
AQuery Algebra for Temporal Text Corpora
Jens Willkomm

Karlsruhe Institute of Technology
Department of Informatics
jens.willkomm@kit.edu

Christoph Schmidt-Petri
Karlsruhe Institute of Technology

Department of Humanities
and Social Sciences

christoph.schmidt-petri@kit.edu

Martin Schäler
Karlsruhe Institute of Technology

Department of Informatics
martin.schaeler@kit.edu

Michael Schefczyk
Karlsruhe Institute of Technology

Department of Humanities
and Social Sciences

michael.schefczyk@kit.edu

Klemens Böhm
Karlsruhe Institute of Technology

Department of Informatics
klemens.boehm@kit.edu

ABSTRACT
Researching the evolution of the concepts represented by words,
like “peace” or “freedom”, named conceptual history, is an important
discipline in the humanities, but still a laborious task. It normally
consists of reading and interpreting a large number of carefully
selected texts, without however always having a comprehensive
knowledge of all the potentially relevant material. Thus, our objec-
tive is to design a query algebra to access temporal text corpora. It
shall comprehensively allow domain experts to formalize hypothe-
ses on how concepts manifest in large-scale digital text corpora
targeting at the complete works of Reinhart Koselleck, a highly
prominent researcher in conceptual history. In cooperation with
domain experts, we first determine the primary information types
used in conceptual history, such as word usage frequency or sen-
timent. Based on this, we define database operators formalizing
these types, which can be combined to formulate arbitrarily com-
plex queries representing hypotheses. The result is a novel query
algebra that enables researchers in conceptual history to access
large text corpora and extensively analyze word behaviors over
time in a comprehensive way. In a proof of concept, we demonstrate
how to use our algebra resulting in the first novel insights. This
proves the suitability of our algebra.

KEYWORDS
Query algebra; temporal text corpora; database operators; concep-
tual history
ACM Reference Format:
JensWillkomm, Christoph Schmidt-Petri, Martin Schäler,Michael Schefczyk,
and Klemens Böhm. 2018. A Query Algebra for Temporal Text Corpora. In
JCDL ’18: The 18th ACM/IEEE Joint Conference on Digital Libraries, June
3–7, 2018, Fort Worth, TX, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3197026.3197044

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5178-2/18/06. . . $15.00
https://doi.org/10.1145/3197026.3197044

1 INTRODUCTION
The digitization of large time-labeled bibliographies has resulted in
corpora such as the Google Ngram data set. Such corpora capture
how words are used over time in a comprehensive way. As a result,
they are expected to reveal novel insights into the history of how
language and thus also how society evolved. This however requires
that adequate analysis systems are available. Providing a query al-
gebra that allows domain experts to formalize complex hypotheses
is therefore a key factor to successfully unlock this potential. The
case of conceptual history serves as our example. In conceptual
history, researchers examine the evolution of concepts represented
by words such as “peace” or “freedom”. In exploring the history of a
concept, scholars commonly make use of, but are not restricted to,
word-usage frequencies, word contexts, sentiment analysis, how
words refer and relate to and contrast with each other, or they look
for word pairs or word families whose usage is correlated [2, 15]. As
an example, think of conceptual history researchers who examine
whether the words Osten andWesten (German for East and West)
change from cardinal directions to a political meaning and their
use in political contexts after 1945.

Existing query algebras, like the one for the Structured Query
Language (SQL), have proven their worth, but do not feature spe-
cific support for analyses in this spirit. Other approaches from the
literature, e. g., the Contextual Query Language [12], the Corpus
Query Language [6], or the ANNIS Query Language [20], have
similar issues.

In this paper, we propose a query algebra for empirical analysis
for temporal text corpora. A temporal text corpus in our sense is
a set of words and word chains, i. e., ngrams, together with their
usage frequency at various points of time. In the humanities, ap-
proaching large amounts of texts using information systems is
known as Distant Reading [9] and is contrasted with the conven-
tional human close reading of individual texts. There now is the
need for an approach that (1) is useful for domain experts, i. e., is de-
scriptive and complete, and (2) bears optimization potential to allow
fast query processing on large data sets. The ideal of completeness
represents the ambition to provide an algebra that can match all
actual and potential hypotheses of conceptual history. We address
the problem of designing such a query algebra and examine its
suitability. We focus on an algebra inspired by conceptual history,
as exemplified by the work of Reinhart Koselleck [13]. Koselleck is

https://doi.org/10.1145/3197026.3197044
https://doi.org/10.1145/3197026.3197044
https://doi.org/10.1145/3197026.3197044

JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA J. Willkomm et al.

the founding father of German conceptual history and one of the
most frequently cited researchers in this field. This paper is part of
an interdisciplinary collaboration between philosophers working
on conceptual history and computer scientists.

1.1 Challenges
We have to solve two challenges: data characteristics and showing
the completeness of our query algebra.We describe these challenges
in more detail in the following.

Data Characteristics. Koselleck has given intuitive definitions of
his concept types that are more concrete for some concept types and
more abstract for others. In contrast, when working with real data,
we need observable data characteristics that specify the behavior
of individual words.

Completeness. To guarantee that domain experts can examine
the whole conceptual history using our query algebra, we must
show its completeness. We call our query algebra complete when
one can formalize all potential hypotheses regarding Koselleck’s
conceptual history.

1.2 Contributions
In this work, we present a set of algebra operators that forms our
CHQL algebra. It allows analyzing conceptual history related to
arbitrary words and addresses the aforementioned challenges as
follows.

We need to overcome the gap between the philosophical descrip-
tions of information types and their implementation. Therefore,
we define a set of data characteristics. Such a data characteristic
is a concrete and quantifiable piece of information, e. g., how of-
ten has a word been used in a specific year, or which words are
used around this word. The philosophical part is to propose data
characteristics that allow to realize all of Koselleck’s information
types. The computer scientists part is to offer data characteristics
and suggest alternative realizations. Our algebra is mostly based
on these characteristics. We realize every data characteristic with
one algebra operator. For example, our operator surroundingwords
creates a set of words used around a target word. Another example
is our sentiment operator. It maps every word to an integer that
represents the sentiment value of this word.

