
In-Database Analytics with ibmdbpy
Edouard Fouché

Karlsruhe Institute of Technology
Karlsruhe, Germany

edouard.fouche@kit.edu

Alexander Eckert
IBM Deutschland R&D
Böblingen, Germany
aeck@de.ibm.com

Klemens Böhm
Karlsruhe Institute of Technology

Karlsruhe, Germany
klemens.boehm@kit.edu

ABSTRACT
The increasing size of the available data and database volumes rep-
resents a real challenge for the data management community. In
general, current approaches in data mining require the data to be
first extracted from an underlying database. From a practical point
of view, this presents many drawbacks. In this short article, we
present a possible solution to bridge the gap between data reposi-
tories and end user analysis. We demonstrate the interestingness
of this approach with ibmdbpy, an open source Python interface
developed by IBM for database administration and data analytics.

CCS CONCEPTS
• Information systems → Data analytics; Call level interfaces;
Database administration; Data mining;

KEYWORDS
Database, Data Analytics, Data Mining, SQL-Pushdown

ACM Reference Format:
Edouard Fouché, Alexander Eckert, and Klemens Böhm. 2018. In-Database
Analytics with ibmdbpy. In SSDBM ’18: 30th International Conference on Sci-
entific and Statistical Database Management, July 9–11, 2018, Bozen-Bolzano,
Italy. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3221269.
3223026

1 INTRODUCTION
To conduct data analysis, one typically must first extract the data
locked in a database management system (DBMS). This is problem-
atic, for several reasons: First, the volume of data can be very large,
and the data can be heterogeneous, so that it cannot be obtained
fast and easily. Second, if the data is big, it may not fit in memory.
Third, if the data contains sensitive information such as credit card
numbers, passwords or business-related information, the data needs
to be properly encrypted. This also holds for all copies of the data.
Fourth, when new data becomes available, one must update the
duplicates, which requires expensive synchronization episodes. Fi-
nally, data manipulation and mining often is an interactive process,
involving different programming languages, where short response
times are preferred.

As a result, one often resorts to the extraction of small samples,
or transfers the data to a cluster system for further processing.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6505-5/18/07.
https://doi.org/10.1145/3221269.3223026

SL SW PL PW CLASS

5.0 3.6 1.4 0.2 setosa
6.8 2.8 4.8 1.4 versicolor
4.9 3.1 1.5 0.1 setosa
6.9 3.1 5.4 2.1 virginica

Table 1: Sample of the Iris data set [6]

However, samples may be unrepresentative of the real data distri-
bution. Working with computer clusters in turn gives way to high
infrastructure expenses.

While modern DBMSs do incorporate analytical components,
interactingwith a DBMS can be cumbersome. From the end user per-
spective, it requires the knowledge of database specific languages
such as SQL. Despite the maturity of database technology, database
languages are not high-level and may be unsuitable for extensive
data analysis. For example, consider the sample of the Iris data set
[6] shown in Table 1. To compute the mean of each attribute with
respect to the class, one could create the following SQL query:

SELECT AVG("SL"), AVG("SW"), AVG("PL"), AVG("PW")
FROM IRIS
GROUP BY "CLASS"

This query is very simple. However, for each table with other
columns, the query needs to be rewritten. If we want to express
more complex operations, such as filtering, sorting or joining over
other aggregated values, writing SQL queries becomes cumbersome.
As a comparison, this task is achieved with Python using a short
and schema-independent syntax:

iris.groupby("CLASS").mean()

In this work, we present a general framework to cope with these
issues, with the core idea to “bring” analytics to data, instead of
data to analytics. We connect to distant databases and provide high-
level Python analytics functions that are translated in SQL queries
and pushed to the database for execution, leaving the data where
it is. Thus, one can take advantage of in-database performance-
enhancing features, such as in-memory column store and parallel
processing. Our implementation - ibmdbpy - is a Python library that
imitates the high-level syntax and methods of standard libraries for
data analysis such as Pandas and Scikit-learn. So far, ibmdbpy offers
basic statistical functions, such as aggregated average, standard
deviation, variance, as well as unsupervised data mining algorithms
like K-means or supervised algorithms like Naive Bayes classifica-
tion. The latest development focused on in-database correlation
coefficients for feature selection, such as the Pearson correlation
coefficient, Chi statistics, Gini index and mutual information.

https://doi.org/10.1145/3221269.3223026
https://doi.org/10.1145/3221269.3223026
https://doi.org/10.1145/3221269.3223026

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Edouard Fouché, Alexander Eckert and Klemens Böhm

Ibmdbpy also wraps existing in-database analytics algorithms,
making them accessible and usable outside of the database environ-
ment. Being a high-level interface, ibmdbpy can easily be extended
to include additional features. While ibmdbpy is currently com-
patible with IBM DB2® and IBM dashDB® database instances, its
principles could be extended to any SQL database as well.

