
Scalable Software-Defect Localisation

by Hierarchical Mining of Dynamic Call Graphs

Frank Eichinger∗ Christopher Oßner∗ Klemens Böhm∗

Abstract

The localisation of defects in computer programmes
is essential in software engineering and is important
in domain-specific data mining. Existing techniques
which build on call-graph mining localise defects well,
but do not scale for large software projects. This paper
presents a hierarchical approach with good scalability
characteristics. It makes use of novel call-graph
representations, frequent subgraph mining and feature
selection. It first analyses call graphs of a coarse
granularity, before it zooms-in into more fine-grained
graphs. We evaluate our approach with defects in the
Mozilla Rhino project: In our setup, it narrows down
the code a developer has to examine to about 6% only.

Keywords: applied data mining, call graphs, graph
mining, scalability, software-defect localisation

1 Introduction

Software is rarely free from defects that cause failing
behaviour. Manual debugging can be extremely expen-
sive, and localising defects is the most time consuming
and difficult activity in this context [5, 18]. Automated
means to localise defects and to guide developers de-
bugging a programme are more than desirable, for large
software projects in particular. From a data mining
perspective, Han and Gao identify software engineering
and defect localisation in particular as a main area for
domain-specific mining [14]. They point out that the
integration of domain knowledge, i.e., specific data rep-
resentations, as well as dedicated analysis techniques,
are essential for the success of applied data mining.

One approach for defect localisation is to compare
programme executions that are correct to executions
that have failed. A variety of techniques has been
proposed that mine dynamic call graphs, e.g., [4, 8,
11, 12, 21]. In such graphs, nodes typically represent
methods and edges method invocations. See Figure 1(a)
for an example. More specifically, the approaches
try to identify patterns in programme executions that

∗Karlsruhe Institute of Technology (KIT), Germany. Email:
{eichinger, ossner, klemens.boehm}@kit.edu

are typical for the failing case. Then they use these
patterns to rank the methods being suspected to be
defective. However, despite good results, the techniques
proposed so far do not scale well with the size of
the software project. This is caused by the NP-hard
subgraph-isomorphism problem inherent to frequent
subgraph mining. Various evaluations [4, 8, 11, 21] have
demonstrated this effect: They deal with very small
programmes such as the Siemens Programmes [16], with
200 to 700 lines of code (LOC).

Solving the scalability issues is challenging, as seem-
ingly possible solutions have issues: (1) Using increased
computing capabilities or distributed algorithms is not
feasible due to exploding computational costs. We have
experienced this effect in preliminary experiments as
well. Further, spending a lot of computing time for
graph mining might be inappropriate for defect locali-
sation. (2) Solving the scalability issue with approxi-
mate graph-mining algorithms might be a solution, but
might miss patterns which are important for defect lo-
calisation. For instance, [4] does not report any prob-
lems caused by the well scaling LEAP algorithm [26],
but does not analyse large programmes either.

A different starting point to deal with the scalabil-
ity problem in call-graph-based defect localisation is the
graph representation. We investigate graph representa-
tions at coarser abstractions than the method level, i.e.,
the package level and the class level, and we start at
such a coarse abstraction before zooming-in into a sus-
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Figure 1: (a) An unreduced call graph, (b) with a
structure-affecting (dashed) and a frequency-affecting
bug (dotted). (c) The total reduction of (a) (weighted).



picious region of the call graphs. These graphs are a lot
smaller than conventional call graphs, and they cause
scalability problems in much fewer cases. However, this
idea leads to new challenges:

1. Call-graph representations have not yet been stud-
ied well for levels of abstraction higher than the
method level. How do representations well-suited
for defect localisation look like?

2. When zooming-in into defect-free regions by acci-
dent: How to design hierarchical defect localisation
in a way that minimises the amount of source code
to be inspected by humans?

3. It is unclear which defects can indeed be localised
in coarse graph representations.

Our approach for hierarchical defect localisation builds
on the zoom-in idea and solves these challenges. This
paper makes the following contributions:

Granularities of Call Graphs. We define call
graphs at different levels of granularity, featuring edge-
weight tuples that provide further information besides
the graph structure (Challenge 1). We do so by taking
the specifics of defect localisation into account: We
explicitly consider API calls as well as inter-/intra-
package and inter-/intra-class method calls.

Hierarchical Defect Localisation. We describe
the zoom-in operation for call graphs, present a method-
ology for defect localisation for the graphs at each level
and describe hierarchical procedures for defect localisa-
tion (Challenge 2). In concrete terms, we present dif-
ferent variants of a depth-first search strategy to hier-
archically mine a software project.

Evaluation with a Large Software Project.
An essential part of our study is an evaluation featur-
ing real programming defects in Mozilla Rhino (Chal-
lenge 3). To this end we use the iBUGS repository [6]
and the original test suite. Rhino consists of ≈ 49k LOC,
and the defects in the repository were obtained by join-
ing information from a bug-tracking system with data
and source code from a revision-control system. To our
knowledge, this paper is first to demonstrate the effec-
tiveness of call-graph-mining-based defect localisation
for large programmes and real defects. In our setup, the
approach narrows down the amount of code a developer
has to examine to about 6% of the whole project.

Identification of New Data-Mining Research
Questions. This study has uncovered several new
data-mining research questions. We discuss these ques-
tions which might be relevant for many applications.

Ideas related to zooming-in into call graphs, namely
Graph OLAP, have been described in [3]. The authors
propose data-warehousing operations to analyse graphs,
e.g., drill-down and roll-up operations, similar to our
zoom-in proposal. However, [3] does not help in defect

localisation, as it aims at interactive analyses, and it
does not consider specific requirements (e.g., API calls).