Our completeness criterion is to cover all of Koselleck’s hypothe-
ses. We argue that using his hypotheses is a suitable and meaningful
criterion, given his academic standing in the field. To show the com-
pleteness of our algebra in turn, we show that it completely covers
the information types to analyze conceptual history.

Finally, we arrive at first novel insights from experimenting with
a proof-of-concept implementation.

2 RELATEDWORK
Developing methods (and systems) allowing to analyze large text
corpora, e. g., from a linguistic or philosophic perspective, is a
current trend that has created the digital humanities. We now review
solutions from this field and declarative query languages in general.

Work in digital humanities mainly consists of data processing
and the analysis of text corpora [3, 18]. For example, distant reading
is a known idea for text analysis [9]. Existing solutions focus on

linguistic and reflective properties as well as their evolution, i. e.,
changes over time, such as [4, 5, 14]. Respective systems cannot
output the required information to conduct research on conceptual
history in a comprehensive way. In addition, such systems do not
provide a sufficiently abstract interface, a reason why experts are
reluctant in using them [3].

A very common query algebra is the relational algebra [1, 8].
However, it does not contain sufficiently specific operators, e. g.,
temporal or linguistic operators. There are extensions to add tempo-
ral operators [16, 17], but not linguistic operators. To query relation
between words, there are special-purpose query languages. For ex-
ample, SQWRL is a language to query an ontology [11]. Querying
word relations, e. g., from an ontology, does not include all linguistic
relationships needed. Further, ontologies do not provide temporal
information. SQWRL does not contain any temporal operator. — All
of these algebras have in common that they do not cover both lin-
guistic and temporal operators required for research on conceptual
history.

3 CONCEPTUAL HISTORY FUNDAMENTALS
In this section, we explain fundamental terms of conceptual history.
In the second part, we describe Koselleck’s information types.

3.1 Terms of Conceptual History
Here we describe the meaning of important terms of conceptual
history.

Concept A concept is a word with a wide range of social and
political meanings. This wide range makes it ambiguous.
This ambiguousness creates space for interpretation [21].

Concept Type A concept type is a group of concepts having
a similar behavior. The objective of conceptual history is to
determine which concept type a particular concept has fallen
under during a particular period. For example, a parallel
concept is a concept type containing concepts with a similar
role in a particular discourse, such as “love” and “peace”.

Information Type Koselleck distinguishes a number of con-
cept types by various criteria. His criteria are for example
changes in the sentence structure or changes in a word’s
linguistic context. We denote Koselleck’s criteria as informa-
tion types. We describe a full list of Koselleck’s information
types in Section 3.2.

3.2 Koselleck’s Information Types
Koselleck does not explicitly give a set of information types he
uses for his research. However, experts in this field have exten-
sive knowledge about the information Koselleck uses, and how he
argues. We, and the philosophers in particular, now assemble all
information types Koselleck considers in his work, as follows.

Geography What is the geographical dispersion of words? In
which country are specific words used, and which are not?

Conceptual Design Conceptual design means that words can
be used as proxies for a more complex topic than their literal
meaning. For instance, when talking about the topic war,
one often does not mean the single word war but also words
that belong to war, like soldiers and death.

AQuery Algebra for Temporal Text Corpora JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA

Context The context refers to the linguistic context. A linguis-
tic context is the set of words that are used around a target
word. The context is of special interest for concepts and am-
biguous words. Considering the context of a word allows
to detect its meanings. This is not restricted to ambiguous
words. For distinct words, the context might describe a differ-
ent view on the same circumstance. Take the word ecology:
It is used at least in political as well as in economic con-
texts. It has the same meaning, but triggers different targets,
namely to take care of people’s health — and a restriction to
maximize the profit.

Sentence Structure The arrangement of words and phrases
define the structure of a sentence. Keeping track of changes
in the arrangement of phrases is an indicator of a social
change. For example, the phrase the history of the farmers
changed to the history of the trade. This might mean that
trade has now taken the role agriculture used to have.

Neologisms A neologism is a word or phrase that either is
completely new to a language or is used with a newmeaning.
It is not necessarily part of the mainstream language. A
revolution usually goes along with new words to describe
and categorize the new conditions.

World Affairs Conceptual history and the ability to interpret
a concept and its meaning require knowledge about world
affairs, e. g., changes of economic, political or social circum-
stances. Such historical events often trigger a social change
which is reflected in the language.

Coverage in the Query Algebra. We decide to not deal with ge-
ographical information in our algebra. Using a certain language
data set, e. g. the British English or the German one, implicitly con-
tains important geographical information already. We also do not
explicitly model world affairs, for two reasons. First, the user needs
extensive knowledge about world affairs to correctly interpret the
results. Second, a user may be looking for special world affairs and
its impact on language. When we explicitly model some events, we
would only facilitate the investigation of known events.

4 FROM CONCEPT TYPES TO OPERATORS
In this section, we describe how one can search for concept types
with the operators which we formally define in Section 6. We show
that one can search for concept types that follow the definitions of
Koselleck [2]. We explain completeness in three steps, which Fig-
ure 1 illustrates. In Section 3.2, we show that Koselleck has come up
with a relationship between concept types and a set of information
types. In this section, since Koselleck’s specifications of informa-
tion types are rather abstract, we describe an interpretation of his
information types. This interpretation is an original contribution
of this article, based on the expert knowledge of the philosophers
in the team of authors. As part of this step, we also describe a
mapping of those types to so-called data characteristics. A data
characteristic is a quantitative feature either explicitly present in
the data, e. g., the usage frequency of word “peace” in 1969, or a
derived piece of information, e. g., the difference between the usage
frequency of words “peace” and “war” in 1941. In principle, we can
create numerous data characteristics from a temporal text corpus.
Hence, in the second step we describe which data characteristics

Figure 1: The relationship between concept types, informa-
tion types, data characteristics and operators

are needed to simulate Koselleck’s information needs. In the third
step we explain our realization of all data characteristics and their
implementation as operators.

