
FairNet – How to Counter Free Riding
in Peer-to-Peer Data Structures

Erik Buchmann, Klemens Böhm

Otto-von-Guericke Universität, Magdeburg, Germany�
buchmann � kboehm � @iti.cs.uni-magdeburg.de

Abstract. Content-Addressable Networks (CAN) manage huge sets of (key, va-
lue)-pairs and cope with very high workloads. They follow the peer-to-peer pa-
radigm: They consist of nodes that are autonomous. This means that peers may
be uncooperative, i.e., not carrying out their share of the work while trying to
benefit from the network. This article deals with this kind of adverse behavior in
CAN, e.g., not answering queries and not forwarding messages. It is challenging
to design a forwarding protocol for large CAN of more than 100,000 nodes that
bypasses and excludes uncooperative nodes. We have designed such a protocol,
with the following characteristics: It establishes logical networks of peers within
the CAN. Nodes give positive feedback on peers that have performed useful work.
Feedback is distributed in a swarm-like fashion and expires after a certain period
of time. In extreme situations, the CAN asks nodes to perform a proof of work.
Results of experiments with 100,000 peers are positive: In particular, cooperative
peers fare significantly better than uncooperative ones.

1 Introduction

Content-Addressable Networks (CAN [1]) manage huge sets of (key, value)-pairs and
cope with very high workloads. A CAN is an example of the peer-to-peer (P2P) para-
digm: it consists of nodes, a.k.a. peers. Peers are autonomous programs connected to
the Internet. Nodes participate in the work, i.e., data storage and message processing in
the context of CAN. At the same time they also make use of the system. In CAN this
means that they may issue queries. As with any P2P system, the owners of the nodes
bear the infrastructure costs.

Autonomy of the peers implies that there is no coordinator that checks the identity
or intentions of nodes. Doing without a coordinator has important advantages, such as
scalability and no single point of failure. But it also implies that peers may try to reduce
the costs of participation. With conventional CAN protocols, nodes actually do take part
in the work voluntarily, and a node can reduce its infrastructure dues by not carrying
out its share of the work. In economic terms, the dominant behavior is free riding [2],
and the situation is an instance of the Prisoner’s Dilemma [3]. In the context of CAN,
free riding means ignoring incoming messages that relate to queries issued by other
nodes. This can be achieved by tampering the program, blocking the communication,
etc. In our terminology, such nodes are unreliable or uncooperative. It is very important
to rule out this kind of behavior. The motivation of the owners of cooperative nodes

will decline rapidly otherwise. From a technical perspective, the CAN might fall apart
if some peers do not cooperate, and it might not be able to evaluate many queries.

Existing work does not solve these problems. Related work in mobile ad-hoc net-
works [4–7] assumes that adjacent nodes can eavesdrop traffic – detecting uncoopera-
tive behavior is easy. Others have proposed micropayments, public-key infrastructures,
and certified code in similar contexts [8, 9]. But infrastructure costs would be unreason-
ably high, and the resulting system would not be P2P any more. Related work on trust
management in P2P systems does not scale to many nodes (� 100,000), or does not
deal with message forwarding [10, 11].

This article proposes a CAN protocol that renders free riding unattractive, and fo-
cuses on the evaluation of queries. The protocol envisioned has the following objectives:
(1) Nodes deliver the results of queries of another node only as long as it is cooperative.
(2) At the same time, they should not rely on a node that has not proven its cooper-
ativeness. (3) All this should not affect cooperative nodes, except for some moderate
overhead.

Designing such a protocol is not obvious: There is no central ’trusted authority’, so
nodes must rely solely on past interactions of their own or of reliable nodes they know.
Further, CAN are supposed to work with large numbers of nodes, e.g., 100,000 or more.
Finally, the behavior of peers may change over time. Our solution is a CAN protocol
that establishes logical networks of peers within the CAN. Nodes give positive feedback
on nodes that have performed useful work. Feedback is distributed piggybacked on
’regular’ messages in a swarm-like fashion and expires after a certain period of time.
Query results are sent via chains of reliable nodes only. The effect is that the logical
networks do not answer queries from uncooperative nodes.

