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Abstract

The quality of a classifier hinges on the availability of train-

ing data. In scenarios where data collection is restricted

or expensive, e.g., compute-intensive simulations, training

data may be small and/or biased. In principle, data synthe-

sis then allows to extend the data set. Yet it is difficult for a

user to extend the data without any guidance when the data

space is unbound or of high dimensionality. In this article

we target at the domain expansion problem, i.e., expand-

ing the classifier knowledge beyond an initial sample that

completely falls into one class. We first propose a general

framework for query synthesis in the one-class setting. Then

we present a new query synthesis strategy to quickly explore

the data space beyond the initial sample. For the evaluation

we derive three options to simulate an oracle in the one-class

setting that can answer arbitrary queries. Experiments on

both synthetic and real world data demonstrate that our

new query strategy indeed expands the knowledge of a one-

class classifier beyond a small and biased initial sample. Our

strategy outperforms realistic baselines on most domain ex-

pansion problems.

Keywords one-class classification, active learning,
query synthesis, domain expansion

1 Introduction

Quantity and quality of training data are crucial re-
garding the usefulness of a classifier. In scenarios where
data collection is limited or expensive, e.g., compute-
intensive simulations for design-space exploration [11,
12, 25], the data set collected often is small and biased,
i.e., does not represent the real data distribution well. In
this case, data synthesis is promising to extend the ini-
tial data sample. However, synthesis is a hard problem
when the domain of the data is unknown, potentially
unbound, and of high dimensionality, since randomly
generating observations in the data space is inefficient.
At the same time, it is also challenging for a user to ex-
tend a high dimensional data set by hand. To keep the
user effort low, active learning has been proposed. Here,
a so-called query synthesis strategy generates artificial
observations for which the user or the simulation then
provides the labels, aka. feedback. In this article, we
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Figure 1: Domain expansion with query synthesis.

focus on expanding the classifier knowledge beyond an
initial sample of inliers that form a single connected re-
gion in an unbound data space. We call this the domain
expansion problem. Figure 1 is an illustration. We start
with a small initial sample of mostly inliers and seek to
expand the classifier boundaries of a one-class classifier
towards the real boundaries.

Existing approaches for query synthesis are for the
multi-class setting and require observations from all
classes [21, 38]. They cannot synthesize queries in di-
rections where no observations exist, as is the case with
domain expansion. Next, methods for design space ex-
ploration [11, 12, 25] and reliability-based design opti-
mization [26] use the prediction uncertainty of a binary
classifier for query generation. But this uncertainty may
not be obtainable from a one-class classifier. So we tar-
get at a method for domain expansion that performs
query synthesis in one-class active learning.

1.1 Challenges Query synthesis in the one-class set-
tings is difficult for three reasons.

High dimensionality Existing one-class query
strategies use the unlabeled observations as query can-
didates and query the one with the highest expected
information gain [35]. Without such observations, the
volume of a high-dimensional data space is too large for
a random candidate generation. This calls for a more
selective candidate placement, e.g., near the current ob-
servations.

Data Set Pollution During query synthesis, arti-
ficially generated queries and their feedback are inserted
into the original data set. This affects the data density
and the neighborhoods. To illustrate, querying in the
same region several times increases the data density
where it may be low in reality. Yet several one-class
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classifiers such as Nearest Neighbor Description [31]
and pool-based query strategies [16, 17, 19, 40] rely on
these data characteristics. Query synthesis may then
misguide the classifiers and query strategies.

Evaluation standards Evaluation standards
from pool-based one-class active learning setting do
not carry over to query synthesis. On the one hand,
an evaluation needs a simulated annotator, a so-called
oracle. With query synthesis, it is unclear how to
simulate an oracle that can provide an answer for an
arbitrary query. On the other hand, one must compare
a new query synthesis strategy to a baseline. But
the existing baseline to select a random query [19] is
infeasible, and sampling from a potentially unbounded
data space is ineffective. In this article we study how
to construct a more realistic baseline, by deriving
boundaries from the available data.