We organize this paper as follows: in Section 2, we review the
related work. In Section 3, we explain the architecture of the ib-
mdbpy framework. In Section 4, we present our demonstration and
focus on a relevant part of data analysis, i.e. the in-database compu-
tation of various correlation coefficients. In Section 5, we present
the results of the experiments. Finally, we conclude in Section 6.

2 RELATEDWORK
Interfaces for in-database analytics exist. For example, the Blaze
ecosystem [1] provides an interface for multiple backends, such
as SQL databases, NoSQL data stores, Spark, Hive, Impala, and
raw data files. The drawback of supporting so many backends is
that it reduces the available functions to the common subset. For
example, it cannot accommodate platform-specific functionality
such as custom SQL keywords and procedures. Also, the Ibis Project
[2] is related to ibmdbpy, but mainly supports Impala as a backend,
and its analytics capabilities are so far limited.

In parallel, commercial and non-commercial database develop-
ers put effort in in-database frameworks, such as the SAP HANA
database [5] or Oracle Data Miner [7]. Those frameworks pro-
vide end users with specific SQL keywords or functions to call
in-database machine learning algorithms. In general, the algorithms
are platform-specific and can only be used as a black-box. None-
theless, these approaches are orthogonal and compatible with ours:
They can be wrapped again and accessed through our interface.

3 FRAMEWORK
The ibmdbpy framework is an open source Python library. It can
connect to distant IBMDB2 or IBM dashDB instances and translates
a subset of Python functions into SQL automatically. The queries
are sent through a middleware using ODBC or JDBC. Figure 1
illustrates the workflow of ibmdbpy.

End users, typically analysts or data scientists, can interact with
IBM DB2/IBM dashDB from their workstation environment. They
can issue basic Python commands (1) that the client transforms
into SQL queries (2) then pushes to the database. IBM DB2/IBM
dashDB processes the queries (3) and the results are retrieved back
in raw format, typically as a list of tuples. They are then parsed (4)
into the corresponding Python data structures and presented to the
user. In our example, the user asks for the list of the available tables:
The answer is IRIS and SWISS. With this approach, we combine
the advantages of the expressiveness of high-level programming
languages like Python and the performance of database systems,
as our experiments in Section 5 will show.

Internally, ibdmbpy uses objects with similar methods as Pandas
objects, such as the well-known DataFrame, but in fact, the data lies
in a distant database. Calling a method leads to the construction
of a string that should be a valid SQL query. We want to illustrate
this on a simple example, i.e., computing the Pearson correlation
matrix of the Iris data set [6].

Figure 1: The ibmdbpy workflow

We can retrieve the correlation matrix of an ibmdbpy DataFrame
easily by calling the corr method. For the Iris data set (see sample
from Table 1), this would produce the following SQL query:
SELECT CORRELATION("SL","SW"),
CORRELATION("SL","PL"), CORRELATION("SL","PW"),
CORRELATION("SW","PL"), CORRELATION("SW","PW"),
CORRELATION("PL","PW")
FROM IRIS

The query is then sent to the database for execution, and the
result is mapped back into a two-dimensional correlation matrix.
We name the whole approach SQL-Pushdown. Algorithm 1 is the
pseudo-code that constructs this query.

Algorithm 1 Correlation-query construction
Input: Table tab
Output: Query for the computation of correlations in tab
1: function CORR
2: attributes ← Get-Attributes(tab)
3: tabname ← Get-Name(tab)
4: strinд ← []
5: for p1,p2← combinations (attributes, 2) do
6: strinд += "CORRELATION(p1,p2)"

7: corrs ← strinд join with ", "
8: select ← "SELECT "
9: f rom ← concatenate(" FROM ", tabname)
10: return concatenate(select , corrs , f rom)

Apart from the connectivity layer, ibmdbpy works independently
from the underlying database system, since it generates standard
SQL code. It can be used jointly with Jupyter notebook, a web ap-
plication for creating and sharing documents, containing live code,
visualizations and explanatory text. This makes the data analysis
interactive and human-readable.

In-Database Analytics with ibmdbpy SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

4 DEMO: CORRELATION ANALYSIS
This section features a case study to show the relevance of this
framework for data analysis. This will also shed light on the struc-
ture of our demonstration.