Our evaluation is experimental and is directed towards one main question: Are
the mechanisms proposed here effective, i.e., do they rule out uncooperative behav-
ior, with moderate overhead? Our experiments show that the mechanisms do serve the
intended purpose, and we have obtained these results for large CAN. In a network of
100,000 nodes, cooperative peers fare significantly better than partly or fully uncooper-
ative ones.

Enforcing cooperation in distributed systems whose components are autonomous
is a broad and difficult issue, and we readily admit that this article is only a first stab
at the problem. Aspects not explicitly addressed include spoof feedback, spoof query
results, and malicious behavior and application-specific issues. However, we think that
our lightweight approach for reputation management is extensible, e.g., with negative
feedback. This would allow to counter those kinds of adverse behavior effectively.

The remainder of this article has the following structure: After reviewing CAN in
Section 2, Section 3 provides a discussion of cooperativeness in CAN. Section 4 in-
troduces our reliability-aware forwarding protocol. Section 5 features an experimental
evaluation. Related work is discussed in Section 6, and Section 7 concludes.

2 Content-Addressable Networks

Content-Addressable Networks (CAN [1]) are a variant of Distributed Hash Tables
(DHT). Alternatives to CAN differ primarily in the topology of the key space [12–14].

Each CAN node is responsible for a part of the key space, its zone. I.e., the node stores
all (key, value)-pairs whose keys fall into its zone. This space is a torus of Cartesian
coordinates in multiple dimensions, and is independent from the underlying physical
network topology. In other words, a CAN is a virtual overlay network on top of a large
physical network. In addition to its (key, value)-pairs, a CAN node also knows its neigh-
bors, i.e., nodes responsible for adjacent parts of the key space.

A query in CAN is simply a key in the key space, its result is the corresponding
value. I.e., a query is a message addressed by the query key. A node answers a query if
the key is in its zone. Otherwise, it forwards the query to another node, the target peer.
To do so, the peer uses Greedy Forwarding. I.e., given a query that it cannot answer, a
peer chooses the target from its neighbors according to the following criteria: (1) The
(Euclidean) distance of the key to the target in question is minimal. (2) The target node
is closer to the key than the current peer. In what follows, we refer to the protocol
described so far as classic CAN.

CAN, as well as any other DHT, are useful as dictionaries. In a file-sharing scenario,
the CAN would store the locations of the files, and the files remain at their original
locations. Other applications for DHT are annotation services which allow users to rate
and comment web pages, or push services for event notification.

2.1 Enhancements to the Classic CAN

Greedy Forwarding in classic CAN sends messages from neighbor to neighbor. This
causes a problem, at least when the key space is low-dimensional: The number of peers
forwarding a certain message (message hops) is unnecessarily large. We have proposed
in [15] that a peer does not only know its neighbors, but some remote peers as well.
The so-called contact cache of the peer contains these remote peers. The contact cache
is limited in size. In contrast to the neighbors, contacts may be out of date, and a peer
may replace a contact by another one at any time. Furthermore, messages have an at-
tachment. It contains contact information of the peers that have forwarded the message
and of the peer that has answered it. A peer that receives such a message uses this infor-
mation to update its contact cache. No additional messages are necessary to maintain
the contact cache. Greedy Forwarding does not only take the neighbors into account,
but the ones in the contact cache as well. Finally, Greedy Forwarding also works if in-
formation in the contact cache is outdated. In what follows, we refer to this variant of
CAN as enhanced CAN.

[15] shows that even a small number of additional contacts decreases the average
number of message hops significantly. For instance, a contact cache of size 20 (i.e., 20
peers in addition to the neighbors) reduces the number of hops in a CAN of 100,000
peers by more than ����� , assuming a real-world distribution of the keys of the queries
and of the (key, value)-pairs.