1.2 Contributions This article features an ap-
proach for query synthesis for one-class active learning.
It performs domain expansion based on initial observa-
tions from one class. Our contributions are as follows:

Framework (C1) We generalize pool-based one-
class active learning and propose a framework for query
synthesis in one-class active learning (SYNOCAL). The
framework is defined by the initial labels, a one-class
classifier and a query synthesis strategy. We frame
query synthesis as an optimization problem. This
allows for efficient query synthesis, given any query
strategy that quantifies the expected information gain
of a candidate. We then use meta-heuristics to solve
this problem even for high-dimensional data. The
framework addresses the challenges one-class scenario
and high dimensionality.

Domain Expansion Strategy DES (C2) We
propose a new query-synthesis strategy to expand the
classifier knowledge beyond the initial, potentially bi-
ased, data sample by leveraging work on adaptive data
shifting [39]. Our novel strategy allows to learn in areas
of uncertainty where no observations exist.

Evaluation standards (C3) We propose evalua-
tion standards for one-class query synthesis. We intro-
duce three ways how to define an oracle using synthetic
and real world data. Additionally, we derive two realis-
tic baselines strategies for query synthesis from existing
artificial outlier generation algorithms [1, 13].

In the evaluation, we perform extensive experiments
for different domain expansion problems. We show
that our new query-synthesis strategy outperforms all
alternatives in settings with few inlier labels. We make
the implementation of the framework to reproduce our

results publicly available.1

2 Related Work

We review work on multi-class query synthesis and one-
class active learning. We also discuss artificial outlier
generation, adversarial attacks, and experimental de-
sign related to one-class query synthesis.

Multi-class Query Synthesis Research has pro-
posed several approaches for query synthesis in a binary
classification setting. One uses observations pairs that
belong to opposite classes to synthesize queries along the
decision boundary [38]. Two others choose queries that
shrink the version space of potential decision bound-
aries [2, 10]. Another option is to first cluster the data,
then synthesize a query between the centroids of class
clusters [20, 21]. All these approaches require negative
examples, which may be missing in a one-class setting.
Next, previous work features handcrafted query synthe-
sis strategies, e.g., for biological experiments [23, 24],
that do not generalize to other domains.

One-Class Active Learning All existing one-
class approaches are pool-based query strategies. They
compute the expected information gain for all unlabeled
observations and then query the best one. Following
the categorization in [35], there are three types of one-
class query strategies. The first type, data-based query
strategies, selects queries independent of the classifier
only based on data characteristics such as densities [16,
17] The other two types of strategies are based on a
one-class classifier that learns a decision boundary, e.g.,
support vector data description (SVDD) [33]. Model-
based strategies query the unlabeled observation closest
to [18] or farthest from [4] the learned decision bound-
ary. Without unlabeled observations, it is unclear what
a query far away from the decision boundary would be.
We will use the idea of querying observations that lie
on the decision boundary and combine it with query
synthesis. The last category of query strategies are hy-
brid strategies that combine the distance to the deci-
sion boundary with neighborhood information [19, 40].
Data-based and hybrid query strategies are not suit-
able for our setting because data set pollution affects
the densities and neighborhoods.

Artificial Outliers Another area where observa-
tions are synthesized in the context of one-class learning
is artificial outlier generation. Artificial outliers are used
to transform an unsupervised problem to a supervised
one [1, 3, 13]. They allow to balance a classification
problem for, say, outlier detection. One can then use
traditional binary classifiers such as a SVM [3]. Lit-
erature also suggests to tune the hyper-parameters of

1https://www.ipd.kit.edu/des
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one-class classifiers with synthetic outliers [32, 37, 39].
In both use cases the goal is to train a classifier with
a high outlier detection rate. However, algorithms for
artificial outlier generation are not designed for active
learning since they are independent of the classifier.

