
Improved Software Fault Detection with Graph Mining

Frank Eichinger eichinger@ipd.uka.de
Klemens Böhm boehm@ipd.uka.de
Matthias Huber huberm@ipd.uka.de

Institute for Program Structures and Data Organisation (IPD), Universität Karlsruhe (TH), Germany

Keywords: graph mining, software fault detection, weighted graph mining, call graphs

Abstract

This work addresses the problem of discov-
ering bugs in software development. We
investigate the utilisation of call graphs of
program executions and graph mining algo-
rithms to approach this problem. We pro-
pose a novel reduction technique for call
graphs which introduces edge weights. Then,
we present an analysis technique for such
weighted call graphs based on graph mining
and on traditional feature selection. Our new
approach finds bugs which could not be de-
tected so far. With regard to bugs which can
already be localised, our technique also dou-
bles the precision of finding them.

1. Motivation

Software quality is a big concern in industry. Almost
any software displays at least some minor bugs after
being released, incurring significant costs. A group of
bugs which is particularly hard to handle is noncrash-
ing bugs, e.g., logical failures which do not lead to a
crash but to faulty results. Such bugs are in general
hard to find, as no stack trace of the failure is available.

2. Related Work

Research in the field of software reliability has been
extensive, and various techniques have been devel-
oped for locating bugs. One direction of research is
static analysis, where properties of the source code or
the version history are analysed. Another direction
is dynamic analysis, which requires the execution of
the program. These techniques can be further distin-

Appearing in the 6 th International Workshop on Mining
and Learning with Graphs, Helsinki, Finland, 2008.

guished in data centric (analysing values of variables)
and control flow oriented (analysing branches taken).

Many static techniques require a large bug and ver-
sion history database, which is not always available.
Nagappan et al. (2006), e.g., use standard metrics from
software engineering and mine the source code with re-
gression models.

Dynamic techniques usually work with just the current
version of the software and require test oracles, which
decide if an execution is correct or failing. An example
of a dynamic data flow focused approach is the work
of Liblit et al. (2003). It instruments the source code
to gain program invariants. These are used as features
which are analysed with regression techniques. This
allows to discover potentially buggy pieces of code.
Such instrumentation based approaches usually suffer
from a poor runtime behaviour or from missed bugs,
if the software is not fully instrumented.

Dynamic control flow based techniques often rely on
call graphs of program executions. In such graphs,
a node represents a method and an edge a method
call. Figure 1(a) gives an abstract example. Recent
work operating on call graphs by Liu et al. (2005) and
di Fatta et al. (2006) employ graph mining techniques
for bug localisation. These studies discover structural
patterns in call graphs, which are characteristic for
failing executions. A major challenge of graph mining

a

b c

b b b

(a)

a

b

1

c

1

b

3

(b)

a

b

c

(c)

a

b c

b b

(d)

Figure 1. Variants of reduced call graphs.



Improved Software Fault Detection with Graph Mining

techniques is that such algorithms do not scale for large
graphs. Call graphs become relatively huge, as sub-
structures typically are repeated many times. There-
fore, reduction techniques need to be applied first. In
the mentioned literature, this leads to a loss of infor-
mation. Namely, call frequencies are lost, which are
important for detecting certain groups of bugs.

3. Call Graph Reduction

The last section has mentioned two approaches of re-
ducing software call graphs. The first one from Liu
et al. (2005) does total reduction – every method oc-
curs just once within the graph. See Figure 1(c) for
a totally reduced version of Figure 1(a). This leads
to small graphs, which allows for graph-mining-based
bug localisation even with larger software projects. On
the other side, much information about the program
execution is lost, e.g., frequencies of the execution of
methods and information on different structural pat-
terns within the graphs. The approach from di Fatta
et al. (2006) omits substructures which are called more
than twice in a row (see Figure 1(d)). Thus, it keeps
more information than the other one, with the risk of
generating very large graphs. In consequence, graph
mining algorithms might not work on these graphs.

In our approach, we try to overcome the shortcomings
of both approaches and keep most of the information
available. We reduce substructures executed several
times in a row by deleting all but the first one and
inserting the call frequencies as edge weights (see Fig-
ure 1(b)). This allows for a detailed analysis of the call
frequencies. If, for example, a bug is hidden in a loop
condition, this might lead to hundreds of iterations of
the loop, compared to just a few in correct program ex-
ecutions. Note that, with both previous graph reduc-
tion techniques, the graph of the correct and failing ex-
ecution is reduced to exactly the same structure in this
case. In our approach, the edge weights would be sig-
nificantly different. This raises the need for weighted
graph mining algorithms. In the following section, we
present a technique for analysing differences in edge
weights subsequent to traditional graph mining.

4. The Mining Framework

We will now describe our framework to derive a rank-
ing of potentially buggy methods from call graphs.
This ranking can be given to a software developer who
can do a code review of the suspected methods. At
first, frequent subgraph mining is applied to the re-
duced call graphs. The resulting frequent subgraphs
are then processed with two different approaches: the

conventional scoring approach and our entropy based
approach. As some bugs result in different call fre-
quencies while others result in different substructures,
we combine both scores, which leads to a final rank-
ing. Figure 2 is an overview of this framework – the
following paragraphs describe the individual steps.

conventional approach entropy based approach

reduced call graphs

frequent subgraph mining

conventional-scoring
(based on support measures)

frequent in failing
but not in correct

entropy-scoring
(based on edge weights)

occurring in
failing and correct

conventional method-ranking
combination of

the scores
intermediate

method-ranking

combined method-ranking

Figure 2. The ranking framework.

After having reduced the call graphs gained from cor-
rect and failing program executions, we do frequent
subgraph mining with the CloseGraph algorithm (Yan
& Han, 2003), ignoring the edge weights for now.

