(|xi − xn+1 |, |yi − yn+1 |) < ϵ
k
P (pi)}

O(logn log logn + |A|)

10 B ← {pi ∈ P : |xi − xn+1 | < ϵ
k
X (xi)} O(k · logn)

11 C ← {pi ∈ P : |yi − yn+1 | < ϵ
k
Y (yi)} O(k · logn)

12 forall pi ∈ A do
13 Delete square(pi , P) from Tseд O(|A| · logn log logn)

14 Compute ϵkP ′(pi) O(|A| · k · logn log logn)

15 Insert square(pi , P
′) into Tseд O(|A| · logn log logn)

16 sum← sum + log((ϵkP (pi))
2) − log((ϵkP ′(pi))

2) O(|A|)

17 forall pi ∈ B do
18 Compute ϵkX ′(xi) O(|B | · k · logn)

19 sum← sum − log(ϵkX (xi)) + log(ϵ
k
X ′(xi)) O(|B |)

20 forall pi ∈ C do
21 Compute ϵkY ′(yi) O(|C | · k · logn)

22 sum← sum − log(ϵkY (yi)) + log(ϵ
k
Y ′(yi)) O(|C |)

ACKNOWLEDGMENTS
This work was partially supported by the DFG Research Training

Group 2153: “Energy Status Data − Informatics Methods for its

Collection, Analysis and Exploitation”

REFERENCES
[1] Michael Ben-Or. 1983. Lower bounds for algebraic computation trees. In

Proceedings of the 15th Annual ACM Symposium on Theory of Computing.

80–86.

[2] Jon Louis Bentley. 1977. Algorithms for Klee’s rectangle problems. Technical

Report. Technical Report, Computer.

[3] Jonathan Boidol and Andreas Hapfelmeier. 2017. Fast mutual information

computation for dependency-monitoring on data streams. In Proceedings of

the Symposium on Applied Computing. ACM, 830–835.

[4] Brian Bole, Chetan S Kulkarni, and Matthew Daigle. 2014. Adaptation of

an electrochemistry-based li-ion battery model to account for deterioration

observed under randomized use. In Proceedings of Annual Conference of the

Prognostics and Health Management Society, Vol. 29. https://ti.arc.nasa.gov/c/

25/

[5] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. 2007. A near-

optimal algorithm for computing the entropy of a stream. In Proceedings of

the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’07).

Society for Industrial and Applied Mathematics, 328–335.

[6] Timothy M Chan. 2006. A dynamic data structure for 3-d convex hulls and

2-d nearest neighbor queries. In Proceedings of the 17th annual ACM-SIAM

Symposium on Discrete Algorithm (SODA’06). 1196–1202.

[7] Kenneth Ward Church and Patrick Hanks. 1990. Word association norms,

mutual information, and lexicography. Computational Linguistics 16, 1 (1990),

22–29.

[8] Thomas M. Cover and Joy A. Thomas. 2006. Elements of information theory (2.

ed. ed.). Wiley-Interscience, Hoboken, NJ.

[9] Dafydd Evans. 2008. A computationally efficient estimator for mutual infor-

mation. In Proceedings of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, Vol. 464. The Royal Society, 1203–1215.

[10] Nicholas JA Harvey, Jelani Nelson, and Krzysztof Onak. 2008. Sketching

and streaming entropy via approximation theory. In IEEE 49th Annual IEEE

Symposium on Foundations of Computer Science (FOCS ’08). IEEE, 489–498.

[11] Sanjiv Kapoor and Michiel Smid. 1996. New techniques for exact and ap-

proximate dynamic closest-point problems. SIAM J. Comput. 25, 4 (1996),

775–796.

[12] Fabian Keller, Emmanuel Müller, and Klemens Böhm. 2015. Estimating mutual

information on data streams. In Proceedings of the 27th International Conference

on Scientific and Statistical Database Management (SSDBM’15). ACM.

[13] Shiraj Khan, Sharba Bandyopadhyay, Auroop R. Ganguly, Sunil Saigal, David J.

Erickson, Vladimir Protopopescu, and George Ostrouchov. 2007. Relative

performance of mutual information estimation methods for quantifying the

dependence among short and noisy data. Phys. Rev. E 76 (2007), 15. Issue 2.

[14] Justin B Kinney and Gurinder S Atwal. 2014. Equitability, mutual information,

and the maximal information coefficient. Proceedings of the National Academy

of Sciences 111, 9 (2014), 3354–3359.

[15] Yuliya Kopylova, Duncan A Buell, Chin-Tser Huang, and Jeff Janies. 2008.

Mutual information applied to anomaly detection. Journal of Communications

and Networks 10, 1 (2008), 89–97.

[16] LF Kozachenko and Nikolai N Leonenko. 1987. Sample estimate of the entropy

of a random vector. Problemy Peredachi Informatsii 23, 2 (1987), 9–16.

[17] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. 2004. Estimating

mutual information. Phys. Rev. E 69 (2004), 16. Issue 6.

[18] M. Lichman. 2013. UCI Machine Learning Repository. (2013). https://archive.

ics.uci.edu/ml/machine-learning-databases/00235/

[19] Anna Lubiw and András Rácz. 1991. A lower bound for the integer element

distinctness problem. Information and Computation 94, 1 (1991), 83–92.

[20] Kurt Mehlhorn and Stefan Näher. 1990. Dynamic fractional cascading. Algo-

rithmica 5, 1 (1990), 215–241.

[21] Angeliki Papana and Dimitris Kugiumtzis. 2009. Evaluation of mutual infor-

mation estimators for time series. International Journal of Bifurcation and

Chaos 19, 12 (2009), 4197–4215.

[22] Hanchuan Peng, Fuhui Long, and Chris Ding. 2005. Feature selection based

on mutual information criteria of max-dependency, max-relevance, and min-

redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence

27, 8 (2005), 1226–1238.

[23] Josien PW Pluim, JB Antoine Maintz, and Max A Viergever. 2003. Mutual-

information-based registration of medical images: a survey. IEEE Transactions

on Medical Imaging 22, 8 (2003), 986–1004.

[24] Peng Qiu, Andrew J Gentles, and Sylvia K Plevritis. 2010. Reducing the com-

putational complexity of information theoretic approaches for reconstructing

gene regulatory networks. Journal of Computational Biology 17, 2 (2010),

169–176.

[25] Thomas Schreiber. 1995. Efficient neighbor searching in nonlinear time series

analysis. International Journal of Bifurcation and Chaos 5, 02 (1995), 349–358.

[26] Claude Elwood Shannon. 1948. A mathematical theory of communication.

The Bell System Technical Journal 27 (1948), 379–423, 623–656.

[27] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. 2015.

General incremental sliding-window aggregation. Proceedings of the VLDB

Endowment 8, 7 (2015), 702–713.

[28] Martin Vejmelka and Kateřina Hlaváčková-Schindler. 2007. Mutual informa-

tion estimation in higher dimensions: A speed-up of a k-nearest neighbor

based estimator. In International Conference on Adaptive and Natural Comput-

ing Algorithms (ICANNGA’07). 790–797.

[29] Janett Walters-Williams and Yan Li. 2009. Estimation of mutual information:

A survey. In International Conference on Rough Sets and Knowledge Technology

(RSKT’08). 389–396.

[30] Dan E Willard. 1985. New data structures for orthogonal range queries. SIAM

J. Comput. 14, 1 (1985), 232–253.

60

	On Complexity and Efficiency of Mutual Information Estimation on Static and Dynamic DataMichael Vollmer, Ignaz Rutter, Klemens Böhm