Paper organisation: Section 2 introduces founda-
tions. Sections 3 and 4 explain call graphs and defect
localisation based on them. Section 5 contains our eval-
uation, Section 6 reviews related work, and Section 7
discusses threads of validity. Section 8 identifies chal-
lenges for data-mining research, Section 9 concludes.

2 Foundations

In this section we introduce the notion of defects and
the basics of call-graph-based defect localisation.

Defects in Software. In this paper, we distin-
guish between defects, infections and failures [28]: De-
fects are the positions in the source code which cause an
infection, an infection is an incorrect programme state,
and failures are an observable incorrect programme be-
haviour such as wrong calculation results. In our con-
text, we use a further differentiation of ours [10]:

Occasional bugs are failures depending on the input
data of the programme. Compared to non-occasional
bugs, they are harder to localise since they require more
test cases to be reproduced. Structure-affecting bugs
are infections which affect the structure of a call graph.
This is, when comparing graphs from correct and failing
executions, certain graph substructures might or might
not occur in either of the two variants. Figure 1(b)
contains an example: a does not call b in case of an
infection. There can be various reasons for this, e.g., a
wrongly calculated variable value or a defective control
statement, possibly within a. Call-frequency-affecting
bugs are infections which change the call frequency of a
certain substructure, rather than completely missing or
adding structures. In Figure 1(b), the call frequency of
b from c has changed, compared to Figure 1(a).

We focus on occasional bugs, as all call-graph-based
defect-localisation approaches do. This requires that
both correct and failing executions are available. With
our approach, defects might be structure affecting, call-
frequency affecting, or both.

Defect Localisation with Call Graphs. A num-
ber of call-graph-based techniques for defect localisation
has been proposed [4, 8, 9, 11, 12, 21]. Their intuition is
to mine for patterns in the call graphs which are charac-
teristic for failing executions. Then they derive a defec-
tiveness likelihood for each method. A method ranking
based on such likelihoods can then guide the debugging
process. The different proposals use different call-graph
representations and defect-localisation approaches. We
now briefly review the most important differences.

Concerning the graph representations, the various
approaches differ with regard to the level of granularity,
the degree of reduction, and the questions if temporal



information is included and if the graphs are weighted.
The first three aspects bear a trade-off between the size
of the graphs and potentially more precise results on the
one side and scalability on the other side.

Level of granularity: The graphs used in most ap-
proaches [4, 8, 11, 12, 21] are method-level call graphs,
i.e., nodes represent methods and edges method calls.
(See Figure 1(a) for an example.) [4] presents a more
fine-grained basic-block-level graph representation in
addition to the method level. [9] is a preliminary study
of ours investigating defect localisation with class-level
call graphs. It aims at a scalable solution for large
software projects. However, it does not investigate a
comprehensive hierarchical approach. Degree of reduc-
tion: In unreduced call graphs, as directly obtained
from tracing, a method typically occurs several times,
at various positions within a graph (see Figure 1(a)).
[4, 9, 12, 21] build on call graphs where exactly one node
represents a method (total reduction, see Figure 1(c)).
[8, 11] in turn allow for more than one node. This
promises more precise results, as more detailed contexts
of method calls can be included in the analysis. How-
ever, this leads to larger graphs; see [10]. Temporal
information: The graphs in [4, 8, 21] incorporate tem-
poral information, the ones in [9, 11, 12] do not. The
experiments in [10] do not lead to any results that justify
the increased graph size. Weighted graphs: In contrast
to all other representations, the graphs in [9, 11, 12] are
weighted. Edge weights represent the number of corre-
sponding method calls (see Figure 1(c)), facilitating the
localisation of call-frequency-affecting bugs.

Besides different call graph representations, the var-
ious defect-localisation approaches localise defects in
different ways. In concrete terms, they employ tech-
niques as diverse as support values, graph classification,
discriminative subgraph mining and feature selection:
[8] derives defect likelihoods from support values of sub-
graph patterns in call graphs representing correct and
failing programme executions. [21] builds on graph clas-
sification with subgraph patterns. The authors first
mine frequent subgraph patterns before they use them
to train a classifier. They then consider the difference in
accuracy between two classifiers – one built with graph
patterns including a certain method and one without
them – as evidence for a defective method. [4] relies on
discriminative subgraph mining. This technique finds
subgraphs that discriminate well between correct and
failing executions and thus directly identifies methods
that are possibly defective. In [11], we make use of two
kinds of evidence, support values and feature selection
with edge weights. In [12], we target defects that affect
the dataflow of a programme, by extending call graphs
with abstractions referring to the dataflow.

The approaches mentioned do not scale for large
software projects such as Mozilla Rhino. This paper
in turn describes a scalable approach. It generalises
previous work [9, 11], and it hierarchically zooms-in into
parts of call graphs deemed problematic.

3 Dynamic Call Graphs at Different Levels

In this section, we propose and define totally-reduced
call-graph representations for the method, class and
package level (Sections 3.1–3.3). Then we introduce the
zoom-in operation for call graphs (Section 3.4). Our
graphs can easily be extended in either direction: More
coarse-grained meta-package-level call graphs could rely
on the hierarchical organisation of packages and would
allow to analyse even larger projects. Graphs more
detailed than the method level, e.g., at the level of basic
blocks [4], would allow for a finer defect localisation.

On a technical level, we use AspectJ [19] to weave
tracing functionality into Java programmes and to de-
rive call graphs from programme executions. This yields
an unreduced call-graph representation at the method
level. (Figure 2(a) is an example.) This is the basis
for all reduced representations we discuss in the follow-
ing. In concrete terms, our tracing functionality inter-
nally stores unreduced call graphs in a pre-aggregated
space-efficient manner. This lets us derive call-graph
representations at any levels of granularity.