4.1 Step 1: Relationship between Concept
Types and Information Types

One of Koselleck’s assumptions is that any concept type has its
specific characteristic, i. e., any concept type can be described as a
combination of information types. For example, words that form a
parallel concept might have a significant number of equal surround-
ing words. However, for most concept types he does not specify this
relationship explicitly. This means that we cannot directly look for
concept types. We need to define operators to find the information
types that are indicators for concept types.

Example 4.1. We illustrate a relationship between concept types
and information types, using counter concepts as example. Counter
concepts shape an asymmetric relation between “us” and “them” [21].
– Examples that are part of the following subsections will continue
this example and say what concept types and information types are
in this specific case. We use counter concepts as a running example in
this section wherewith we illustrate each of the three steps.

4.2 Step 2: Relationship between Information
Types and Data Characteristics

Every concept type has its own characteristics, e. g., roles and func-
tions in text. Koselleck’s information types are a set of such charac-
teristics. If Koselleck’s theory holds, one can describe every concept
type c as a combination of information types which characterizes c .
This combination always is a subset of all of Koselleck’s information
types. We therefore strive for a system that finds these information
types in large corpora. To this end, we need a formal definition of
any information type which is observable and quantifiable. We call
such a definition data characteristic. Our philosophy experts define
a mapping from information types to data characteristics. Before
defining all our data characteristics, here is an example for Step 2.

Example 4.2. This example continues Example 4.1. Words that are
often used either near the word “us” or “them” potentially are counter
concepts. Well-known counter concepts [21] are:

• the bourgeois opposing to the proletarian
• the socialist opposing to the liberal
• the West opposing to the East
• the Protestant opposing to the Catholic

JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA J. Willkomm et al.

Hence, one must consider the context of the information type to find
indications for counter concepts.

Our Data Characteristics. We now describe our data characteris-
tics which identify each of Koselleck’s information types. In Sec-
tion 6, we define one operator for each of these characteristics.

Conceptual Design Words can have single or multiple mean-
ings, i. e., be ambiguous.We realize finding conceptual design
by checking whether a word describes a topic additionally
to its own meaning. A topic is a group of words that are used
to write about the same issue, e. g. politics or economy. Our
experts define the data characteristic of conceptual design
as the sum of the usage numbers of all words that belong to
a topic. Hence, we propose an operator topicgrouping that
groups words by its topic and sums their usage numbers. If
a word has multiple topics, we sum it into all of these topics.

Context To determine a word’s context in Koselleck’s spirit
requires two data characteristics: (1) a set of surrounding
words for a target word, i. e., the linguistic context, and (2)
the sentiment for this context, by summing up the sentiment
values of the words of the context. Our surroundingwords
operator and sentiment operator implement this.

Sentence Structure One needs to consider two data charac-
teristics: (1) the function of a word, i. e., differentiate between
the parts of speech, and (2) completing phrases, i. e., search
for missing words in a phrase. The first data characteristic
is implemented by our operator pfilter. We implement the
second one as a pattern-matching operator which we call
textsearch.

Neologisms The data characteristic of a neologism is an in-
creasing word-usage frequency over time. To find this char-
acteristic, we propose an operator time series-based selection
that compares the time-series values with a constant. To al-
low for a temporal restriction, we also provide a subsequence
operator that limits the selection to an arbitrary time inter-
val. The combination of both operators facilitates the search
for neologisms.

4.3 Step 3: Finding Data Characteristics with
Operators

In the third step, we implement operators to find the specified data
characteristic in a large text corpus. This allows to search for any
of Koselleck’s information types.

Example 4.3. This example continues Example 4.2. To find po-
tential counter concepts, we apply the surroundingwords operator
to our data. It returns a set of surrounding words for every word in
the corpus. We now use our textfilter operator to search these sets of
surrounding words for words like “us” or “them”. The more often one
of these words is found, the stronger is the indication that this word is
part of a counter concept.

If our operators can identify all data characteristics, one can
search for any of Koselleck’s information types. This means that
one can formalize and test all hypothetical relationships between
information and concept types. Hence, we claim that our set of
operators is complete with respect to the set of possible hypotheses.

w1 p1 ts3

1980 1981 1982

Begriffsgeschichte ∅ 70 54 58
peace NOUN 312,031 330,389 295,867
war NOUN 875,479 878,696 873,246

soldier NOUN 70,196 72,941 72,587

(a) Example elements of set G1

w2 p2 ts3

1980 1981 1982

Reinhart Koselleck ∅ ∅ 65 24 19
conceptual history ∅ ∅ 37 31 27

modern history ∅ ∅ 3,074 3,165 3,459
history modern ∅ ∅ 1 6 4
history books ∅ ∅ 2,248 2,205 2,333

(b) Example elements of set G2

Table 1: Example sets for дramn

5 DATA MODEL
In this section, we define the data model behind our query algebra.
We then describe additional data sources which would be necessary
to realize all information types described in Section 4. In the last
part of this section, we describe notation shorthands and our data
sources.

5.1 Ngram
There are three elementary types: words, parts of speech and time
series. We usew to represent an individual word andW for a set of
words, e. g.,W = {∅,peace,war , soldier , . . .}. ®w ∈ W n is a vector
of n words. For example,W 2 = {(conceptual ,history), . . .}. A part
of speech p is an element of P = {∅,NOUN ,VERB,AD J ,ADV ,
PRON ,DET ,ADP ,NUM,CON J , PRT ,X }. ®p ∈ Pn is a vector of
parts of speech of length n. For example P2 = {(ADV ,VERB), . . .}.
A time series ®ts ∈ ZT is a vector of integer values of lengthT . Using
these basic types, we now define дramn .

