
Towards Scalability of Graph-Mining Based Bug Localisation

Frank Eichinger eichinger@ipd.uka.de
Klemens Böhm boehm@ipd.uka.de

Institute for Program Structures and Data Organisation (IPD), Universität Karlsruhe (TH), Germany

Keywords: graph mining, software bug localisation, weighted graph mining, call graphs

Abstract

(Semi-)automated bug localisation is an im-
portant issue in software engineering. Recent
techniques based on call graphs and graph
mining can locate bugs in relatively small
programs, but do not scale for real-world ap-
plications. In this paper we describe a bug-
localisation approach based on graph mining
that has this property, at least according to
preliminary experiments. Our main contri-
bution is the definition and analysis of class-
level call graphs, with encouraging results.

1. Introduction

Software quality is a big concern in industry. In many
cases, bugs are not discovered before the software is
delivered. In other cases, its release is delayed due to
tedious quality-assurance measures. Both situations
incur huge costs. As the localisation of bugs is known
to be the most time-consuming part of debugging, au-
tomated methods for bug localisation are needed.

In software engineering, different bug localisation tech-
niques have been proposed (for related work, see
Eichinger et al., 2008). Recently, graph-mining tech-
niques have been applied to this problem as well (Liu
et al., 2005; Di Fatta et al., 2006; Eichinger et al.,
2008). They make use of dynamic call graphs, which
are representations of program executions. Such call
graphs map methods to nodes and method calls to di-
rected edges. The intuition behind graph mining based
techniques is that they can detect frequent subgraphs
in a set of call graphs representing correct program ex-
ecutions as well as frequent subgraphs in a set of failing
executions. Then one can identify patterns which are

Presented at ILP-MLG-SRL, Leuven, Belgium, 2009.

typical in failing executions. This gives hints where a
bug might be located. Finally, a score is derived which
represents a likelihood of containing a bug, for every
method. This score can then guide a manual debug-
ging process, starting with the method scored highest.

Though these techniques work well with small pro-
grams, they suffer from the same problem: They do
not scale for real-world software projects, where bug
localisation would indeed be helpful. This is caused by
the NP-complete problem of subgraph isomorphism,
which is inherent in the graph-mining algorithms used
by all techniques. Elaborate call graph reduction tech-
niques are available that yield smaller graphs. This
gives way to graph based bug localisation with some-
what larger programs. However, dynamic method call
graphs of large real-life applications will probably re-
main too large for frequent subgraph mining.

To overcome the problem, we envision a scalable ap-
proach based on call graphs representing another level
of granularity. Our starting point are the software en-
tities represented by the nodes of such a graph. While
the nodes represent methods in previous approaches,
this level of detail can be changed in two directions:
The granularity can become finer if nodes represent
variables, and edges represent variable accesses. It can
as well become coarser if the graph stands for classes
and inter-class method calls (or packages and inter-
package calls etc.). In this paper, we propose a call-
graph representation at the class level. We develop
an approach to mine such graphs and to localise bugs
with state-of-the-art techniques. In our experiments,
we demonstrate that class-level call graphs are suitable
to locate certain bugs. (As probably any bug locali-
sation technique, call-graph mining cannot locate any
kind of bugs, i.e., if the bug does not affect the graph.
Therefore, one should look at such techniques as or-
thogonal to other approaches.) We conclude with our
vision how the techniques examined so far can evolve
into a scalable approach for bug localisation.

Towards Scalability of Graph-Mining Based Bug Localisation

sg1 sg1 sg2 · · · sg1 sg1 sg1 sg2 sg2 · · · Class
A→B A→C A→B A→A B→B C→C A→A B→B

g1 1 1 8 2 1 1 · · · 0 0 8 3 7 1 0 0 8 3 · · · failing
g2 0 0 0 0 5 2 · · · 0 0 0 0 0 0 0 0 6 3 · · · correct

Table 1. Example table for analysis with feature selection algorithms.