3.1 Call Graphs at the Method Level. In this
paper, we propose total graph reductions that are
weighted, where exactly one node represents a method.
We do not make use of any temporal information. All
this leads to a compact graph representation [10].

As an innovation, we consider calls of methods
belonging to the Java class library (API ) in all graphs.
We do so as we believe that some defects might affect the
calls of such methods. To our knowledge, no previous
study has considered such method calls. However, to
keep the instrumentation overhead to a minimum, we
do not consider API -internal method calls. In the graph
representation, we use one node (API ) to represent all
methods belonging to the class library.

Notation 1. A method-level call graph is a graph
where every method is represented by exactly one node,
directed edges represent method invocations, and edge
weights stand for the frequencies of the calls represented
by the edges. The API node represents all methods of
the class library and does not have any outgoing edges.

Example. Figure 2(b) is a method-level call graph. It
is the reduced version of the graph in Figure 2(a). The
API nodes in Figure 2(a) represent two API methods,
a and b, represented by one node in Figure 2(b).
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Figure 2: An unreduced call graph and its total reduced representations at the method level, class level and
package level. Notation: class.method ; class A forms package P1 , classes B and C form package P2 .

3.2 Call Graphs at the Class Level. We now pro-
pose class-level call graphs with tuples of weights. The
rationale is to include some more information, which
would otherwise be lost by the rigorous compression.

Notation 2. In class-level call graphs, every class is
represented by exactly one node, and edges represent
inter-class method calls (or intra-class calls in case of
self-loops). The API node is as in the method-level call
graphs. An edge is annotated with a tuple of weights:
(t, u, v). t refers to the total number of method calls
represented by the edge (as in method-level call graphs),
u is the number of different methods invoked, and v is
the number of different methods that invoke methods.

Example. Figure 2(c) is a class-level call graph, it is
the compression of the graphs in Figures 2(a) and (b).
Class-level call graphs may include self-loops (except for
the API node), even if there is no recursion.

3.3 Call Graphs at the Package Level. The re-
duction for this level is analogous to the previous ones,
but to capture more information, we extend the edge-
weight tuples by two elements:

Notation 3. In package-level call graphs, there is
one node for each package, and there is an additional
API node. The edge-weight tuples are as follows:
(tm, uc, um, vc, vm), where uc is the number of different
classes called, vc the number of different classes calling,
and tm, um, vm are as t, u, v in Notation 2. (‘m’ stands
for method, ‘c’ for class.)

Example. We assume that class A in Figure 2 forms
package P1 , that classes B and C are in package P2 ,
and that methods API .a and API .b belong to the same
class. Figure 2(d) then is a package-level call graph,
representing the call graphs from Figures 2(a)–(c).

3.4 The Zoom-In Operation for Call Graphs.
Before we discuss the zoom-in operation for call graphs,
we first define an auxiliary function:

Definition 1. The generate function is of the fol-
lowing type: generatelevel ∶ (Gunreduced,V) → Glevel,
where Gunreduced stands for unreduced call graphs,
Glevel for call graphs of the level specified by level ∈

{method , class,package} and V for sets of vertices. A ∈

V specifies the area to be included in the graph to be
generated, by means of a set of vertices of the package
level (package names) in case ‘level = class’ or of the
class level (class names) in case ‘level = method’. In
case ‘level = package’, A =☆ selects all packages.

From a given unreduced graph, the function gen-
erates a subgraph at the level specified, containing all
nodes contained in A (all nodes if A ≠☆) and edges con-
necting these nodes. If A = ☆, the function introduces
a new node labelled ‘Dummy’ in the subgraph generated
that stands for all nodes not selected by A.

In the generate function, we treat the API nodes
separately from other nodes. They do not have to
be explicitly contained in A, but are contained in the
resulting graphs by default, as described in Notations 2
and 3. As the generate function selects certain areas
of the graph, it obviously omits other areas. This is a
conscious decision, as small graphs tend to make graph
mining scalable. As calls of methods in the omitted
areas might indicate defects nevertheless, the generate
function introduces the Dummy nodes to keep some
information about these methods.

To zoom-in to a finer level of granularity, say into a
certain package p ∈ V (Gp) (V denotes the set of vertices
of a graph) of a package-level call graph Gp to obtain a
class-level call graph Gc, one calls the generate function
as follows: Gc ∶= generateclass(Gu,{p}), where Gu is the
unreduced call graph of Gp. Zooming from a class-level
call graph to a method-level call graph is analogous.



4 Hierarchical Defect Localisation

We now describe our hierarchical approach for defect
localisation. At first, we introduce defect localisation
without considering the hierarchical procedure, i.e., we
describe how defect localisation works for call graphs at
any selected level of granularity (Section 4.1). We then
present different approaches for turning this technique
into a hierarchical procedure (Section 4.2).

4.1 Defect Localisation in General. We now dis-
cuss defect localisation with call graphs at arbitrary lev-
els of granularity. After a short overview, we describe
subgraph mining and defect localisation based on edge-
weight tuples. Finally, we discuss the incorporation of
information from static source-code analysis.

Overview. Algorithm 1 works with unreduced call
graphs U , representing programme executions. More
specifically, it deals with graphs at a user-defined level ,
describing a certain subgraph of the graphs (parame-
ter A). For the time being, we consider the package
level (A =☆), i.e., without restricting the area. The al-
gorithm first assigns a class ∈ {correct , failing} to every
graph u ∈ U (Line 3), using a test oracle. Such oracles
are typically available [18]. Then the procedure gener-
ates reduced call graphs, from every graph u (Line 4).
Next, the procedure derives frequent subgraphs of these
graphs, which provide different contexts (Line 5). The
last step calculates a likelihood of containing a defect,
for every software entity e at the level specified (i.e., a
package, class or method; Line 6). We do so by deriving
a discriminativeness measure for the edge-weight-tuple
values, in each context separately. The P values for all
entities of a certain level form a ranking of the entities,
which can be given to software developers. They would
then review the suspicious entities manually, starting
with the one which is most likely to be defective. Alter-
natively, this result can be the basis for a zoom-in into
a finer level of granularity, as described in Section 4.2.