Example 1: Peer 	 in Figure 1 is responsible for zone (0.3, 0.3 : 0.5, 0.5). Assume
that it has issued a query with the key
��� ������ ��� , i.e., it wants to retrieve the correspond-
ing value. Since 	 is not responsible for this key, it uses Greedy Forwarding and sends
the message to ��� . ��� in turn is not responsible either and forwards the message to � � ,
etc. Once the right peer � is reached, it returns the query result to 	 . In the enhanced
CAN, the result is directly returned to the issuer of the query. �

Fig. 1. Forwarding in Enhanced CAN.

3 Cooperation in CAN

In our terminology, a node that handles all incoming messages as expected is coopera-
tive. A cooperative node answers the query if the key falls into its zone, or forwards it
to another node that seems to be appropriate. From the point of view of another peer,
the node is reliable. Uncooperative nodes in turn try to benefit from the network in a
selfish way. In our context, uncooperative behavior is ignoring incoming messages that
have to do with queries issued by other nodes.

Since uncooperative nodes hide their intentions and do not come up with statements
like ”Connection Refused” or ”Host Unreachable”, repair mechanisms like Expanding
Ring Search or Flooding [1] will not work. Furthermore, such nodes may spread fal-
sified information to improve their standing. This implies that classic CAN might fall
apart in the presence of uncooperative nodes.

Example 2: In a classic CAN with a percentage � of uncooperative peers that are
not explicitly known, the probability � of forwarding a message via � peers is ���

 �"!#�$� % . For example, in a network with 5% uncooperative peers, the probability to
send a message via 10 nodes is less than 60%. The average path length in a network
with a & -dimensional key space and ' nodes is ()�*
+&,��-.�/
+' �1032 � (see [1]). Given a key
space with &4�5- , (6�7�8� for 10,000 peers.

Now think of a CAN protocol that bypasses uncooperative peers when forwarding
a query. Then the only peer that it cannot bypass is the peer responsible for the key of
the query, so �9���:!;�<�5�>=�? . Replication may improve the situation further, but this
is beyond this article. �

A peer can estimate the reliability of a certain other peer if it has observed its be-
havior a couple of times. But frequently this is not the case. For instance, think of a
new peer that has issued a query before it had a chance to prove its reliability. Therefore
our protocol incorporates a proof of work (ProW) protocol: a node proves to another
node that it has invested a certain amount of resources by providing some ”certificate”
of resources spent [16, 17]. ProW can be seen as entry fees for the CAN, paid to one
peer. A ProW is a mathematical problem that is hard to solve, but the solution is easy
to verify. The ProW has nothing to do with the operations performed by the CAN. We
for our part are not concerned with the design of ProW; we just deploy the concept. –

The rationale behind ProW is determent: With our protocol, an uncooperative peer will
be more likely to carry out an expensive ProW. Hence, it is more economic to behave
cooperatively.

The design of a reliability-aware CAN protocol depends on the attributes of the
nodes and the characteristics of the applications. We make the following assumptions.
These assumptions are quite similar to the ones behind other P2P protocols.

Application profile with frequent queries, small results. This article focuses on an ap-
plication profile for P2P data sharing with the following characteristics: Peers remain
connected to the network for a long time. They issue queries frequently and regularly.
Query results are typically small, thus their delivery is not much more expensive in
terms of infrastructure costs than query routing. It is acceptable if some (very few)
queries remain unanswered. – Example applications are object lookup systems, annota-
tion services, push services etc. These assumptions imply that sophisticated and expen-
sive countermeasures [10, 9] against free riders are not applicable in our settings. We
strive for lightweight mechanisms that must cope with a high rate of parallel queries
and that make cooperation the dominant behavior.

Timely query results. Query results are needed in time, so it is infeasible to batch queries
and issue them at once. – If we allowed peers to issue batches of queries, they could get
by by behaving cooperatively from time to time only. Note that the sample applications
mentioned in the previous paragraph fulfill this assumption as well.