Adverserial Attacks Query synthesis is also used
in the context of adversarial attacks. Here, an at-
tacker seeks to evade the detection by a classifier while
changing his malfeasance only minimally. Existing ap-
proaches try to reconstruct the decision boundary [27,
30] or search for an attack instance close to the desired
malfeasance that the classifier does not detect [28]. Ad-
versarial query strategies assume a fixed classifier, i.e.,
they do not consider user feedback.

Design of Experiments Engineers perform query
synthesis to explore the experimental design space.
The literature distinguishes between exploration of this
space, i.e., finding new feasible regions, and exploitation,
the refinement in areas with existing observations [11].
Several approaches take a bounded design space and
perform adaptive sampling [5, 8, 25, 26, 29]. One other
approach exists that explores an unbounded design
space [11]. Existing work then trains a surrogate model
on the obtained labels – commonly a Gaussian process
classifier [8, 11, 25, 26] or a SVM [5, 29]. Both models
are not applicable since they are binary classifiers and
require labels of both classes.

3 Framework

In this section we present our framework (C1). We
formalize one-class query synthesis and present several
query strategies that serve as baselines later. The
framework is the fundament for our novel domain
expansion strategy. Yet it is general and facilitates
research on one-class query synthesis strategies.

Definition 3.1. (Query synthesis strategy)
Given a data set X with labels Lin, Lout and a clas-
sifier C, a query synthesis strategy QSS is a function
of type QSS : C,U ,Lin,Lout → Q where Q ∈ X is an
artificial query for feedback collection.

Definition 3.2. (Query synthesis) Query synthe-
sis is a method to improve the classification by a classi-
fier C on data X by acquiring feedback from an oracle O
on queries generated by a query synthesis strategy QSS.

In a one-class setting, classifier and query synthesis
strategy must cope with imbalanced class distributions.
To this end, we propose a new framework called SYNO-
CAL to perform query SYNthesis in One-Class Active
Learning. SYNOCAL consists of three elements: (1)
active learning scenario, (2) one-class classifier and (3)
query synthesis strategy.

Notation X ⊆ Rd is the data space with d at-
tributes. X ∈ Rn×d is a data set with n observations
xi ∈ X. The ground truth labels of an observation are
“inlier” or “outlier”. During active learning an observa-
tion can either be in the unlabeled set U or in the labeled
set of inliers Lin or outliers Lout where U ,Lin,Lout ⊆ X.

3.1 Active Learning Scenario Previous research
on one-class active learning relies on assumptions that
affect the interaction of a user with the active learning
system or confine the choice of the classifier and the
query strategy [35, 36]. The active learning scenario
specifies which label information is available initially.
There are three categories:

• Unsupervised: All observations are unlabeled: U =
X with Lin = Lout = ∅

• Semi-supervised: Inliers and unlabeled observa-
tions are present, optionally some outliers: Lin ∪
Lout∪U = X with Lin 6= ∅∧U 6= ∅∧|Lout| � |Lin|

• Supervised: Only labeled observations are available
with most of them being inliers: Lin ∪ Lout = X
with Lin 6= ∅ ∧ U = ∅ ∧ |Lout| � |Lin|

Pool-based query strategies only work with the unsu-
pervised and semi-supervised scenario, while query syn-
thesis works with any setup.

3.2 One-Class Classifier The second element of our
framework is the one-class classifier (OCC). A one-class
classifier outputs a decision function, as follows:

Definition 3.3. (Decision Function) A decision
function f is a function of type f : X → R. An
observation belongs to the outlier class if f(x) > 0 and
to the inlier class otherwise.

3.2.1 Requirements We derive two requirements
that a one-class classifier must meet for query synthesis:

• Semi-supervised: The classifier must be able to
learn from feedback. So the classifier must be semi-
supervised, to make use of labeled and potentially
unlabeled observations.

• Boundary-based: To avoid the data set pollution
problem, the classifier must not use densities or
neighborhoods. This calls for a classifier that learns
tight enclosing boundaries around the inliers.