Algorithm 1 Procedure of defect localisation.

Input: a set of unreduced call graphs U ,
a level ∈ {package, class,method}, an area A

Output: a ranking based on each software entity e’s
likelihood to be defective P (e)

1: G = ∅ // initialise a set of call graphs
2: for all graphs u ∈ U do
3: check if u refers to a correct execution,

and assign a class ∈ {correct , failing} to u
4: G = G ∪ {generatelevel(u,A)}

5: SG = frequent subgraph mining(G)

6: calculate P (e) for all software entities e at the level
specified, based on SG

Subgraph Mining. The frequent-subgraph-min-
ing step (Line 5 in Algorithm 1) mines the pure graph
structure and ignores the edge-weight tuples for the mo-
ment. This is as conventional graph-mining algorithms
do not take weights into account. Later steps will make
use of them. We use the subgraphs obtained as differ-
ent contexts and perform all further analyses for every
subgraph context separately. This aims at a higher pre-
cision than an analysis without such contexts and allows
localising defects that only occur in a certain context.

Example. A failure might occur when method a is called
from method b, only when method c is called as well.
Then, the defect might be localised only in the context
of call graphs containing all methods mentioned, but
not in graphs without method c.

We rely on the ParSeMiS implementation [24] of
CloseGraph [27] for frequent subgraph mining. Close-
Graph has successfully been used in related studies [9,
11, 12, 21]. In a set of graphs G, it discovers subgraphs
with a user-defined minimum support. For this value,
we use min(∣Gcorr∣, ∣Gfail∣)/2, where Gcorr and Gfail are
the sets of call graphs of correct and failing executions,
respectively (G = Gcorr ∪ Gfail). This ensures that no
structure occurring in at least half of all executions be-
longing to the smaller class is missed. Preliminary ex-
periments have shown that this minimum support al-
lows for both short runtimes and good results.

The API and Dummy nodes as well as self-
loops (⤾) require a special treatment during subgraph
mining. API nodes: As almost all methods call API
methods, almost every node in a call graph has a con-
nection to the API node. This increases the number of
edges in a call graph significantly, compared to a graph
without API nodes, possibly leading to scalability is-
sues. At the same time, as almost every node has an
edge to an API node, these edges usually are not inter-
esting for defect localisation. We therefore omit these
edges during graph mining, but keep the edge-weight
tuples for the subsequent analysis step. This is, only
nodes and edges drawn with solid lines in Figure 2 are
considered. Dummy nodes: We treat Dummy nodes in
the same way as we treat API nodes, as their struc-
tural analysis with subgraph mining does not seem to
be promising. Dummy nodes tend to be connected to
many other nodes as well, leading to unnecessarily large
graphs. Self-loops: Such edges result from recursion at
the method level. However, at the package and class
level, a self-loop represents calls within the same entity,
which happens frequently. Therefore, self-loops enlarge
the graph significantly while not bearing much informa-
tion. We therefore treat self-loops at the package and
class level as API and Dummy nodes: We omit them



exec.
sg1 sg2

⋯ classA�B A�C A⤾ B⤾ C⤾ A�API C�API B�C ⋯
(⤾,API )t u v t u v t u v t u v t u v t u v t u v t u v

g1 3 2 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 4 2 2 1 1 1 ⋯ ⋯ correct
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮

gn 9 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 4 2 2 - - - ⋯ ⋯ failing

Table 1: Example feature table for class-level call graphs.

during graph mining and keep the edge-weight tuples
for subsequent analysis.

Edge-Weight-Based Defect Localisation.
When graph mining is completed, we calculate the
likelihood that a method contains a defect (Line 6 in
Algorithm 1). The rationale is to identify methods
which call other methods with discriminative edge-
weight-tuple values, i.e., method calls whose frequencies
vary in correct and failing executions. As mentioned,
we analyse every edge weight in the call graphs in the
context of every subgraph mined. This aims at a high
probability to reveal a defect, as every edge weight is
typically investigated in many different contexts. To
this end, we assemble a feature table as follows:

Notation 4. A feature table for defect localisation has
the following structure: The rows stand for all pro-
gramme executions. For every edge in every frequent
subgraph, there is one column for every edge-weight-
tuple element (i.e., a single call frequency t or tuples
of values, depending on the granularity level of the call
graph considered, see Section 3). For all edges leading to
API and Dummy nodes as well as for all self-loops (⤾),
there are further columns for the edge-weight-tuple ele-
ments; again, for each subgraph separately. The table
cells contain the edge-weight-tuple values, except for the
very last column, which contains the class ∈ {correct,
failing}. If a subgraph is not contained in a call graph,
the corresponding cells have a null value (‘-’).

We do not include Dummy nodes in the tables
when considering the method level, as preliminary
experiments have shown that this does not lead to any
benefit. However, we include API nodes at all levels.

Example. Table 1 is a feature table corresponding to
class-level call graphs, such as the one in Figure 2(c).
(This graph is execution g1 in the table.) Suppose
that the preceding graph-mining step has found two
subgraphs, sg1 (B�A�C) and sg2 (B�C). The very
first column lists the call graphs g ∈ G. The next column
corresponds to sg1 and edge A�B with the total call
frequency t. The following two columns correspond
to the remaining two edge-weight tuple elements u
and v (see Notation 2). Then follows the second
edge in the same subgraph (A�C) with its edge-weight

tuple (t, u, v). Next, all self-loops (A⤾, B⤾, C⤾) and
API calls (A�API , C�API ) in sg1 are listed. (Dummy
nodes would be listed here as well, but do not exist in
this example.) The same columns for subgraph sg2 and
finally the class of the execution follow. Graph gn does
not contain sg2 , which is indicated by ‘-’.

