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ABSTRACT
Energy-related data sets from industrial production are rare, and
related research questions have only attracted little attention. To
facilitate research on these challenges, we describe a comprehensive
machine-level energy-data set from a production site and make it
publicly available. We then sketch applications where our data set
may serve as a benchmark and catalyst for further research.
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1 INTRODUCTION
The publication of energy-related data has ignited insightful re-
search on future energy systems. Examples are the disaggregation
of consumption data, in order to recommend behavior that saves
energy [5, 13], and demand-side management for the integration of
renewable energy sources [3]. The number of energy-specific open
data sets has increased by much. On the other hand, the application
domains, the electrical quantities measured, and the temporal reso-
lution of available energy data show little variation across data sets.
Most data sets describe the consumption of electrical energy for
residential or office buildings, with a granularity of 10 or more min-
utes. For industrial production, which is responsible for a significant
share of the overall energy consumption, open data is still scarce.
Because of this, many challenges in this setting remain unattended.

To address this “data shortage”, we present HIPE, a High-reso-
lution Industrial Production Energy data set. HIPE contains smart
meter readings of ten machines and the main terminal of an elec-
tronics production plant, over three months. The measurements are
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Figure 1: Week profile of active power consumption.

time series of various electrical quantities, e.g., active and reactive
power, voltage, frequency, and harmonic distortion, with a resolu-
tion of 5 seconds. To our knowledge, this is the most comprehensive
industrial energy data set openly available by now. It is accessible
at https://www.energystatusdata.kit.edu/hipe.php.

In the second part of this article, we outline open challenges
which become obvious when inspecting industrial energy data.
This includes a discussion of characteristics of industrial machines
and of differences to residential appliances. We describe potential
use cases for energy data that are specific to these characteristics
and where we expect HIPE to catalyze future research.

2 THE HIPE DATA SET
To make use of a data set, it is helpful to understand how one has
collected the data and the meaning of the quantities measured. To
introduce HIPE, we first describe the factory with its machines
and production processes. We then present descriptive statistics to
uncover important data characteristics.

2.1 Factory Setting
The Institute of Data Processing and Electronics (IPE) of Karlsruhe
Institute of Technology (KIT) in Germany operates an electronics
production site. It produces electronic systems for particle physics,
battery systems, and medical applications in small batches, i.e., less
than 1000 pieces. The production covers all processing steps from
individual components to the final assembly.

Several machines and the factory building have been instru-
mented with high-resolution smart meters. The machines are either

https://doi.org/10.1145/3208903.3210278
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Figure 2: Simultaneous machine activity over thee months.

connected to one (1P) or three phases (3P). They are located in a
clean room (CR) or on the regular shop floor. They are as follows:
PickAndPlaceUnit (1P): Placement of electronic components,
such as resistors and microcontrollers, on a printed circuit board
(PCB). Energy consumption depends on the quantity of compo-
nents per PCB and on the number of boards.

SolderingOven (3P): Components soldering to PCB. Energy con-
sumption depends on throughput speed and temperature.

WashingMachine (3P): Cleaning of PCB. Energy consumption
depends on temperature and process duration.

ScreenPrinter (1P, CR): Printing of material layers to intercon-
nect electronic components via thick-film technology.

VacuumPump1 (3P) and VacuumPump2 (1P): Auxiliary ma-
chines to generate vacuum for other machines such as PickAnd-
PlaceUnit. Energy consumption depends on vacuum demand.

HighTemperatureOven (3P, CR): Heats up to 1200 ◦C, fixing
layers for thick-film technology. Energy consumption depends on
temperature and heating duration.

VacuumOven (3P, CR): Oven with vacuum chamber.

ChipSaw (3P, CR): Separation of chips of a silicon wafer. Energy
consumption depends on the wafer thickness.

ChipPress (3P, CR): Heat treatment of surfaces under high pres-
sure, e.g., for multi-layered PCB. Energy consumption depends on
pressure and temperature.