In many scenarios, it is useful to estimate the correlation be-
tween the different variables of a data set. However, the Pearson
correlation coefficient, as presented in the previous section, is lim-
ited to the detection of linear dependencies. Instead, one can use
mutual information. In information theory, mutual information is a
measure of mutual dependence of two variables X and Y [4] and
estimates the amount of information that the two variables share:

MI (X ,Y) = H (X) − H (X |Y) (1)

where H (X) is the entropy of X and H (X |Y) is the conditional en-
tropy of the attributeX , given that we know the value of an attribute
Y , they are defined as:

H (X) = −
∑
i
pi ∗ loд2 (pi), (2)

H (X |Y) = −
∑
j
pj
∑
i
pi/j ∗ loд2 (pi/j), (3)

where pi is the prior probability for each Class i of attribute X , pi/j
is the probability of the value of X being from Class i , given that
the value of Y is from Class j . The conditional entropy quantifies the
amount of information needed to describe the outcome of a random
variable X given the value of another random variable Y . Using the
chain rule [4], we can also formulate it the following way:

H (X |Y) = H (X ,Y) − H (Y) (4)

where H (X ,Y) is the joint entropy of the classes of X and Y . Using
Equation 4, the mutual information can be expressed as:

MI (X ,Y) = H (X) + H (Y) − H (X ,Y) (5)

It is easy to compute the entropy of a list of categorical attributes
attr1, . . . , attrN in the database. The following query corresponds
to the SQL implementation of Equation 2:
SELECT SUM(-prob*LOG(prob)/LOG(2))
FROM (SELECT CAST(COUNT(*) AS FLOAT)/@n AS prob
FROM @tab
GROUP BY @attr1,...,@attrN)

where @n is the number of rows in table @tab, which is known
by accessing metadata. Using this query as a template and Equa-
tion 5, it is easy to compute the mutual information of two at-
tributes by parameterizing the variables @tab and the attribute
variables @attr1,...,@attrN. Algorithm 2 show the respective
pseudo-code.

Algorithm 2Mutual information
Input: Table tab, X attr1, Y attr2
Output: Mutual information of attributes X and Y in tab
1: functionMutualInformation(tab, X, Y)
2: H (X) ← Entropy-SQL-Pushdown(tab, X)
3: H (Y) ← Entropy-SQL-Pushdown(tab, Y)
4: H (X ,Y) ← Entropy-SQL-Pushdown(tab, X , Y)
5: return H (X) + H (Y) − H (X ,Y)

Figure 2: Interactive Data Analysis with ibmdbpy

This simple algorithm represents a general method to estimate
the mutual information of two categorical attributes, without ex-
tracting the data. More information on the implemented measures
is available in the online documentation [3] and the GitHub reposi-
tory1 of ibmdbpy.

In our demonstration, we will connect to a distant database
through a Jupyter notebook and we will show how one can use
ibmdbpy to explore the correlation relationships between table
attributes via mutual information and conduct exploratory data
analysis. We will show the real-time automated construction of
the SQL queries combined with filtering and sorting. We will also
make use of IBM DB2 specific in-database algorithms such as K-
Means and Naive Bayes. For illustration purposes, we will use the
USCensus1990 data set from the UCI Machine Learning Repository
[6]. To give an idea of the interface, we show in Figure 2 a snapshot
of the first section of the Jupyter notebook we will present during
the demonstration.

5 EXPERIMENTAL RESULTS
In this section, we report on a runtime analysis to show the advan-
tage of in-database computation for large data sets. The scalability
was assessed using a notebook running a 64-bits operating system.
The machine contains 16 GB RAM and a quad-core processor at
2.60 GHz. We use Python version 3.5. By the time of the exper-
iments, the version 0.1.0 of ibmdbpy is installed. We connect to
a distant database using ODBC. The distant database is an IBM
dashDB enterprise instance, hosted on IBM Bluemix®. It is a virtual
environment with 64 GB dedicated RAM and 16 cores at 2.60 GHz.
We create additional versions of the USCensus1990 data set with 1,
5, 10 and 50 millions rows via random sampling from the original
data. Originally, the USCensus1990 data set has 69 attributes and
2,458,285 instances.

Figure 3 shows the average time required to compute various
correlation matrices when the number of rows in the table scales
from 1 to 50 millions rows. Since the data set contains 69 columns,
69 · 68 = 4692 and 4692

2 = 2346 values are computed for asymmetric
and symmetric measures respectively.

1https://github.com/ibmdbanalytics/ibmdbpy

https://github.com/ibmdbanalytics/ibmdbpy

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Edouard Fouché, Alexander Eckert and Klemens Böhm

106 107

102

103

Number of rows

Ru
nt
im

e
[s
]

Pearson
Chi-stats
Gini
MI

Figure 3: Scalability of correlation computation

Scenario 1M 2.5M 5M 10M 50M

Local Load 8.8 21.2 42.5 107.3 562.3
Execute 1937.4 5662.5 12720.0 29068.1 150069.7

Total

Local 1946.1 5683.8 12762.5 29175.4 150632.7
SMP 118.2 165.5 295.9 894.8 959.2
MPP 146.3 204.6 281.6 354.6 761.2

Table 2: Scalability experiment results (in seconds)

We can see that the runtimes of Chi-statistics and Gini index
matrix are similar and relatively higher. This is explained by their
asymmetric property. Because of symmetry, the mutual informa-
tion matrix is nearly twice as fast to compute. Interestingly, the
Pearson correlation coefficient shows the worst scalability, despite a
comparatively low runtime for small instances.