3.2.2 One-Class Classifiers Choice Research pro-
posed a variety of one-class classifiers [22] with many
specific variants, like classification with weights [41] or
in subspaces [34]. Following our requirements this leaves
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us with classifiers based on Support Vector Data De-
scription (SVDD) [33]. A SVDD-based classifier solves
a Minimum Enclosing Ball (MEB) optimization prob-
lem and outputs a hyper-sphere with a center a and
radius R. To give the classifier more flexibility, the data
is usually transformed into a reproducing kernel Hilbert
space with a function φ. The decision function for a
SVDD-based classifier is:

(3.1) f(x) = ‖φ(x)− a‖ −R.

The original SVDD is unsupervised and therefore can-
not learn from feedback. SVDDneg is an extension
which enforces that labeled outliers fall outside of the
hyper-sphere [33]. In addition to this, SSAD modifies
the objective function and adds additional constraints
so that all labeled observations fall on the correct side
of the hyper-sphere [19]. SVDDneg and SSAD meet all
our requirements for one-class query synthesis.

3.3 Query Synthesis Strategy The third element
of our framework is the query synthesis strategy. Such
a strategy uses the classifier, available observations and
labels to generate an artificial query. We differentiate
between direct and indirect QSS.

Direct QSS The first type directly synthesizes the
query given the classifier, available observations and
labels. Baseline strategies that randomly generate a
query are direct strategies. To define these baselines, we
follow the approaches for artificial outlier generation [1,
13, 32] and bound the data space with a hyper-rectangle
that encloses all observations. A hyper-rectangle H is
defined by two boundary vectors a, b ∈ Rd, usually the
minima and maxima along each dimension. Hε stands
for such an expanded hyper-rectangle where ε ∈ R+

is the expansion, e.g., H0.1 for a 10% expansion. This
gives way to our two baselines.

• DQSSrand: Samples a random query Q ∈ Hε.

• DQSSrand-o: Samples a queryQ ∈ Hε with f(Q) >
0, i.e., classified as outlier by C.
Indirect QSS The second type on the other hand

first defines the expected information gain for an arbi-
trary observation which is then optimized:

Definition 3.4. (Expected information gain)
Given a classifier C and label sets U , Lin, Lout,
the expected information gain is a function
x 7→ τ(x, C,U ,Lin,Lout) that maps an arbitrary
x ∈ X to R.

τ quantifies the expected information gain, i.e., how
valuable an arbitrary observation x ∈ X is. To illus-
trate, the expected information gain can be high in

initial sample

real boundaries

Figure 2: 1-dimensional domain expansion problem.

areas close to the decision boundary of a classifier. As
C, U , Lin and Lout are fixed in a given active learning
iteration, we only write τ(x). One can then optimize
τ(x) to obtain the optimal synthetic query:

Definition 3.5. (Query synthesis optimizer)
Given an indirect query synthesis strategy with a func-
tion τ(x), a query synthesis optimizer (QSO) yields
the optimal query Q by computing Q = arg max

x∈X
τ(x).

There is a variety of optimization algorithms, and the
optimal choice depends on τ(x). Preliminary experi-
ments of ours have shown that the derivative-free meta-
heuristic evolutionary optimizer DXNES [15] offers high
solution quality in reasonable compute time.

IQSSDB: Querying observations close to the de-
cision boundary [18] is a pool-based strategy that we
can adapt as indirect query synthesis strategy. Given
the decision function f of a classifier, IQSSDB defines
τDB = −|f(x)|. The strategy gives a high expected in-
formation gain to queries on the margin between the two
classes where the classification uncertainty is highest.

4 Domain Expansion

This section deals with the domain expansion problem.
We first formalize it and then present our novel query
synthesis strategy (C2).

4.1 Formalization We define C∗ as the optimal one-
class classifier for the data space X . One starts with a
sample of inliers X drawn from X and seeks to learn
a classifier C that matches C∗. To do so, we use query
synthesis and perform one-class active learning. The
challenge now is the definition of a query synthesis stra-
tegy to achieve this. We split this problem into two
subproblems.