MainTerminal: Connection of factory to electrical grid. This also
includes smaller machines, offices and air conditioning, which are
not instrumented individually.
Production processes vary significantly between products. How-

ever, to illustrate a production cycle, we describe the production
process of a data-acquisition module.

Example 2.1 (Production Cycle). In the first step, the PickAnd-
PlaceUnit places electronic components on a PCB. During the place-
ment, VacuumPump1 and VacuumPump2 supply negative pressure
to manipulate components. Afterwards, the SolderingOven creates
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Figure 3: Maximum harmonic over three months.

an electrical and mechanical connection between the components
and the board. Lastly, the WashingMachine cleans the board and
removes residue from previous productions steps.

2.2 Data Acquisition
All machines and the main terminal are monitored using EEM-
MA600 [6] energy meters. A client polls the smart meters via MOD-
BUS/TCP. After data is received, it proceeds with the next request.
The poll time, and thus time between measurements, varies.

The smart meters measure over one hundred electrical quantities.
A full data sheet is provided along with the data. Some quantities
are not common with open energy-data sets, so we briefly describe
their semantics and measurement specifics.

The machines are connected to an AC grid with three phases.
The phases use the same frequency (F), which is the main indicator
of grid stability. Deviations from the regulated frequency, 50Hz
in our case, indicate imbalance of demand and supply in the grid.
The voltage between two phases is the line voltage (U), and the
voltage between any phase and neutral is the phase voltage (V). The
line voltages and phase voltages are regulated towards 230V and
400V respectively. However, loads inside and outside the factory
can cause fluctuations. The current (I) of each phase is measured
directly, and the current of the neutral conductor is inferred using
Kirchhoff’s Law. Since our measurements exceed the smart me-
ter specifications of 5A, we use a transformer1 to scale down the
measured currents.

In an AC system, the active power (P) of a phase is the load used
by a machine to perform work. The reactive power (Q) is the power
oscillating within the line. It is unusable for practical work. The
apparent power (S) and power factor (L) are combinations of P and
Q, to quantify the efficiency of the energy transfer in terms of the
line capacity. Finally, harmonics are voltages and currents whose
frequencies are multiples of the net frequency. The aggregation of
harmonics in the grid is the total harmonic distortion (THD). Large
THD can cause power quality issues.

2.3 Data Characteristics
To select suitable data analysis methods for a data set, one must
understand its characteristics and distinctive features. We now
describe main characteristics of HIPE and highlight some specifics.

General. HIPE contains three month worth of data, from October
2017 to December 2017. The temporal resolution is about 5 sec, with
1We use model PACT MCR-V1-21-44-75-5A-1.
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Figure 4: SolderingOven: Voltage and active power.

a few exceptions for maintenance that increase the time between
measurements to several minutes. This results in about 1.5 million
measurements per machine and electrical quantity. In consequence,
analysis methods for this data set must be robust to a non-constant
time between measurements and should scale well with the number
of measurements.

Factory Level. Summary statistics on the factory level give in-
sights in production patterns. We illustrate this with three examples.

The first example is extracting consumption patterns and peak
loads. Figure 1 depicts the power consumption over one week for
the machines with the highest consumption as well as the main
terminal. The maximum consumption is during working hours, and
there is no production on weekends. The patterns and the peak
loads are specific to the machine and vary between days.

The second example is analyzing machine run times. Figure 2
depicts simultaneous operation times of two machines, relative to
the overall runtime of the machine in the row. Some machines often
run simultaneously, which can be a result of process dependencies.
For instance, VacuumPump2 (row) mostly is operating when Vac-
uumPump1 (column) is active as well, but not vice-versa. This is
plausible, because VacuumPump2 often supports VacuumPump1.

The third, more technical, example is analyzing harmonic distor-
tions. Figure 3 depicts the maximum voltage harmonics measured
over the three month period. In the past, PickAndPlaceUnit and
ScreenPrinter have shown high distortions. This might be a good
starting point to analyze the influence and propagation of harmon-
ics among industrial machines and in a factory grid.