Definition 5.1. A дramn is a tuple (®w, ®p, ®ts) ∈ W n × Pn × ZT

consisting of a vector of n words, a vector of n parts of speech and
a time series of length T . We abbreviate a set of дramn as Gn .

Parts of speech are classes of words with similar grammatical
properties, e. g., nouns or verbs. The part of speech elements are
intuitive, e. g., NOUN denotes a noun, VERB a verb. A full descrip-
tion of the part of speech elements is in [7]. Table 1 shows example
elements of sets G1 and G2.

Projecting on Single Elements. We define functions that project a
дramn tuple to its components. To access the word vector we have
function projwords of type Gn →W n , as follows:

projwords(дramn) := ®w (1)

To access the parts of speech of a дramn tuple, we have function
projpos of type Gn → Pn :

projpos(дramn) := ®p (2)

AQuery Algebra for Temporal Text Corpora JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA

w1 sentiment

peace +1
war -1

Table 2: An example of sentiment information

To access the time series, we have function projts of typeGn → ZT :

projts(дramn) := ®ts (3)

5.2 Notation Shorthands
We write дramn .w as shorthand for projwords(дramn), to access
the word vector ®w . We use дramn .p and дramn .ts to project on the
parts of speech element and the time series, respectively. We use
the notation wi to access the ith element of vector ®w . The same
holds for pi and vector ®p. We additionally define two shorthands to
access time-series values. The first one tsy projects a time series
to its value of a specific year y. The second notation maps a time
series ®ts to a subsequence ZT → Zt where 0 ≤ t ≤ T . The access
to a subsequence from year ys to year ye inclusively is as follows.

®ts[ys ,ye] :=

subsequence from ys to ye if ys < ye

tsys if ys = ye
empty subsequence else

(4)

5.3 Sentiment and Category
To realize all the information types, we need to combine information
from different sources. We need to consider two additional kinds
of information: the sentiment value of a word and its category. A
word sentiment can be positive, negative or neutral. To implement
such a contrast-word rating, we use a binary word-classification
mechanism. A category is a group of words that are used in the
same topic, such as religion or economy. To realize this, we need the
information which category a word belongs to. We now define both
kinds of additional information, the sentiment and the category.

Sentiment. In conceptual history, it is important to investigate
the relations between concepts, e. g., differences in positive and
negative sentiments, or their orientation towards the past or the
future. Signal words typically make these differences explicit. To
illustrate, in the phrase the hope for peace the word “hope” is a word
that signals a positive phrasing of the sentence. The additional
information is the knowledge about signal words and its positive
or negative classification. To define the sentiment value for a word,
we define a function wordsentiment:W n → Z. The function maps
single words as well as word vectors to a sentiment value. For ex-
ample, the single word “power” is a positive word and may have a
sentiment value of +1. The 2-gram “electrical power” in turn does
neither have a positive nor a negative sentiment value. The senti-
ment value for a neutral rating is 0. wordsentiment returns integer
values to allow modeling different grades of positive and negative
sentiment. Table 2 lists example words and their sentiments.

Category. A category is a word that is used as proxy for a more
complex topic than its literal meaning, e. g., the category military

w1 category

war military
soldier military
military military

Table 3: An example of category information

includes the word “war” as well as “soldiers” and others. To imple-
ment information type “conceptual design”, we need to model the
relationship between words and its categories. We define category
as a function of typeW n → C that maps words to the category
they belong to, whereC ⊂W 1 is a set of categories. Every category
in C is described as a single word of the set of all wordsW 1. For
example, the word “military” is a word (military ∈W 1) and a cat-
egory (military ∈ C). The word “soldier” in turn is a word soldier
∈W 1, but does not describe a category soldier < C . Table 3 shows
an example of such a category grouping.

Information Sources. We store the sentiment information as well
as the category information independent of one specific source.
Therefore, we are able to use every source that contains this infor-
mation and also to replace a source if a better one is available. Due
to their informedness regarding text and word interpretation, the
philosophers in our team have decided for the following sources.
We extract the sentiment information from the LIWC list [19]. This
list is a common reference in computerized text analysis. We use
the OpenThesaurus1 database [10] for the mapping between words
and categories.

6 QUERY OPERATORS
Section 3 lists a complete set of information types to analyze con-
ceptual history. We now propose a corresponding set of query
operators. Some operators realize an entire information type, while
one needs a combination of operators to realize other, more complex
types. This section introduces the operators, gives their definitions
and shows how they implement the information types.

6.1 Topic Grouping Operator
We realize information type conceptual design by defining a topic
grouping operator. To realize this abstraction, this operator groups
all words from the same topic. The groups have names consisting
of one word. Thus, the result is of type дram1. This allows us to
define word categories e. g., military or religious, and analyze or
compare their developments over time. We first define the set of
occurrence topics for a given set of words and afterwards we define
our topicgrouping operator.

Definition 6.1. CG is the set of categories that appear in set G.

CG :=
⋃
д∈G

{category(д. ®w)} (5)

1https://www.openthesaurus.de

https://www.openthesaurus.de

JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA J. Willkomm et al.

w1 p1 ts3

1980 1981 1982

military ∅ 945,675 951,637 945,833
Table 4: Example result set of the topic grouping operator

Definition 6.2. topicgrouping is an operator of type P(Gn) →

P(G1). It has the following semantics:

topicgrouping(G) :=
⋃
c ∈CG

(c, ∅,
∑

{д∈G |category(д . ®w)=c }

д. ®ts) (6)

The topicgrouping operator groups all ngrams by their topic and
sums together their time series.