After assembling the feature table, we em-
ploy the information-gain feature-selection algorithm
(InfoGain, [25]) in its Weka implementation [13] to cal-
culate the discriminativeness of the columns and thus
of the different edge-weight-tuple values. The InfoGain
is a measure from information theory and builds on en-
tropy. Values of InfoGain are in the interval [0,1]. High
values indicate a table column affected by a defect. For
this step, we could choose from various feature-selection
algorithms available. However, previous work [11, 12]
has shown that entropy-based measures are well-suited
for defect localisation.

So far, we have derived defect likelihoods for every
column in the table. However, we are interested in
likelihoods for software entities (i.e., packages, classes
or methods), and every software entity corresponds
to more than one column in general. To obtain the
defect likelihood P (e) of software entity e, we assign
every column to the calling software entity. We then
calculate P (e) as the maximum of the InfoGain values
of the columns assigned to e. By doing so, we identify
the defect likelihood of a software entity by its most
suspicious invocation. The call context of a likely
defective software entity and suspicious columns are
supplementary information which we report to software
developers to ease debugging.

Example. The graphs g1 (see Figure 2) and gn in Table 1
display similar values, but refer to a correct and a failing
execution. Suppose that method A.a contains a defect
with the implications that (1) method B.c will not be
called at all, and (2) that method B.a will be called nine
times instead of twice. This is reflected in columns 2–4,
referring to (t, u, v) of A�B in sg1 . t increases from
three (1 × B.c, 2 × B.a) to nine (9 × B.a), u decreases
from two (B.c, B.a) to one (B.a), and v stays the same
– in class A, only method a invokes other methods. The
InfoGain measure will recognise fluctuating values of t
and u, leading to a high ranking of class A.



Incorporation of Static Information. The
edge-weight and InfoGain-based ranking procedure
sometimes has the minor drawback that two or more en-
tities (i.e., packages, classes or methods) have the same
ranking position. In such cases, we fall back to a second
ranking criterion: We sort such entities decreasingly by
their size in (normalised) lines of code (LOC) derived
with LOCC [17]. The rationale is that the size frequently
correlates with the defectiveness likelihood [23]. This is,
large methods tend to be more defective.

4.2 Hierarchical Procedures. The defect-localisa-
tion procedure described in Section 4.1 can already
guide a manual debugging process: A developer can
first do defect localisation at the package level. She
or he can then decide to zoom-in into certain suspi-
cious packages. The developer would continue with our
defect-localisation technique at the class level, proceed-
ing with the method level etc. However, it might hap-
pen that the developer zooms-in into an area where no
defect is located. In this case, the developer would back-
track and zoom-in elsewhere etc. This manual process,
guided by our technique, bears the potential that im-
portant background knowledge known to the developer
can be easily included.

In this section, we say how to turn the manually-
guided debugging process into semi-automatic proce-
dures for defect localisation. We present a depth-first-
search-based (DFS-based) procedure and a so-called
merge-based variant. We also propose a technique that
partitions large packages and classes.

DFS-Based Defect Localisation. Our DFS-
based procedure follows the idea to manually investigate
the most suspicious method in the most suspicious class
in the most suspicious package first. If this first method
turns out to not be defective, we go to the second most
suspicious method in the same class. If all methods in
this class are investigated, we backtrack to the next class
etc. We further propose the parameters k, l,m. They
limit the number of software entities to be investigated
at each stage, to k packages, l classes and m meth-
ods. Algorithm 2 formalises this approach. The param-
eters k, l,m can be set to infinity in order to obtain a
parameter-free algorithm; at the end of this section we
also present a means to set these parameters.

Algorithm 2 iterates through three loops, one for
packages, one for classes and one for methods (Lines 3,
6 and 9). In each loop, the algorithm calculates a
defectiveness likelihood P for the respective software
entities. This is, Lines 1–2, 4–5 and 7–8 comprise the
graph-mining step (Line 5 in Algorithm 1) and the step
that calculates P (Line 6 in Algorithm 1), as described
in Section 4.1. These lines make use of the generate

Algorithm 2 DFS-Based Defect Localisation.

Input: a set of classified (correct , failing) unreduced
call graphs U , parameters k, l,m

Output: a defective method
1: SG = frequent subgraph mining(

{generatepackage(u,☆)∣u ∈ U})

2: calculate P (package), based on SG
3: for all package ∈ topk(P (package)),

ordered decreasingly by P (package) do
4: SG = frequent subgraph mining(

{generateclass(u,{package})∣u ∈ U})

5: calculate P (class), based on SG
6: for all class ∈ topl(P (class)),

ordered decreasingly by P (class) do
7: SG = frequent subgraph mining(

{generatemethod(u,{class})∣u ∈ U})

8: calculate P (method), based on SG
9: for all method ∈ topm(P (method)),

ordered decreasingly by P (method) do
10: present method to the user
11: if method is defective then
12: return method

function (see Definition 1), each with the area selection
based on the currently selected software entity at the
respective coarser level. Ultimately, the algorithm
presents suspected methods to the user and terminates
in case the user has identified a defect (Lines 10–12).

The DFS-based procedure described works interac-
tively. This is, the potentially expensive graph-mining
step as well as the calculation of P are done only when
needed – the algorithm might terminate before all pack-
ages and classes have been analysed. The suspected
methods are presented to the user in an on-line manner.
This avoids long runtimes before a developer actually
can start debugging. However, it is of course possible to
skip Lines 10–12 in Algorithm 2 and to save the current
method to an ordered list of suspected methods. This
leads to a ranking as described in Section 4.1. To ease
experiments, we follow this approach in our evaluation.