Machine Level. On a more fine-granular level, one can also study
the behavior of individual machines. We illustrate this with exam-
ples from one day of the SolderingOven.

Figure 4 graphs the voltage and power consumption. During
start-up, the voltage drops on all three phases. After some minutes,
in the time interval highlighted in gray, the line voltages U23 and
U31 increase, and U12 follows with a delay. This voltage and power
pattern is typical for the SolderingOven. The machine can start up
several times per day, depending on the production schedule.

Figure 5 depicts current measurements for three activity periods.
The general shape of the current curve is similar for the different
activity periods. However, the peak and the length of the period
vary. There are four levels of current, at around 0A, 1.4A, 16.5A,
and 17.7A, that have many sensor readings. These levels might
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Figure 5: SolderingOven: Current during periods of activity.

characterize different machine states. For instance, the level at 1.4A
might indicate a stand-by level, which the machine enters at the end
of Activities 1 and 2. So the high-resolution data allows to observe
and analyze variation of machine behavior even within a day.

While the examples so far are simple, they allow to understand
the data set and, consequently, factory operations and the local
electrical grid. Future research can then come up with insights that
indeed help operating and maintaining the production site.

3 RELATEDWORK
Energy data sets have mainly been published for commercial and
residential buildings. They differ by the temporal and spatial reso-
lution as well as the electrical quantities collected. We now review
energy-related data sets.

Commercial and Residential Buildings. The most prevalent data
is power consumption of buildings, typically available in 10min
resolution. References distinguish between household and office
buildings, because of differences in the consumption profile.

Numerous building data sets are publicly available [2]. REDD [13]
is geared towards research on disaggregation of energy consump-
tion. It provides 15 kHz current and voltage measurements and
around 1Hz power consumption of household appliances. Smart* [3]
consists of several data sets, including consumption data, weather
data and events such as motion sensor readings or HVAC switching,
from three households, and power consumption of over 400 house-
holds with 1min resolution.

The electrical data measured typically is restricted to load, cur-
rent and voltage. Only one building data set features additional
quantities such as line frequency and reactive power [15].

Industrial Data. Data sets collected from industrial settings are
less numerous and mostly comprise consumption data with 1 to
60min resolution. Only one industrial data set is publicly avail-
able [18]. It spans four months of 1min resolution power consump-
tion of a factory. Data is collected for four machines: a laser cutter,
a bending machine, a robot welter and a laser shaper. A use case
for this data is to find out the demand flexibility which the factory
can offer to a virtual power plant.

However, there are other publications focusing on industrial
settings for which the corresponding data is not publicly available.
Examples are the generation of representative consumption pro-
files [12], finding instances of patterns identified by experts [9],
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clustering power-consumption curves in an industrial area [10] and
non-intrusive load monitoring of heat pumps and compressors [11].
Hence, despite the “success” of data from buildings, data from in-
dustrial settings is scarce. This shortage is well-known, and several
studies emphasize the need for open data, for reproducibility, and
to develop new methods [7, 20].

4 FUTURE RESEARCH DIRECTIONS
The paradigm shift to an energy system where demand follows sup-
ply challenges industrial and residential energy consumers alike.
However, many approaches to deal with this shift focus on resi-
dential data. They may not yield meaningful results when applied
to industrial data. To strengthen this hypothesis, we first discuss
characteristics of industrial energy data and highlight differences
to residential sources. We then sketch use cases where we expect
these characteristics to make a difference.

Device Inconsistency (C1). Machine programs vary for different
products. Small batch sizes result in a frequent change of machine
programs, which in turn causes varying load curves. This is differ-
ent to the household settings, where many devices, e.g., a coffee
machine, only serve one purpose and have stable signatures [8].