In the conventional approach (di Fatta et al., 2006),
we just consider the discovered subgraphs which are
frequent within the set of failing executions, but not
frequent in the set of correct ones. In order to gain a
scoring of the methods, we calculate for every method
the probability Pc for containing a bug. Please see the
literature for further details.

In our entropy based approach, we focus on fre-
quent subgraphs occurring in both classes of program
executions, the class of correct and the class of failing
ones. Our goal is to find out which edge weights are
most significant to discriminate the two classes of exe-
cutions. To this end, we first assemble a feature table.
This table contains all edge weights in all subgraphs
discovered by CloseGraph in the columns1 and all pro-
gram executions (represented by the call graphs) in the
rows. The following table serves as an example:

SG1 SG1 SG2

a→b a→c a→b · · · Class
Graph1 2 1 6 · · · failing
Graph2 0 0 4 · · · correct
· · · · · · · · · · · · · · · · · ·

1More precisely, we also differentiate between edges oc-
curring at different positions within one subgraph.



Improved Software Fault Detection with Graph Mining

The first column corresponds to the first subgraph
(SG1 ) and the edge from a to b, the second column to
the same subgraph but the edge from a to c, the third
column to the second subgraph (SG2 ) etc. In the last
column, the class correct or failing is displayed.

Once the table is filled, we employ a standard feature
selection algorithm to score the columns of the table
and thus the effect of the different edges. We use an
entropy based algorithm which calculates the informa-
tion gain for every column. At this point, the ranking
not only contains suspected methods, but suspected
method calls (edges). Thus, not just the information
in which method a bug is hidden is included, but also
where exactly within this method. In order to com-
pare and to combine our results with those of di Fatta
et al. (2006), we just keep the starting methods from
our edge list and omit the methods called. As our list
might contain duplicates, we eliminate them and keep
the maximum score for every method. This leads to
our score Pe for methods and an intermediate ranking
ordered by the likelihood of containing a bug.

Finally, we combine our edge weight based results
gained so far with the ones from di Fatta et al. (2006).
This results in an overall likelihood P of containing
a bug for every method, based on the average of the
normalised values for Pc and Pe.

5. Experimental Results

For the evaluation of our technique, we instrumented a
Java diff tool (Darwin, 2004) with nine different bugs.
The bugs we are using represent the same types of
bugs which are used in the evaluation of Liu et al.
(2005) and di Fatta et al. (2006). We executed every
version corresponding to an instrumented bug exactly
100 times with different input data. We then classi-
fied the results as correct or failing executions with
a test oracle based on a bug free reference version.
Based on this data, we carried out three experiments
(see Figure 2): (1) The conventional method-ranking
following the approach from di Fatta et al. (2006), in-
cluding its graph reduction technique, (2) the inter-
mediate method-ranking, using our reduction technique
together with the entropy based scoring and (3) the
combined method-ranking which combines (1) and (2).

In order to evaluate the precision of the results, it
needs to be checked in which line (out of 25 methods
in our program) of the ranking the first instrumented
bug is found. A software developer would have to pay
attention to all lines till the bug is found. The follow-
ing table displays the results of the three experiments
for all nine versions (‘25’ refers to bugs not discovered):

Exp. \ Bug 1 2 3 4 5 6 7 8 9
1. Conventional 3 25 1 4 6 4 3 3 1
2. Intermediate 3 3 1 1 1 3 3 1 25
3. Combined 1 3 1 2 2 1 2 1 3

Bug 2 is not found by the structural technique (1) as it
occurs within a loop and affects call frequencies only:
it is found with edge weight analysis (2). Bug 9 in
turn does not affect any call frequencies and can only
be found by structural analysis (1). The combined ap-
proach (3) proves to be key to locate both bugs. Look-
ing at the other bugs, our intermediate approach (2)
already performs better than the conventional one (1).
The combination (3) can slightly improve this. Leav-
ing aside Bugs 2 and 9, our combined approach more
than doubles the precision of di Fatta et al. (2006).

6. Conclusion

In this work we have presented a dynamic control flow
centred approach for the localisation of noncrashing
bugs. It uses call graphs which are reduced by a novel
technique. This is done by introducing edge weights
representing call frequencies. As none of the recently
developed graph mining algorithms allows for the anal-
ysis of weighted graphs, we have developed a respective
technique. This involves frequent subgraph mining
and scoring of numerical edge weights using an entropy
based algorithm. Our experiments show that a combi-
nation of structural and numerical mining techniques
leads to significantly improved bug localisations.

References

Darwin, I. F. (2004). Java Cookbook. O’Reilly.

di Fatta, G., Leue, S., & Stegantova, E. (2006). Dis-
criminative Pattern Mining in Software Fault Detec-
tion. Proc. of the Int. Workshop on Software Quality
Assurance (SOQUA).

Liblit, B., Aiken, A., Zheng, A. X., & Jordan, M. I.
(2003). Bug Isolation via Remote Program Sam-
pling. ACM SIGPLAN Notices, 38, 141–154.

Liu, C., Yan, X., Yu, H., Han, J., & Yu, P. S. (2005).
Mining Behavior Graphs for “Backtrace” of Non-
crashing Bugs. Proc. of the Int. Conf. on Data Min-
ing (SDM).

Nagappan, N., Ball, T., & Zeller, A. (2006). Mining
Metrics to Predict Component Failures. Proc. of the
Int. Conf. on Software Engineering (ICSE).

Yan, X., & Han, J. (2003). CloseGraph: Mining Closed
Frequent Graph Patterns. Proc. of the Int. Conf. on
Knowledge Discovery and Data Mining (KDD).