Identification of exploration direction (IED)
The first challenge is the identification of an exploration
direction. Figure 2 gives a 1-dimensional example
with an initial sample and the real boundaries. Here,
one might prefer exploring to the left, due to the
higher density of the sample in this area. However,
first exploring to the right is more beneficial. The
space uncovered by the initial sample is larger to the
right than to the left when looking at the hidden real
boundaries. Generally, the initial sample does not give
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any information on the direction to choose. This is
because it can be biased and may not represent the
actual distribution of the data. Initially, one therefore
has to rely on guessing. In high dimensional data spaces
where the boundaries of the initial sample match the
real boundaries well, and only a few directions would
yield an improved boundary, it becomes more difficult
to guess the “improving” directions. So more queries
are necessary to check all directions. When a user has
labeled an outlier in a direction dout, one should either
explore in different areas or decrease the vector length of
dout to query between the outlier and the known inliers.

Identification of exploration magnitude
(IEM) One has to define how far to explore in a given
direction. Initially one only has inlier samples. One
option again is to guess the exploration magnitude.
But different value ranges require different magnitudes.
To illustrate, exploring a 1-dimensional data set with
a hidden value range of [1, 100] and initial sample
value range of [5, 80] with an exploration magnitude of
0.001 requires many queries. So one should infer the
magnitude from the initial sample. In the case where
one continuously retrieves inlier feedback for queries
in one direction, one could gradually increase the
magnitude to explore the direction more quickly. When
outlier labels become available, one should decrease the
magnitude in the outlier direction to query between
the outlier and the known inliers.

4.2 Our Solution We now present our solution and
say how we address the two subproblems. We propose
a new domain expansion strategy (DES) that performs
query-synthesis. We briefly describe the intuition be-
hind our approach first and then present its components.

Intuition Our new query strategy is an indirect
query synthesis strategy with an expected information
gain function. Following our previous discussion, all
exploration directions initially have the same weight.
Since the dimensionality and the shape of the inlier
region vary between data sets, we derive these directions
directly from the SVDD-based classifier. Without loss
of generality, all exploration directions are orthogonal to
the decision boundary. When restricting them to length
ε, they form a hull around the initial sample. This
hull corresponds to the decision boundary that is shifted
away from the initial sample by some ε. Additionally,
we must consider any labeled outliers and decrease the
exploration magnitude in directions with outliers, i.e.,
shift the boundary less far. To this end, we propose a
new one-class classifier SVDDnegEps that learns such
a shifted decision boundary while respecting outlier
labels. Then we propose a parametrization method
to compute the exploration magnitude, i.e., the shift

ε. Finally, we introduce a method to quickly prune
the search space of all possible exploration directions
and magnitudes by decreasing the expected information
gain in areas with outliers. This pruning enforces query
diversity over multiple active learning cycles.

SVDDnegEps Our novel one-class classifier
SVDDnegEps learns a shifted decision boundary where
outliers stay outside of the hyper-sphere. SVDDnegEps
enforces an extended boundary by injecting the ex-
ploration magnitude, i.e., the shift amount ε, into the
constraints of the SVDDneg optimization problem:

(4.2)

min
R,a,ξ

R2 + C1

∑
i

ξi + C2

∑
l

ξl

s.t. ‖Φ(xi)− a‖2 + ε ≤ R2 + ξi, ∀i
‖Φ(xl)− a‖2 ≤ R2 − ξl, ∀l
ξi,≥ 0, ∀i
ξl,≥ 0, ∀l

The index i refers to observations in U ∪ Lin and l to
outliers, ξi and ξl are the corresponding slack variables
and C1, C2 ∈ [0, 1] the cost parameters. After solving
the problem, we have a fixed center a and radius R that
define the enclosing hyper-sphere. We can then use the
decision function Equation 3.1.