The proposed approach obviously has the drawback
that the user has to set the parameters k, l,m. When the
values are too low, the technique might miss a defect.
Based on our experience, it is not hard to set appropri-
ate parameters based on empirical values derived from
debugging other defects in the same project. Further-
more, we will present an automated choice of optimal
parameter values in the following paragraphs.

Merge-Based Variant of DFS-Based Defect
Localisation. This technique is an alternative to the
DFS-based one. Instead of presenting the results to the
user in an on-line manner, it replaces Lines 10–12 in



Algorithm 2 with code that saves all methods processed
(along with their likelihood P ) in a result set. Then,
right after Line 12 in Algorithm 2, it sorts all methods
decreasingly by their defect likelihood.

The drawback of this procedure is that the algo-
rithm has to terminate before one can actually start
debugging. On the other side, we hypothesise that the
defect localisations obtained by this merge-based vari-
ant are better than the ones with the first approach. We
evaluate this hypothesis in Section 5.

Concerning the parameters k, l,m, the merge-based
variant is more robust. As the merged result set is
sorted at the very end, large parameter values usually
do not lead to worse localisation results. They only
affect the runtime. As yet another variant, we propose
parameter-free defect localisation. Here we set the
parameters k, l,m to infinity. This promises to not miss
any defective method. In addition, if one uses this
variant several times with a certain software project,
one can use it to empirically set the parameter values.
This allows for an efficient usage of the interactive (on-
line) DFS-based procedure without parameters that are
too high or to speed up the regular merge-based variant.

Partitioning Approach. The hierarchical proce-
dures investigated in this paper analyse small zoomed-in
call graphs at several granularities. However, a number
of software projects – especially large ones and those
with a long history – have imbalanced sizes of packages
and classes. This might lead to large graphs that cause
scalability issues, even if we are considering a zoomed-
in subgraph only. It is an open research question how
to overcome such situations. For now, we present a
sampling-based partitioning approach for such cases.

Whenever a certain call graph at the package or
class level is too large to be handled, we partition the
graph into two (or, if needed more) partitions. We do
so by randomly sampling nodes from the graph. We
keep the edges connecting two nodes within the same
partition. As not all edges connect nodes belonging to
the same partition, we would lose a lot of information.
To compensate for this effect, we introduce a dummy
node Dummypart in each partition, representing all
nodes in other partitions. We treat Dummypart nodes
in exactly the same way as Dummy nodes, i.e., we omit
them during graph mining and include the edge-weight-
tuple values in the feature tables.

When graph partitions are generated and
Dummypart nodes are inserted, we do defect lo-
calisation as described before with each partition
separately. Then, similarly to the merge-based variant,
we merge the rankings obtained from the different
partitions and obtain a defectiveness ranking ordered
by the P values of the software entities. This lets us

proceed with any manual or automated hierarchical
defect localisation procedure, as described before.

This partitioning approach for large packages and
classes has worked well in preliminary experiments.
However, there might be cases where a loss of relevant
information exists, and defect localisation might not
work. For instance, think of a defect which occurs in a
certain subgraph context that is distributed over several
partitions. In such situations, the defect-localisation
procedure can be repeated with a different partitioning,
either based on the expertise of a software developer or
by using another seed for random partitioning.

5 Evaluation with Real Software Defects

We now evaluate our defect-localisation techniques in
order to demonstrate their effectiveness and usefulness
for large software projects. After a description of
the target programme and the defects (Section 5.1)
we explain the evaluation measures used (Section 5.2).
Then we focus on defect localisation at the different
levels in isolation (Section 5.3). Finally, we evaluate the
hierarchical defect-localisation approaches (Section 5.4).

5.1 Target Programme and Defects: Rhino.
For our evaluation we rely on Mozilla Rhino, as pub-
lished in the iBUGS project [6]. Rhino is an open-
source JavaScript interpreter, consisting of nine pack-
ages, 146 classes and 1,561 methods or ≈ 49k LOC (nor-
malised 37k LOC). iBUGS provides a number of original
defects that were obtained by joining information from
the bug-tracking system of the project with data and
source code from its revision-control system. Further-
more, it contains the original test cases along with the
test oracles. See [7] for details on how the data was
obtained. All in all, Rhino from the iBUGS repository
provides a realistic test scenario for defect localisation
in a large software project, at least compared to pro-
grammes used in related evaluations that are two orders
of magnitude smaller, e.g., [4, 8, 11, 21].

Concretely, we make use of 14 defects (Table 2 lists
the defect numbers) from the iBUGS Rhino repository
which have associated test cases and represent occa-
sional bugs. These defects represent different real pro-
gramming errors, and they are hard to localise: They
occur occasionally and have been checked-in into the
revision-control system before a failing behaviour has
been discovered. See the iBUGS repository [6] for more
details. In addition, iBUGS provides about 1,200 test
cases consisting of some JavaScript code to be executed
by Rhino, together with the corresponding oracles. As in
many software projects, there are only a few failing test
cases for each defect, besides a lot of passing cases. To
obtain a sufficient number of failing cases, we have gen-
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Table 2: Defect-ranking positions for the three levels separately.

erated new ones by varying existing ones. In concrete
terms, we have merged JavaScript code from correct and
failing test cases.

5.2 Evaluation Measures. In order to assess the
precision of our techniques, we consider the ranking po-
sitions of the actual defects. These positions quantify
the number of software entities (i.e., packages, classes
and methods) a software developer has to investigate
in order to find the defect. (Smaller numbers are pre-
ferred.) As the sizes of methods can vary significantly,
we deem it more adequate to assess the hierarchical
approaches by considering the normalised LOC rather
than only the number of methods involved. We there-
fore provide the percentage of LOC to examine in addi-
tion to the ranking position. We calculate the percent-
age as the ratio of methods that has to be examined in
the software project, i.e., the sum of LOC of all meth-
ods with a ranking position smaller than or equal to the
position reported, divided by the total LOC.