Example. This example, as well as the ones that follow, use the
data in Tables 1, 3 and 2. topicgrouping sums up the time series of
all words belonging to category military. The result is a time series
with the number of times authors have written about a military
topic. For our example data, the operator yields the result in Table 4.

6.2 Surrounding Words Operator
When computing the context of words, a target word is the word
we determine the context for, whereas context words are the words
used around the target word. Before defining the operator, we
define two auxiliary functions. The first one maps a word vector to
the set of words of the vector. The second function maps a word
vector to a word vector of a higher dimensionality that includes
the same elements as the original word vector. We first define the
help function split and secondly use this function to define our
expandwords operator.

Definition 6.3. split is a function of typeW n → P(W 1).

split(w ∈W n) := {w1,w2, . . . ,wn } (7)

split maps a vector of n words to a set of n words.

Definition 6.4. expandwords is a function of type N ×W n →

P(Wm) with n < m;n,m ∈ N.

expandwords(m, ®q ∈W n) :={
(w1,w2, . . . ,wm) ∈Wm

����∃o :
n∧
i=1

wi+o = qi

}
(8)

with 0 ≤ o ≤ m − n

expandwords maps a vector of words to a set of vectors that are
of higher dimensionality and contain the original word vector. This
includes word vectors with new words in the front or in the back or
both. Parameterm defines the dimensionality of the target vectors.
Function expandwords addsm − n words to the input vector. For
example, we expand the word vector “history” of length n = 1 to a
word vectors of lengthm = 2. A partial result are the word vectors
“the history”, “conceptual history”, or “history of”.

w1 p1 ts3

1980 1981 1982

conceptual ∅ 75,586 78,319 84,518
modern ∅ 523,599 510,492 532,338
books ∅ 447,885 436,655 462,202

Table 5: Example result set of surroundingwords

Definition 6.5. surroundingwords is an operator of typeN×Gn →

P(G1). It has the following semantics:

surroundingwords(m,д ∈ Gn) :=⋃
i ∈expandwords(m,д . ®w)

⋃
j ∈split(i)

{projwords−1(j)} (9)

The surroundingwords operator returns a set of context words
occurring together with at least one of the target words in a window
of sizem. We split the description into three steps. First, we filter
all multigrams of sizem for those that contain at least one target
word vector. Second, we split these multigrams into single words
and third, we add the corresponding usage-frequency time series
to the context words.

Here are the three steps in more detail.
(1) The help function expandwords selects all word vectors of

sizem which contain the target word vector ®q, no matter at
which position of the window it occurs. expandwords returns
a set of word vectors.

(2) Having the set of word vectors that contain the target word
vector, we split these word vectors into single words. To
perform this splitting we need function split. This results in
a set of single words.

(3) To return elements of type дram1 instead of single words,
we use function projwords−1 to get the дram1 elements that
contain the corresponding word. We do this for every single
word that function split returns. The result is the union over
all дram1 elements of all surrounding words.

Example. Suppose that we want all surrounding words for the
word history within a window of sizem = 2. Then we get the result
shown in Table 5.

6.3 Sentiment Operator
Another important information for conceptual history is a word’s
sentiment, i. e., the positive or negative emotions associated with
a word. This operator can be used to determine the sentiment for
a single word or for a set of context words. This operator is the
second part to completely cover the context information types from
Section 3.

Definition 6.6. sentiment is an operator of type Gn → Gn . It has
the following semantics:

sentiment(д ∈ Gn) := (д. ®w,д.®p,д. ®ts · wordsentiment(д. ®w)) (10)

This operator multiplies the usage frequency of a word by the
word’s sentiment value. This multiplication takes both into account,
the word’s sentiment value and the word’s usage frequency in the

AQuery Algebra for Temporal Text Corpora JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA

w1 p1 ts3

1980 1981 1982

peace NOUN +312,031 +330,389 +295,867
war NOUN -875,479 -878,696 -873,246

Table 6: Example result set of the sentiment operator

w2 p2 ts3

1980 1981 1982

history modern ∅ ∅ 1 6 4
history books ∅ ∅ 2,248 2,205 2,333

Table 7: Example result set of the textsearch operator

text. The sentiment operator changes themeaning of the time-series
values. The time-series values then no longer stand for the usage
frequency of the word, but its sentiment over time. More precisely,
the time-series values represent the sentiment value of a ngram
over time.

The sentiment operator is defined for all lengths of ngrams.
However, it only matches the same ngram length that is specified in
the sentiment mapping, but not shorter or longer ones. For instance,
the sentiment for war only matches the 1-gram war, but not the
2-gram civil war. This allows a fine-grained definition of sentiment
values, as it becomes possible to have different sentiment values for
War, Civil War, First World War, Second World War and Cold War.

Example. Table 6 shows an example result of sentiment.

6.4 Text Search Operator
Having a large set of words, a fundamental need is to search for the
words conceptual historians might be interested in which matches
some pattern pt . Pt is short for a set of patterns. Z = {∃,∀} is the
set of standard quantifiers.

Definition 6.7. textsearch is an operator of type Pt×Z×P(Gn) →

P(Gn). It maps its input as follows:

textsearch(pt , ζ ,Gn) := {д ∈ Gn | ζ i : д.wi matches pt} (11)

The operator selects all tuples that satisfy the given condition
with ζ ∈ {∃,∀} as quantifier and pt as a search pattern. The quan-
tifier controls whether all words need to match pt or just one.

Example. When searching for the Pattern “histo.*” the textsearch
operator returns the set in Table 7.

6.5 Part of Speech Filtering
Analyses in conceptual history often only refer to specific parts of
speech such as nouns. So we propose a filter to keep only ngrams
having a specific parts of speech, e. g., it allows to select all nouns.