Parametrization We use the artificial outlier gener-
ation approach from [39] to infer ε. The approach gen-
erates artificial outliers to tune the hyper-parameters of
a SVDD. The generation process places artificial out-
liers around the data by shifting boundary observations
along their negative data density estimated from the
neighborhoods. So the approach adapts to arbitrary
value ranges. Our idea is to use these artificial out-
liers to quantify the maximum magnitude how far one
should explore. We can measure the distance of these
outliers to the decision boundary of a OCC with the de-
cision function f of the classifier. Given f and artificial
outliers Xout, the shift is:

ε = max
xi∈Xout

f(xi)(4.3)

This bounds the maximum exploration to the farthest
artificial outlier generated from the initial sample.

Domain Expansion Strategy Our novel query
strategy IQSSDES is similar to the decision boundary
strategy IQSSDB, except that it queries on the shifted
decision boundary of a SVDDnegEps. fε stands for this
decision function, to make the difference to f explicit.
The expected information gain of the IQSSDES is:

(4.4) τDES = −|fε(x)|.

We can then use our framework to perform query
synthesis with an optimizer.
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Search space pruning In high dimensional data
spaces, one should punish areas with negative feedback
and encourage exploration elsewhere. To this end,
we propose a method to quickly prune the search
space of the exploration directions and magnitudes.
This extension is general and works with an arbitrary
indirect query synthesis strategy (IQSS) that defines an
expected information gain. The idea is to automatically
reduce the expected information gain in areas with
outliers. To this end, we train a binary SVM on
the available data. By using a binary SVM, one can
quantify the distance to the decision boundary in the
same kernel space as for the SVDD-based classifier.
So no value-range adjustment is needed, and we can
directly combine the distance to the SVM and to the
OCC. The decision function for a SVM is fSVM. Again,
an outlier x yields fSVM(x) > 0, and an inlier x gives
a value fSVM(x) ≤ 0. Given a IQSS with expected
information gain τ , we then define a combined expected
information gain function τ∗:

τ∗(x) = τ(x)−max(fSVM(x), 0)(4.5)

This modification of τ punishes areas with negative
feedback (IED) and reduces the exploration magnitude
in the direction of outliers (IEM).

4.3 Example We now illustrate how our query syn-
thesis strategy with search space pruning, dubbed
IQSS∗DES, works, cf. Figure 3. Figure 3a shows the
start of the active learning cycle. Here, the black line
is the decision boundary fitted by a SVDDneg, and the
dashed line is the oracle, i.e., the target boundary that
we want to learn. The initial sample does not cover
the full valid space and misses a large area to the right.
The heatmap indicates the expected information gain
– the darker, the higher the gain. After five queries,
we have expanded the boundary and have acquired the
first outlier. The pruning then punishes the area around
the outlier, see Figure 3b, and the query strategy starts
exploring other areas. The state after 15 queries is vi-
sualized in Figure 3c. Our method has already approx-
imated the real decision boundary quite well.

5 Evaluation

Previous work uses benchmark data sets with a ground
truth and performs pool-based active learning. How-
ever, an evaluation is more difficult in the context of
query synthesis because the oracle must provide a la-
bel for arbitrary queries. We see three options how to
evaluate one-class query synthesis.

Synthetic Data The first option relies on syn-
thetic data. Here, one defines a function that acts as the
oracle. For instance, one can use a multivariate distri-

bution. The oracle function then labels an observation
as outlier if the density falls under a threshold. Addi-
tionally, the distribution allows to generate an arbitrary
volume of test data to evaluate the classifier.

Ground Truth Fitting The second option relies
on existing one-class data sets. One can fit a classifier
to the ground truth data to obtain an oracle. The fitted
classifier can then serve as an oracle to answer arbitrary
queries in the active learning cycle. Example classifiers
are SVDD or also basic classifiers such as SVM or kNN
classifier. The are two problems with this approach.
First, the oracle is limited by the capabilities of what the
underlying classifier can learn. So one may not achieve
a perfect fit to the data, and queries may yield wrong
feedback. Second, one-class outlier benchmark sets are
unbalanced. The oracle classifier has high uncertainty
in these sparse areas. Additionally, we also have a very
limited number of outliers for testing. Active learning
may improve a classifier, but there is no test data to
reflect this improvement.