5.1 Comparison local and in-database
It is also interesting to compare the runtime of the following three
scenarios: First, the local computation of the mutual information
matrix with Python 3.5. Second, the in-database computation using
ibmdbpy on a SMP dashDB Local instance, and third, the perfor-
mance of the same computation on a MPP dashDB multi-node
cluster. For a better comparison, the local computation is executed
on the same machine where dashDB Local is deployed. In the case
of a MPP dashDB system, the head node is used. The SMP machine
runs in a virtual environment with 16 cores at 2.27 GHz and 16 GB
RAM. The MPP system has the same CPU configuration with 64
GB RAM and consists of 3 identical nodes in total.

In addition to the runtime of a local mutual information matrix
computation, the time to load the data into the Python environment
has to be considered too. Data sets typically are loaded locally as
csv files. We measure the time to load the data in memory using the
function pandas.read_csv from the Pandas library. After the data
is loaded into the memory, we compute the mutual information
score using the function sklearn.metrics.mutual_info_score from the
Scikit-learn library as baseline.

We show the results of the experiment in Table 2. The local com-
putation time increases rapidly with the number of row processed,
and even for 1 million rows it is one order of magnitude slower
compared to the in-database computation. For large data sets like
the 50 millions rows sample in particular, reading the data set from
a file takes more than half of the time of an actual complete in-
database computation. When we compare the in-database results
directly, we can see that the MPP dashDB system provides a better
performance on data sets above 2.5 millions rows.

106 107
102

103

104

105

Number of rows

Ru
nt
im

e
[s
]

Local
In-DB SMP
In-DB MPP

Figure 4: MI estimation with equal resources

Figure 4 graphs the results. We can see the clear difference be-
tween the local and in-database computation. Figure 4 also shows
that the in-database approach on MPP systems becomes beneficial
as the table grows.

6 CONCLUSIONS
In our use case we have shown that the ibmdbpy framework bridges
the syntactical gap between SQL databases and the Python program-
ming language: Ibmdbpy provides a familiar Python interface for
manipulating and mining data stored in relational databases. The
framework offers performance advantages by carrying out mining
and transformation tasks directly in the database, without the need
for a full data transfer to the Python environment. While our pre-
sentation has focused on the computation of correlation measures,
ibmdbpy offers a range of different supervised and unsupervised
data mining algorithms. Moreover, it can be easily extended by
wrapping SQL queries and user-defined stored procedures.

In future work, we will investigate how to extend the ibmdbpy
library to support the execution of user-defined Python functions
in the database. Besides the advantage of parallel Python code
execution, the collocation of the Python runtimes with the data
nodes of a multi-node DBMS also promises fast transfer rates. In
this context, it will be interesting to leverage the Spark capabilities
in IBM dashDB and create synergies with the PySpark library.

REFERENCES
[1] Continuum Analytics. 2018. The Blaze Ecosystem. http://blaze.pydata.org.
[2] Inc. Cloudera. 2018. Ibis Project Blog. http://www.ibis-project.org.
[3] IBM Corporation. 2018. ibmdbpy 0.1.4. https://pypi.python.org/pypi/ibmdbpy.
[4] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory.

Wiley-Interscience, New York, NY, USA.
[5] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes

Rauhe, and Jonathan Dees. 2012. The SAP HANA Database – An Architecture
Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28–33.

[6] M. Lichman. 2013. UCIMachine Learning Repository. http://archive.ics.uci.edu/ml
[7] Pablo Tamayo, C Berger, Marcos Campos, Joseph Yarmus, Boriana Milenova, A

Mozes, M Taft, Mark Hornick, R Krishnan, S Thomas, M Kelly, D Mukhin, B
Haberstroh, Susie Stephens, and J Myczkowski. 2005. Oracle Data Mining. In Data
mining and knowledge discovery handbook. 1315–1329.

IBM, the IBM logo, ibm.com, DB2, dashDB and Bluemix are trademarks or registered
trademarks of International Business Machines Corporation in the United States,
other countries, or both. A current list of IBM trademarks is available on the Web
at http://www.ibm.com/legal/copytrade.shtml. Other company, product, or service
names may be trademarks or service marks of others.

http://blaze.pydata.org
http://www.ibis-project.org
https://pypi.python.org/pypi/ibmdbpy
http://archive.ics.uci.edu/ml
http://www.ibm.com/legal/copytrade.shtml

	Abstract
	1 Introduction
	2 Related work
	3 FRAMEWORK
	4 DEMO: Correlation Analysis
	5 Experimental Results
	5.1 Comparison local and in-database

	6 Conclusions
	References