Instance Dissimilarity (C2). Different industry branches deploy
different machinery. But even for the same branch, machine vari-
ant and wear can vary. Next, machines often are fully customized.
So comparing two factory halls is unlikely to provide meaningful
insights. Households in turn differ only in a few variables. With
matching number of inhabitants and employment status, house-
holds tend to have similar consumption profiles. A reason is basic
equipment like refrigerators or TV sets where load curves differ
only slightly between model variants. For instance, most refrig-
erators switch on and off states to manage the temperature. The
resulting load curve is similar for most models.

Inter-day Inconsistency (C3). Small-batch production induces fre-
quent and irregular changes in production schedules, see Figure 1.
For large-scale production, machine schedules might be more pre-
dictable, but still are subject to change. In contrast, residents have
daily routines and often use appliances at similar times, e.g., the
coffee machine in the morning. Changes to these routines are less
common and might be subtle.

Device Dependence (C4). Production processes dictate the use
of machines in specific sequences and impose time constraints be-
tween processing steps. This is different from households where
appliances are mostly used independently from each other. The
temporal correlation of appliances likely is an effect of daily rou-
tines, with exceptions like a washing machine followed by a dryer.

It is now interesting to probe how Characteristics C1-C4 affect
methods that have been developed with residential data. Under-
standing these characteristics also might help to address industry-
specific use cases. In the following, we discuss a selection of relevant
use cases and indicate where HIPE might facilitate future research.

Non-Intrusive Load Monitoring. Non-intrusive Load Monitoring
subsumes methods for the disaggregation of total power consump-
tion to individual consumers. Methods developed on household

data [4, 21] tend to rely on consistent device signatures and usage
patterns. However, this assumption is unlikely to hold for indus-
trial devices with varying signatures (C1) and flexible schedules
(C3). Here, HIPE is a suitable benchmark because measurements
are available for both individual appliances and the main terminal.

Load Forecasting. Consumption forecasts can improve the inte-
gration of renewable sources. Methods typically exploit regularities
in consumption patterns [1, 19]. This is challenging for industrial
consumption because of temporal and device inconsistencies (C1
and C3). HIPE spans three months of consumption data with chang-
ing production schedules and is therefore suitable to study these
challenges for short-term and medium-term forecasting.

Load Simulation. Simulated loads are important to study char-
acteristics of hypothetical scenarios, such as a residential district
with high PV penetration. Current approaches use data generators
to produce synthetic and at the same time realistic consumption
profiles of individual households [16]. One assumption is that the
appliance distribution and usage patterns are parameters of the
generator and are known for typical households. In an industrial
setting, it is not clear what constitutes a realistic consumption pro-
file of a facility (C2). In addition, the simulation would have to
consider process dependencies (C4). As HIPE provides both data
from individual machines and a fully functional facility, it can serve
as starting point for industrial load-simulation models.

Energy-Storage Integration. Energy-storage systems can reduce
peak loads and offer services for frequency regulation [17]. To be
used effectively, they have to provide appropriate reaction time,
power and capacity. However, it is yet unclear what the exact re-
quirements for industrial production are. To this end, HIPE can be
helpful to specify these requirements and study how they depend
on Characteristics C1 to C4.

Detecting Process Flexibility. Appropriate machine scheduling
can increase renewable energy consumption and can reduce load
peaks. Efficient scheduling relies on process flexibilities, but they
often are not documented explicitly and are difficult to quantify.
There has been only little research on learning process flexibility
from energy data [14]. HIPE can serve as a foundation for respec-
tive research as it features strong process dependencies (C4) and
frequent changes of production schedules (C3).

5 CONCLUSIONS
The availability of energy-related data sets has biased research
towards residential sources. However, approaches developed on
residential data may not produce meaningful results in an industrial
setting. To encourage research on industrial energy data, we intro-
duce HIPE, a comprehensive data set from an industrial production
site. We expect HIPE to catalyze research on industrial applications
and on the characteristics of energy data.
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