Hybrid Query Synthesis The third option
avoids crafting an oracle by only allowing queries for
existing observations. With query synthesis, one can
use a hybrid approach: One first uses any strategy to
synthesize a query Q. Then the observation closest to
Q under some distance function dist becomes the query:

(5.6) Q∗ = arg min
x∈X

dist(x,Q)

This hybrid approach generally avoids the problem of
awkward queries [6] and has already been used to eval-
uate multi-class query synthesis [38]. However, we see a
problem in the one-class setting with this option. The
selected unlabeled observation may be far away from the
synthesized query due to data sparsity. In this case, a
query strategy may have preferred a completely different
observation when computing the expected information
gain on the unlabeled observations, compared to the one
chosen by the hybrid approach.

6 Experiments

In this section we evaluate our framework and our new
query synthesis strategy on different domain expansion
problems. In the first part, we use synthetic data of
different dimensionality. In the second part, we assess
the performance of our method on common real-world
data sets for outlier detection [9]. We have implemented
the query synthesis framework and the benchmark setup
in Julia [7]. Our implementation, the raw results of all
settings and notebooks to reproduce experiments and
evaluation are publicly available at https://www.ipd.

kit.edu/des.
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(a) Iteration 1 (b) Iteration 5 (c) Iteration 15

Figure 3: Expanding the decision boundary of a SVDDneg with our new IQSS∗DES with search space pruning.

Data and Oracle We use synthetic and real-world
data sets for our experiments. We present the data sets
and how we define the oracle.

Synthetic data: Gaussian mixtures allow to flexi-
bly generate synthetic domain expansion problems. We
generate 100 random Gaussian Mixtures for each combi-
nation of 3, 5 and 7 components and 2, 4, 6, 8 and 10 di-
mensions. To bias the initial sample, we then choose the
initial sample only from one of the components. Given
the Gaussian mixture with density function p(x), we use
a threshold t = 0.1 to define the oracle: Observations
are inliers if p(x) ≥ t and outliers otherwise. To evalu-
ate the classifier, we generate 1000 inliers and outliers
each in addition to the initial sample.

Real-world data: For the real-world experiments
we use the publicly available outlier benchmark data
sets from [9]. We use the normalized and deduplicated
version of 15 different data sets. They have different
sizes (80–7129 observations) and outlier ratios (4–75%).
In order to limit the search space, we perform feature
selection to extract the 5 most meaningful features using
mutual information. This is in line with the discussion
in Section 4 where we argue that guessing an exploration
direction at the start of the learning becomes more
difficult with increasing dimensionality. To choose the
initial sample, we perform a neighborhood walk: We
first randomly select one observation and iteratively add
the next nearest neighbor to the initial sample until we
reach the desired sample size. In this way, we bias the
initial sample into one area. We run 10 resamples of
the initial sample for each data set. For the oracle we
perform ground truth fitting. Preliminary experiments
have shown that a binary SVM performs better as an
oracle than a one-class classifier when using all labels.
We additionally generate synthetic inliers and outliers
with the method proposed in [39] to tune the kernel
parameter of the oracle SVM with cross-validation.

Parametrization To simulate a small biased sam-
ple to expand from, we set the number of initial ob-
servations to 25. We then run 100 active learning it-

erations with our framework. As a model we use the
SVDDneg [33] with a hard margin C1, C2 = 1.0 and
tune the kernel parameter with the method proposed
in [39]. We use the same parameters for the SVDD-
negEps of IQSSDES. For the baseline query strategies
DQSSrand and DQSSrand-o, we set the hyper-rectangle
expansion to ε = 0.1 as in [1]. For the indirect query
synthesis strategies we use distance-weighted exponen-
tial natural evolution strategy [15] (DXNES) with the
default parameters implemented in [14]. We fix the op-
timization boundaries to an extended hyper-rectangle
H1.0 with 100% expansion beyond the labeled inliers.