Definition 6.8. pfilter is an operator of type Pn × Z × P(Gn) →

P(Gn). It maps its input as follows:

pfilter(p, ζ ,Gn) := {д ∈ Gn | ζ i : д.pi = p} (12)

w1 p1 ts3

1980 1981 1982

peace NOUN 312,031 330,389 295,867
war NOUN 875,479 878,696 873,246

Table 8: Example result set of the pfilter operator

w1 p1 ts3

1980 1981 1982

peace NOUN 312,031 330,389 295,867
war NOUN 875,479 878,696 873,246

Table 9: Example result set of the time series-based selection

Like in the definition of the textsearch operator, we use the
quantifier ζ ∈ {∃,∀} to match the part of speech for at least one
element or for all elements. In contrast to the textsearch operator,
we can only search for part of speech tags.

Example. Selecting all nouns returns a set like the one in Table 8.

6.6 Time Series-based Selection
We may want to exclude words with extreme time-series values
from our analysis, e. g., very rarely used words, because they might
falsify our results. So we need a filter for time-series characteristics.
Θ = {<, ≤,=,,, ≥, >} is the set of standard comparison operators.

Definition 6.9. cond is a tuple (ζ ,θ ,v) ∈ Z × Θ × Z of condi-
tions Cond .

Definition 6.10. Fcond ⊆ ZT is a set of time series that fulfill
condition cond .

F(ζ ,θ,v) := { ®ts ∈ ZT | ζ i : tsi θ v} (13)

Definition 6.11. tsselection is an operator of typeCond×P(Gn)→

P(Gn). It maps its input as follows:

tsselection(cond,Gn) := {д ∈ Gn |д. ®ts ∈ Fcond } (14)

The time series-based selection operator selects дramn elements
based their time-series properties.

Example. Condition cond = (∀, >, 1000) is the condition to select
all ngrams whose usage frequency is larger than 1,000 for every
available year. The resulting set is shown in Table 9.

6.7 kNN Operator
Another information that is of interest for analyzing conceptual
history is to find words with a similar evolution of usage frequency,
sentiment or surrounding words. This leads us to the definition
of a kNN operator, which returns the k ngrams having the most
similar time series to a given ngram. This information type is part
of analyzing the grammatical structure.

JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA J. Willkomm et al.

w2 p2 ts3

1980 1981 1982

conceptual history NULL NULL 37 31 27
Table 10: Example result set of the kNN operator

w2 p2 ts2

1980 1981

Reinhart Koselleck ∅ ∅ 65 24
conceptual history ∅ ∅ 37 31

Table 11: Example result set of the subsequence operator

Definition 6.12. kNN is an operator of type N ×Gn × P(Gn) →

P(Gn). It maps its input as follows:

kNN(k,q,Gn) := arg min
{S ∈P(Gn): |S |=k }

max
s ∈S

s . ®ts − q. ®ts

2 (15)

Our kNN operator implements a kNN search based on the time-
series values of the дramn elements. Input k defines the number of
resulting elements, i. e., the number of nearest neighbors to search
for. q defines the target дramn to search the neighbors for. Input
set Gn defines the search space, i. e., the set of possible results.
The kNN operator can be used with different distance measures.
For example, our implementation currently supports the Euclidean
distance and dynamic time warping (DTW).

Example. Searching for the k = 2 nearest neighbors of the target
word “Reinhart Koselleck” yields the result in Table 10.

6.8 Subsequence Operator
Most time-specific information have a specific start or end date
or are in a specific temporal range of historical events, e. g., in the
period from 1945 to 1990. However, the operators above work over
the whole time range. Hence, we need an operator that reduces
time series to a certain time interval.

Definition 6.13. subsequence is an operator of typeGn ×N×N→

Gn . It maps its input as follows:

subsequence(д,ys ,ye) := (д. ®w,д.®p,д. ®ts[ys ,ye]) (16)

The subsequence operator has three parameters: the дramn el-
ement д, the start year ys and the end year ye . It takes the in-
put ngram element and reduces its time series to the time win-
dow [ys ,ye].

Example. When applying function subsequence to consider only
the years from 1980 to 1981, the result looks like the set in Table 11.

6.9 Absolute Value Operator
Using the sentiment operator allows generating positive and neg-
ative time-series values representing positive or negative word
emotions. For some investigations of conceptual history one needs
to quantify word’s emotions, no matter whether they are positive

w2 p2 ts3

1980 1981 1982

peace NOUN +312,031 +330,389 +295,867
war NOUN +875,479 +878,696 +873,246

Table 12: Example result set of the absolute operator

integer value

3
(a) Example result of
the count operator

ts3

1980 1981 1982

−563, 448 −548, 307 −577, 379
(b) Example result of operator sumup

Table 13: Example results of the operators count and sumup

or negative. To archive this, we first apply the sentiment operator
and secondly the absolute value operator that maps all sentiment
values to positive values, i. e., the absolute value of the sentiment
value.

Definition 6.14. tsabs is a function of type ZT → NT0 , as follows:

tsabs(®ts) := (|ts1 |, |ts2 |, . . . , |tsT |) (17)

tsabsmaps every value of a given time series to its absolute value.

Definition 6.15. absolute is an operator of typeGn → Gn . It maps
its input as follows:

absolute(д) := (д. ®w,д.®p, tsabs(д. ®ts)) (18)

The absolute value operator turns every time-series value of a
дramn element into its absolute value. Function tsabs maps the
values for every single year to its absolute value and creates a new
time series with absolute values.

Example. Applying this operator to the previous set yields the
result in Table 12.

6.10 Count Operator
When working with huge data sets, which is preferred for statistical
analysis, for many queries a human user simply cannot look at all
elements or count them manually. The count operator counts the
number of elements of a given set.

Definition 6.16. count is an operator of type P(Gn) → N. It maps
its input as follows:

count(G ∈ P(Gn)) := |G | (19)

Given an input set, count counts its elements and returns the
number of containing elements.