5.3 Experimental Results (Different Levels).
We now present the defect-localisation results for the
three different levels. This is, we consider complete
package-level call graphs and call graphs at the class
and method level, zoomed-in into the correct package
(and class). We do so in order to assess the defect-
localisation abilities for every level in isolation.
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Figure 3: The numbers of defects localised when exam-
ining a certain number of packages/classes/methods.

Table 2 contains the experimental results, the rank-
ing positions for all defects investigated, separately for
the three levels. Figure 3 provides a graphical represen-
tation of the same data. It plots the number of defects

localised when a developer examines a certain number
of the top-ranked entities. For example, the third trian-
gular point from the left means that 10 out of 14 defects
are localised when examining up to three methods.

At the package level, the defective package is ranked
at position one or two in 10 out of 14 cases, i.e.,
localisation is precise. The explanation for such good
results at the coarsest level is the small number of nine
packages in Rhino. At the class level, the results look
a little worse at first sight. However, eight defects
can be localised when examining three classes or less
(out of 146). Only three defects are hard to localise,
i.e., a developer has to inspect 15 or more classes. At
the method level, 13 of the defects can be localised by
examining 10 methods or less (out of 1,561), 10 of them
with three methods or less. Only one defect, no. 137181,
cannot be localised at all. This defect does not affect
the call-graph structure nor the call frequencies.

All in all, the call-graph representations at the
different levels – as well as the localisation technique
– localise most defects with a high precision. However,
when using package-level graphs to manually zoom-in
into a package, packages ranked at position three or
four might be misleading. This is not unexpected, as
it is well known that many defects have effects only in
their close neighbourhood [7]. This might not affect a
package-level graph at all. The hierarchical approaches,
in particular the merge-based ones, try to overcome this
effect by investigating several packages systematically.

We use the results from this section to set the
parameters k, l,m for the hierarchical approaches. The
maximum localisation precision in Figure 3 is reached
at four packages, 20 classes or 10 methods. When using
these values as parameters, the hierarchical approaches
do not miss any defects they could actually localise while
avoiding to examine more source code than necessary.

5.4 Experimental Results (Hierarchical). We
now present the results from three experiments with
the different hierarchical approaches (see Section 4.2):
E1 – DFS-based defect localisation; E2 – merge-based
variant thereof; E3 – parameter-free defect localisation.
Table 3 contains the numerical results in two variants:
the ranking positions at the method level and the corre-
sponding percentage of source code. As before, Figure 4
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E1 3 9 56 - 170 3 5 120 64 3 54 29 55 15 45.1
E2 52 12 3 - 46 1 1 68 9 3 100 154 8 25 37.1

E3 54 18 3 - 49 1 1 77 14 5 155 210 8 31 48.2

E1 1.2% 4.5% 10.3% - 20.6% 2.6% 1.6% 9.8% 5.1% 4.4% 7.5% 3.1% 11.6% 1.5% 6.4%

E2 6.7% 2.6% 5.4% - 10.3% 2.6% 1.3% 7.5% 0.3% 4.4% 10.4% 15.2% 5.9% 6.7% 6.1%
E3 8.2% 3.4% 5.4% - 10.5% 2.6% 1.3% 8.1% 1.9% 4.5% 17.8% 20.1% 5.9% 8.3% 7.5%

Table 3: Hierarchical defect localisation results. E1: DFS-based defect localisation; E2 merge-based variant
thereof; E3: parameter-free defect localisation. Top: method-ranking position; bottom: LOC to examine.

is a graphical representation of this data. Similarly to
related work (e.g., [18, 20]), it represents the percentage
of defects localised versus the percentage of source code
that does not need to be examined.
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Figure 4: The percentage of defects localised when not
examining a certain percentage of source code.

In line with our hypothesis (see Section 4.2), the
merge-based variant (E2) performs better than the pure
DFS-based approach (E1) in all but four data points
in Figure 4. The average values in Table 3 reflect
this as well. With the merge-based variant (E2), one
finds a defect by examining 6.1% of the source code
on average. Not surprisingly, parameter-free defect
localisation (E3) always performs worse than or equal to
the parameterised variant (E2). However, it still allows
a developer to find defects by inspecting 7.5% of the
code on average, without having to set any parameters.

Focusing on the best approach, the merge-based
variant (E2), two defects are pinpointed directly, and
six defects can be localised by investigating less than 10
methods. Only one defect cannot be localised at all (as
before), and for only two defects 100 or more methods
need to be inspected. All in all, we deem these results
very helpful: On average, almost 94% of the source code
can be excluded from manual debugging, and to find
86% of all defects, one can skip 89% of the code.

6 Related Work

Dynamic defect-localisation techniques analyse instru-
mented programme runs, while static techniques inves-

tigate the source code only. We now briefly review some
work apart from call-graph mining (see Section 2).

Static Analysis. Mining software repositories
maps post-release failures from a bug database to de-
fects in source code. For example, [23] derives code
metrics and builds regression models which then predict
possible post-release failures. Such approaches rather
give hints on code quality issues than pinpointing actual
defects. FindBugs [2] is an approach complementary to
ours. Its static code analysis for Java works well when
identifying certain typical patterns of defect-prone pro-
gramming, but cannot identify all sophisticated defects.