2. Class-Level Call Graphs

Call graphs at the method level as obtained from pro-
gram executions become very large. They may contain
substructures repeatedly, caused by iterations and re-
cursions, which lead to the huge size. All call graph
mining based bug localisation approaches therefore use
a graph reduction technique. The technique which
achieves the strongest compression is total reduction,
Rtotal. It maps all nodes representing the same method
to one node. Figure 1 illustrates an unreduced call
graph (a) and an Rtotal one (b). Notation: dots sepa-
rate classes (capitals) from methods (lowercase).

A.a

B.a B.a C.a B.c

B.b B.b C.b C.b

(a) unreduced

A.a

B.a C.a B.c

B.b C.b

(b) Rtotal

A

B

3,2

C

1,1

1,1
 1,1

 1,1 1,1

(c) Rclass

A

B

3,2

C

1,1

 1,1

 1,1

(d) Rno loops
class

Figure 1. Call-graph representations.

Some call-graph representations at the method level
use edge weights to represent call frequencies, which
can be analysed as well. Our class-level call graphs,
Rclass, feature both notions, total reduction and edge
weights. We map every node from the same class to
the same node. (For a stronger compression, we merge
nested Java classes into the node of the class where
they are defined.) As it might be relevant information
for bug localisation, we extend the edge weights and
annotate every edge with a 2-tuple. It consists (1) of
the total number of method invocations from the call-
ing class to the callee class and (2) of the number of
different methods called. Figure 1 contains an exam-
ple of a Rclass call graph (c) representing the original
graph (a). As almost every method in a certain class
usually calls other methods within the same class, the

nodes in these graphs frequently have self-loops. For a
further reduction of the Rclass graphs for more efficient
graph mining, we remove those loops as well (Rno loops

class ,
see Figure 1(d)). However, we keep the tuples associ-
ated with the loops for the analysis step that follows
the graph mining.

3. Bug Localisation Process

With method-level call graphs, Liu et al. (2005) and
Di Fatta et al. (2006) have focused on frequent sub-
graph structures discriminating between correct and
failing executions. In (Eichinger et al., 2008) we have
shown that, in addition to structural approaches, it is
essential to analyse call frequencies (edge weights) as
well. We have applied frequent subgraph mining in a
first step and analysed the edge weights in a subse-
quent postprocessing step. In this article we present
a similar approach for class-level call graphs. In a
first step we apply the CloseGraph algorithm (Yan
& Han, 2003) to Rno loops

class graphs to obtain frequent
subgraphs. We concentrate on those subgraphs which
occur in both correct and failing executions, as we are
interested in discriminating edge tuples.

We then assemble a table for the analysis of the edge
tuples. These tuples can have a different significance
in different contexts, which we represent with the sub-
graphs we have obtained before.1 Each row in the
table stands for a call graph gi, i.e., for a program
execution. The table contains one column for each el-
ement of the tuples of every edge in every frequent
subgraph sgj . Table 1 serves as an example. To ex-
plain some values, the edge from Class A to Class B in
Subgraph sg1 in program execution g1 describes one
call of a single method (‘1,1’). In contrast, the edge
from A to C in the same subgraph and the same ex-
ecution is annotated with ‘8,2’ (eight calls of two dif-
ferent methods). sg1 is not contained in g2 – zeros
in all corresponding cells indicate this. In addition to
the regular edge tuples, we include the tuples associ-
ated with the self-loops which we had omitted for the
graph-mining step. We use one column for each tuple
value for every node (class) in every subgraph (con-

1Preliminary experiments have demonstrated the use-
fulness of closed frequent subgraphs as contexts, compared
to a direct analysis of edge weights in Rclass graphs.

Towards Scalability of Graph-Mining Based Bug Localisation

text). In the example, only Class A has no self-loops,
and therefore all corresponding columns contain zeros.