Example. When we want to count the number of nouns in our
data set in Table 1, we first filter for nouns, using the pfilter operator,
followed by the count operator. Table 13a shows the result.

AQuery Algebra for Temporal Text Corpora JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA

6.11 Sumup Operator
There is often the need to sum up the time series of ngrams, e. g., to
compare the frequency of all nouns or adjectives. The sumup oper-
ator gets a set of ngrams, sums up their time series and returns the
resulting time series. In comparison to the topicgrouping operator,
the sumup operator does not group the elements, but sums up all
received time series.

Definition 6.17. sumup is an operator of type P(Gn) → Z
T . It

maps its input as follows:

sumup(G ∈ P(Gn)) :=
∑
д∈G

д. ®ts (20)

The sumup operator iterates over the given set of ngrams and
sums together their time series. In the case of summing up senti-
ment time series, the operator may return a time series containing
negative values.

Example. The result set when applying this operator to the exam-
ple set from the sentiment operator looks like the one in Table 13b.

6.12 Set Operators
Since we are working on sets, we are able to use the set operators
intersection (∩), union (∪) and minus (\). The key on which these
operators work is a combination of the word vector w and the
corresponding part of speech, i. e., vector p. The time-series attribute
of the result set is taken from the left input set.

6.13 Algebraic Expressions
So far, we have introduced individual operators. In order to formu-
late complex hypotheses revealing novel insights for conceptual
history, one generally needs to combine operators. For instance, in
case one wants to find the k nearest nouns to some given ngram
in a specific time period, we can combine the existing operators to
formulate an expression to compute the desired result. Operators
are compatible if the output of the first operator is of the same type
as the input of the second operator. Most of our operators result in
a set of ngram tuples, but not all of them. There are two operators
that do not result in such a set: count and sumup. Both operators
yield a single value. These operators usually are the final operation
in an algebraic expression, e. g., summing up the input tuples. How
to come from a philosophical hypothesis to concrete queries, and
how example results may look like is the topic of the next section.

7 PROOF OF CONCEPT
Our query algebra allows (1) hypothesis testing and (2) hypotheses
engineering. We explain both in this section.

7.1 Hypothesis Testing
Hypothesis testing enables scholars to empirically test existing
hypotheses regarding properties of different concept types. For ex-
ample, scholars want to test a hypothesis that characterizes parallel
concepts. This consists of the following steps: First, they formalize
their hypothesis, i. e., translate it to an algebraic expression. Sec-
ond, they let a machine evaluate it on a huge corpus. Third, they
interpret the results. To illustrate, think of the two hypotheses:

Hypothesis H1 The words “Osten” and “Westen” (German
for East and West) have acquired a political meaning, i. e,.
a political context, during the Cold War, while the words
“Norden” and “Süden” (German for North and South) have
not changed their merely geographical meaning.

Hypothesis H2 The two words “Osten” and “Westen” have
developed into contrasting classes, i. e., have changed from
parallel concepts to counter concepts.

Formalizing Hypothesis H1. To formalize Hypothesis H1, we use
several operators, see Figure 2a for the operator tree. First, we
need the text-search operator for occurrences of the four cardinal
directions. We then generate the common context of “Osten” and
“Westen” as well as the one of “Norden” and “Süden”. To remove
the context words related to cardinal directions, we subtract the
common context of “Norden” and “Süden” from the one of “Osten”
and “Westen”. This leads to the context of “Osten” and “Westen” that
is not related to cardinal directions. In a final step, we categorize
the remaining context words. Figure 2b visualizes the result of
computing this operator tree.

Formalizing Hypothesis H2. Given the validation of Hypothe-
sis H1 that the words “Osten” and “Westen” become a political
context, in Hypothesis H2 we check whether the semantics of the
context for these two words develop into contrasting directions,
i. e., if one word gets a positive context while the other one gets
a negative one. We again start using our text-search operator to
select the appropriate occurrences. We then separately generate the
context for “Osten” and for “Westen” and perform a sentiment anal-
ysis. The operator tree to test Hypothesis H2 is shown in Figure 3a.
Figure 3b visualizes the result. The result shows that the word
“Westen” is used in a context mainly consisting of positive words
while the words around “Osten” sum up to a negative sentiment.
There can be two reasons for this: (1) The word “Westen” has more
positive surrounding words that overcome the negative ones, or (2)
the word “Osten” misses some surrounding words that the word
“Westen” has and therefore sums to a negative sentiment. One can
test these two possible reasons with a corresponding expression in
our algebra.

7.2 Hypotheses Engineering
Hypotheses engineering means developing criteria and hypotheses
to distinguish between concept types, i. e., speculating about their
differences, formalizing and executing algebraic expressions, and
interpreting the result. We, especially the philosophers team, are
interested in checking hypothesis to get a better understanding
of the differences between parallel and counter concepts. From
close reading, they already have some hypotheses regarding the
characteristics of parallel concepts. These hypotheses relate to the
usage frequency, the surrounding words and the sentiment values
of words. We have formalized and tested all these hypotheses, with
the outcome that we could not confirm any of them. Our conceptual
history experts then have had a closer look at the results of the
expression. They have observed that some queries produce better
results than others, i. e., contain more parallel concepts. This con-
firms that our approach gives way to important information for
conceptual history experts, to develop new hypotheses. At the end

JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA J. Willkomm et al.

(a) The operator tree to realize the expression to test Hypothesis H1

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 1800 1850 1900 1950 2000

fr
e
q

u
e
n
cy

year

geography
political

(b) Result when executing operator tree to test Hypothesis H1

Figure 2: Testing Hypotheses H1

(a) The operator tree to realize the expression to test Hypothesis H2

-100000

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1800 1850 1900 1950 2000

se
n
ti

m
e
n
t

year

westen
osten

(b) Result when executing operator tree to test Hypothesis H2

Figure 3: Testing Hypotheses H2

of this process, our experts have been able to identify important
information types of a parallel concept, as follows: A parallel con-
cept features two concepts whose surrounding words have a similar
sentiment, and they share numerous surrounding words. As part
of our future work, we want to confirm this more rigidly, with a
lot of close reading.