Evaluation metrics To evaluate the results, we
calculate the Matthews Correlation Coefficient (MCC)
to compare the classifier prediction for the test data
with the ground truth for each iteration. MCC is a
metric especially suitable for imbalanced data sets. We
then calculate the End Quality (EQ) [35] to quantify the
performance of the classifier after the active learning.

Results We now present and discuss the results of our
experiments to show the superiority of our novel query
strategy on different domain expansion problems.

Synthetic Data We first run our framework with
two baselines DQSSrand, DQSSrand-o and indirect
query synthesis strategies IQSSDB, IQSSDES and with
search space pruning IQSS∗DES on the synthetic data.
Figure 4 shows the end quality for different dimension-
alities. Generally, our framework allows to improve the
classifier from a small initial sample even in the ab-
sence of unlabeled observations. The end quality de-
creases with increasing data dimensionality. This is be-
cause finding a helpful exploration direction becomes
more difficult and thus requires more queries – here we
are using a fixed number of 100 iterations. Our pro-
posed approach with search space pruning IQSS∗DES

outperforms or is at least on par with all other strate-
gies. The baseline strategy DQSSrand-o proposed ear-
lier yields competitive results. This is similar to the
results in [35] where a random baseline for pool-based
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Figure 4: End quality for synthetic data sets with different dimensionality.

Data set rand rand-o DB DES DES∗

Annthyroid 0.05 0.07 0.03 0.04 0.08
Arrhythmia 0.18 0.24 0.17 0.18 0.27
Cardio 0.09 0.14 0.06 0.07 0.20
Glass 0.13 0.16 0.11 0.20 0.24
HeartDisease 0.22 0.27 0.18 0.26 0.28
Hepatitis 0.28 0.31 0.27 0.19 0.21
InternetAds 0.22 0.65 0.13 0.14 0.73
Ionosphere 0.22 0.26 0.22 0.27 0.49
PageBlocks 0.10 0.17 0.05 0.06 0.22
Parkinson 0.62 0.62 0.64 0.60 0.42
Pima 0.14 0.13 0.15 0.14 0.14
SpamBase 0.19 0.46 0.13 0.12 0.44
Stamps 0.15 0.26 0.11 0.14 0.22
WPBC -0.03 -0.06 -0.02 -0.05 0.01
Wilt -0.08 -0.06 -0.06 -0.05 -0.08

Table 1: Median end quality on real world data sets.

one-class learning outperforms other strategies on one
third of the data sets. Querying directly on the decision
boundary with IQSSDB does not yield any improve-
ment. IQSSDB mostly queries inliers near the initial
sample and does not gain insights beyond the sample.

Real-World Data We run the same setup on the
real-world data sets. Table 1 shows the median end
quality for all the proposed query synthesis strategies
on different data sets. The end quality with active
learning varies from data set to data set. For the WPBC
and Wilt data set no method yields any considerable
improvement which results in a low end quality. Except
for them, our proposed method IQSS∗DES achieves the
best results overall, winning in 9 out of 13 data sets.
Model quality significantly increases from the initial set
with IQSS∗DES. Similarly to the synthetic evaluation,
our method benefits from search space pruning. One
can see this by comparing the results of IQSSDES and
IQSS∗DES.

7 Conclusions

This article studies the domain expansion problem
where one seeks to improve a one-class classifier by
extending a small initial data sample with additional
training data. To this end, we have proposed a general
framework that frames query synthesis in the one-
class setting as an optimization problem. We then
have proposed a novel domain expansion strategy that
explores the data space and does away with the bias of
small samples. The method includes a pruning of the
considered exploration space that diversifies the queries
considerably. Evaluating query synthesis strategies
requires an oracle that can provide an answer for
arbitrary queries. In this article, we derive three ways
to use synthetic and real-world data to simulate such
an oracle. Comprehensive experiments on synthetic
and real-world domain expansion problems demonstrate
that our method indeed expands the knowledge of
a classifier beyond a biased sample and outperforms
realistic baselines.
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Fekete. “Counter-Example Generation-Based One-
Class Classification”. In: ECML. Springer. 2007.
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