We analyse the table with the information gain feature
selection algorithm (Quinlan, 1993). This leads to a
ranking of edges discriminating well between correct
and failing executions. We use this ranking as a call
frequency based likelihood that the classes contain a
bug. As every class is contained in more than one
column, the algorithm assigns more than one value to
every class. We use the maximum for the ranking.

In contrast to all method-level approaches, we do not
consider structural aspects. This is because prelimi-
nary experiments with Rno loops

class graphs have revealed
that discriminating frequent subgraphs are rare. This
is due to the finding that the reduction on the class
level leads to call graphs with exactly the same struc-
ture in many cases. Only the edge tuples may be sig-
nificantly different in correct and failing executions.

4. Experimental Results

For our evaluation we used the open source pro-
gram HtmlCleaner (htmlcleaner.sourceforge.net)
and instrumented it with nine different bugs, resulting
in nine versions (see Table 2). The bugs are similar
to the ones used in previous evaluations. The pro-
gram consists of 28 classes from which 12 to 14 were
executed in our experiments. The program is consid-
erably larger than those used before (approx. 5,000
lines of code compared to 200 to 700). This size is too
large to be mined with a method-level approach, and
the program is well suited to demonstrate bug locali-
sation on the class level. We applied our approach to
Rno loops

class reduced graphs obtained from 100 executions
of each version. The results are included in Table 2:
The column ‘Line’ contains the position of the class in
which the bug was instrumented in the ranking.

Bug Modification Line
Bug 1 method always returns null 1
Bug 2 wrong variable used 1
Bug 3 return false instead of true 6
Bug 4 == instead of != 2
Bug 5 if(true) instead of condition 7
Bug 6 == instead of > 7
Bug 7 x instead of x + 1 7
Bug 8 omitted or-clause in if-condition 3
Bug 9 negated if-condition 1

Table 2. Bugs and results (small line numbers are better).

For five bugs our approach works very well: The bugs
are found in Position 1 to 3 which facilitates a fast lo-
calisation. Note that only the buggy class is presented
in the ranking, but its relationship to another class

(an edge) is reported as well. This additionally aids
debugging. Four bugs in turn are found in Position 6
or 7. These are cases where the localisation is less help-
ful for software developers. A closer inspection reveals
that these bugs change variable values or affect library
calls. Both does not affect the call graphs as they do
not contain such values or calls. No approach based
on the same kind of graphs can locate these bugs.

5. Conclusions and Future Directions

In our evaluation we have demonstrated that graph
mining based bug localisation does work on class-level
call graphs (Rno loops

class), and that satisfactory results
can be obtained. This allows to mine software projects
which are significantly larger than before. Obviously,
class-level bug localisation is not as precise as method-
level techniques. To obtain more information where
bugs might be hidden within a class, we propose to
‘zoom in’ into the suspicious regions (classes) and to
apply a method-level approach on a graph contain-
ing methods from the suspicious classes only. This
gives way to a proposal for scalable bug localisation:
Starting at a high level of abstraction (say, packages)
one identifies suspicious regions before ‘zooming in’,
investigating the next level of abstraction (say, classes)
and so forth. This approach requires definitions of call
graphs with numerical attributes for every level con-
sidered, possibly including library calls. An important
question for our future research is to investigate how
well the approach outlined will work on levels coarser
than the class-level abstraction.

Acknowledgement

We thank Roland Klug for his contributions.

References

Di Fatta, G., Leue, S., & Stegantova, E. (2006). Dis-
criminative Pattern Mining in Software Fault De-
tection. SOQUA Workshop.

Eichinger, F., Böhm, K., & Huber, M. (2008). Min-
ing Edge-Weighted Call Graphs to Localise Software
Bugs. ECML PKDD.

Liu, C., Yan, X., Yu, H., Han, J., & Yu, P. S. (2005).
Mining Behavior Graphs for “Backtrace” of Non-
crashing Bugs. SDM Conference.

Quinlan, J. R. (1993). C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers.

Yan, X., & Han, J. (2003). CloseGraph: Mining Closed
Frequent Graph Patterns. KDD Conference.