8 CONCLUSIONS
In this paper we propose the CHQL query algebra that supports
exploring and understanding conceptual history. We have shown
that our algebra completely covers all information types used by
the pioneer of conceptual history, Reinhart Koselleck. We have
demonstrated the usefulness of the algebra by formalizing two im-
portant hypotheses in conceptual history and testing it on Google’s
ngram data.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases:

The Logical Level. Addison-Wesley.
[2] Otto Brunner, Werner Conze, and Reinhart Koselleck. 2004. Geschichtliche Grund-

begriffe. Vol. 1–8. Klett-Cotta.
[3] Shalin Hai-Jew. 2017. Data Analytics in Digital Humanities. Springer.
[4] William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Cultural Shift or

Linguistic Drift? Comparing Two Computational Measures of Semantic Change.
In Empirical Methods in Natural Language Processing.

[5] William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. DiachronicWord Em-
beddings Reveal Statistical Laws of Semantic Change. (2016). arXiv:1605.09096v4

[6] Miloš Jakubíček, Adam Kilgarriff, Diana McCarthy, and Pavel Rychlỳ. 2010. Fast
Syntactic Searching in Very Large Corpora for Many Languages. In Pacific Asia
Conference on Language, Information and Computation (PACLIC).

[7] Yuri Lin, Jean-Baptiste Michel, Erez Lieberman Aiden, Jon Orwant, Will Brock-
man, and Slav Petrov. 2012. Syntactic Annotations for the Google Books Ngram
Corpus. In Annual Meeting of the Association for Computational Linguistics (ACL).
169–174.

[8] David Maier. 1983. Theory of Relational Databases. Computer Science Press.
[9] Franco Moretti. 2013. Distant Reading. Verso Books.
[10] Daniel Naber. 2005. OpenThesaurus: Ein offenes deutsches Wortnetz. In

Sprachtechnologie, mobile Kommunikation und linguistische Ressourcen: Beiträge
zur GLDV-Tagung 2005 in Bonn. 422–433.

[11] Martin O’Connor and Amar Das. 2009. SQWRL: a Query Language for OWL. In
OWL: Experiences and Directions (OWLED).

[12] The Library of Congress. 2013. The Contextual Query Language. (2013). https:
//www.loc.gov/standards/sru/cql/

[13] Niklas Olsen. 2012. History in the Plural: An Introduction to the Work of Reinhart
Koselleck. Berghahn Books.

[14] Vinodkumar Prabhakaran, William L. Hamilton, Dan McFarland, and Dan Ju-
rafsky. 2016. Predicting the Rise and Fall of Scientific Topics from Trends in
their Rhetorical Framing. In Annual Meeting of the Association for Computational
Linguistics (ACL). 1170–1180. https://doi.org/10.18653/v1/p16-1111

[15] Joachim Ritter, Karlfried Gründer, and Gottfried Gabriel. 2007. Historisches
Wörterbuch der Philosophie. Vol. 1–13. Schwabe.

[16] Richard Snodgrass. 1987. The temporal query language TQuel. ACM Transactions
on Database Systems 12, 2 (1987), 247–298. https://doi.org/10.1145/22952.22956

[17] Richard T. Snodgrass (Ed.). 1995. The TSQL2 Temporal Query Language. Springer.
[18] Claire Warwick. 2012. Digital Humanities in Practice. Facet Publishing.
[19] Markus Wolf, Andrea B. Horn, Matthias R. Mehl, Severin Haug, James W. Pen-

nebaker, and Hans Kordy. 2008. Computergestützte quantitative Textanalyse.
Diagnostica 54, 2 (2008), 85–98. https://doi.org/10.1026/0012-1924.54.2.85

[20] Amir Zeldes, Anke Lüdeling, Julia Ritz, and Christian Chiarcos. 2009. ANNIS: a
search tool for multi-layer annotated corpora. In Proceedings of Corpus Linguistics.
https://doi.org/10.18452/13437

[21] Niels Åkerstrøm Andersen. 2003. Discursive Analytical Strategies: Understanding
Foucault, Koselleck, Laclau, Luhmann. Policy Press.

https://www.loc.gov/standards/sru/cql/
https://www.loc.gov/standards/sru/cql/
https://doi.org/10.18653/v1/p16-1111
https://doi.org/10.1145/22952.22956
https://doi.org/10.1026/0012-1924.54.2.85
https://doi.org/10.18452/13437

	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Contributions

	2 Related Work
	3 Conceptual History Fundamentals
	3.1 Terms of Conceptual History
	3.2 Koselleck's Information Types

	4 From Concept Types to Operators
	4.1 Step 1: Relationship between Concept Types and Information Types
	4.2 Step 2: Relationship between Information Types and Data Characteristics
	4.3 Step 3: Finding Data Characteristics with Operators

	5 Data Model
	5.1 Ngram
	5.2 Notation Shorthands
	5.3 Sentiment and Category

	6 Query Operators
	6.1 Topic Grouping Operator
	6.2 Surrounding Words Operator
	6.3 Sentiment Operator
	6.4 Text Search Operator
	6.5 Part of Speech Filtering
	6.6 Time Series-based Selection
	6.7 kNN Operator
	6.8 Subsequence Operator
	6.9 Absolute Value Operator
	6.10 Count Operator
	6.11 Sumup Operator
	6.12 Set Operators
	6.13 Algebraic Expressions

	7 Proof of Concept
	7.1 Hypothesis Testing
	7.2 Hypotheses Engineering

	8 Conclusions
	References