Dynamic Analysis. Tarantula [18] is a coverage-
analysis technique. To localise defects, it generates a
ranking of statements which are executed more often
in failing executions. While this technique is relatively
simple, it produces good results. In the evaluation [18],
it has outperformed five competing approaches. How-
ever, it does not take into account how often a statement
is executed within one programme run. This tends to
miss certain defects such as call-frequency affecting bugs.
AMPLE [5] analyses sequences of method calls. The
authors demonstrate that the temporal order of calls
is more promising to analyse than statement coverage
only. However, AMPLE only derives relatively coarse-
grained class-level localisations. [22] also deals with se-
quences, but presents a failure-detection approach. This
is, it does not localise defects, but decides whether an
execution is correct or not. In general, the usage of call
sequences instead of statement coverage is a generali-
sation which takes more structural information into ac-
count. Call-graph-based techniques in turn cover more
complex structural information than sequences.

SOBER [20] is a statistical defect-localisation tech-
nique. It makes use of more detailed information than
coverage analysis and instruments predicates on condi-
tion statements and return values. It then calculates
defect likelihoods: Predicates yield high values when
their evaluations differ significantly in correct and fail-
ing executions. SOBER has outperformed Tarantula in
most situations [20]. Opposed to our approach, it does



not analyse structural properties of call graphs. Hence,
detecting structure-affecting bugs is more difficult.

7 Threads to Validity

No defect-localisation technique can localise any kind
of defect – nor does ours. A direct comparison to
other approaches is difficult: Many of them work on
the granularity of lines instead of methods, or do
not rank their results, but present unordered sets of
warnings. FindBugs [2], for instance, has both of these
characteristics. As many static approaches, it can
identify standard defect patterns, but was not able to
detect any of the more complicated real defects in Rhino.
One of the best dynamic approaches, Tarantula [18],
generates a ranking of lines suspected to be defective.
When comparing the amount of code a developer has
to examine, the Tarantula evaluation only counts the
actual lines listed in its ranking instead of counting all
lines of all methods, as done by our approach. Another
dynamic approach, SOBER [20], generates a ranking of
condition predicates. This is not directly comparable to
our method ranking, too.
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Figure 5: Assessment of the results by comparing
related evaluations (values taken from [18, 20]).

When looking at Tarantula and our approach from
a theoretical perspective, our approach considers more
data than code coverage (but at the coarser method
level). This includes (1) call frequencies, (2) subgraph
contexts and (3) the information which method has
called another one. This data is potentially relevant for
defect localisation, e.g., to localise frequency-affecting
bugs (1) and structure-affecting bugs (2, 3).

To show that our approach delivers results with
about the same or even better precision as others, we
compare some values in Figure 5. It contains the origi-
nal data values from the Tarantula [18] and SOBER [20]
evaluations with the Siemens Programmes [16] and a
not publicly available programme called Space (Taran-
tula only). The figure shows that our merge-based
technique performs almost always better on Rhino than
Tarantula and SOBER on Siemens and a little worse
than Tarantula on Space. It is difficult to come up

with further conclusions, as the other evaluations do
not deal with real defects. Furthermore, the Siemens
Programmes (<1k LOC) as well as Space (≈ 6k LOC)
are a lot smaller than Rhino (≈ 49k LOC), and it is not
known how well Tarantula and SOBER scale for this size.

8 Challenges for Data-Mining Research

The techniques developed in this study raise a number
of general data-mining research questions. These ques-
tions are relevant for many applications, and we discuss
them in the following:

Graph Clustering. Caused by the class hierarchy
of a grown software project, class and package sizes fre-
quently are very imbalanced. This leads to scalability
issues. Furthermore, the manual assignment of software
entities to larger units, as typically done by the software
developer (e.g., of a class to a package), is often arbi-
trary. To overcome such problems, it would be helpful
to have natural and balanced hierarchies. This could be
done by means of (weighted) graph clustering [1] on call
graphs, for instance, similarly to hierarchical mining of
community structures in (social) networks [15]. From a
general data-mining perspective, this is interesting, be-
cause our setting would provide an objective evaluation
framework for graph clustering. ‘Objective’ means that
clusterings of different quality are expected to yield re-
sults with different localisation precision as well. This
is in contrast to numerous evaluations where domain
experts have decided how good the various results are.

Integrated Hierarchical Search on Graphs.
Our approach processes graphs at different levels, one
after the other. Although these graphs are related
(by zoom-in), the analysis at the different levels is
currently done separately, without benefiting from the
hierarchical procedure. This is, we have not tried to
identify any synergy from that relationship so far. It
would be interesting to investigate how an integrated
hierarchical search procedure could look like that makes
use of previous results and speeds up the process. Such
results might be of interest for graph mining in other
application domains as well.

Weighted Subgraph Mining. In this study we
analyse weighted call graphs by means of a two-step
approach: frequent subgraph mining followed by feature
selection. To our knowledge, alternative approaches for
an integrated analysis of weighted graphs have never
been studied systematically. However, we expect that
an integration would allow for much faster analyses.
Furthermore, algorithms for weighted subgraph mining
could be used in many domains where weighted graphs
are present. The algorithms envisioned should be able
to analyse tuples of numerical weights and might exploit
correlations between the tuple elements.



9 Conclusions

Defect localisation is essential in software engineering.
We have presented a hierarchical call-graph-based ap-
proach, building on newly proposed graph representa-
tions of different levels of granularity. To localise de-
fects, it hierarchically analyses graphs of a coarse gran-
ularity before it zooms-in into more fine-grained graphs.
This allows for the analysis of relatively large software
projects. Our evaluation features defects from the field
in such a project, Mozilla Rhino. The result is that the
amount of source code a developer has to examine man-
ually can be reduced to about 6% in our setup. To our
knowledge, this is the first study applying call-graph
mining to a project of this size. Besides our contribu-
tions in domain-specific data mining for software en-
gineering, we have identified new general data-mining
research questions relevant for many domains.
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