Equal private costs. A general problem is that the cost of a node, regarding memory,
network or CPU consumption, is private information. E.g., a peer connected with a dial-
up modem is more interested in saving network bandwidth than one using a leased line.
But observing the capabilities of other nodes is difficult. We leave this aside for the time
being and assume equal private costs for all nodes. Our protocol could be extended to
address different costs by using ProW of different extents.

Messages are not modified during forwarding. We assume that only the issuer of in-
formation can have falsified it. For example, a peer may create falsified feedback. But
it is unable to intercept a response message and claim to be the peer who has provided
the query results. In the presence of cryptographic signatures and the unlimited con-
nectivity of the Internet, this is a realistic assumption: Each peer can ask the issuer of a
message to verify its integrity. – This assumption allows us to come up with a protocol
that rejects feedback from unknown or uncooperative sources.

No uncooperative behavior at application level. This article leaves aside misbehavior
from the application perspective. For example, a node may want to prevent other nodes
from obtaining access to a certain (key, value)-pair containing unfavorable information.
It might try to accomplish this by running a DoS attack on nodes responsible for the
pair. When looking at the storage level in isolation, such an attack consumes resources
without providing any benefit. While uncooperative behavior at the application level is
an important problem, it is beyond the scope of this article. The problem of free riding
at the storage level has to be solved first. In other words, our protocol does not deal

with nodes that spend their resources for attacking the network, or that try to discredit
a single peer, but behave reliably otherwise.

Verifiability of query results. The issuer of a query must be able to verify the correctness
of the result. Otherwise, a node could send back a spoof query result and save the cost
for data storage. Verification of query results can take place in two ways. (1) In the case
of replication, the node collects the query result from more than one node and forms
a quorum. (2) In some applications, any peer can verify the correctness of the query
result. For instance, if the CAN is used as a directory for object lookup or web-page
annotations, a peer could always check if directory entries are valid. We do not expect
any major difficulties when extending our protocol in this direction.

4 A Reliability-Aware CAN Protocol

In the context of our protocol, each peer decides individually if it deems another peer
reliable, based on a set of observations from the past. We refer to such observations as
feedback. Each node can only make observations on operations it is involved in. In our
context, a peer accepts another peer as reliable or not – there are no shades in between.
We settled for a simple reliability model because a sophisticated one (cf. [18]) would
lead to a binary decision just as well. In addition, information about other nodes are
always imperfect, hence a rich model would only mock a degree of accuracy that is not
achievable in reality.

Our protocol has four aspects:
– Peers observe nodes and generate feedback (Subsection 4.2),
– share feedback with others (Subsection 4.3),
– administer feedback in their repository (Subsection 4.4),
– use feedback to bypass unreliable peers (Subsection 4.5).

4.1 Data Structures

Our implementation contains two classes FeedbackRepository and Feedback. They re-
fer to classes already used in enhanced CAN, notably ContactCache and Message.
Feedback objects bear feedback information. The node a Feedback object refers to is
the feedback subject. Further, a Feedback object contains a timestamp and the ID of
the peer that has generated the feedback, the feedback originator. Each node has one
private FeedbackRepository object that implements its feedback repository. It stores @
Feedback objects, for A�B peers each. It has methods for checking the reliability of a peer
and for selecting Feedback objects to be shipped to other peers. Table 1 lists all relevant
parameters. We discuss their default values in Subsection 5.1.

4.2 Generating Feedback

A peer assumes that another peer is reliable if its feedback repository contains at least
@ Feedback objects referring to that peer. Because peers may change their behavior,
Feedback objects expire after a period of time (C). Thus, only a continuing stream of

Protocol-related Parameters
Symbol Description Default Value

D reliability threshold; unit: num-
ber of Feedback objects E

F number of feedback objects
generated for one forward GIHKJ

L Feedback object lifetime; unit:
experiment clock time units J3GMG�N1GMGMG

O maximum number of Feedback
objects per message P G

QSR size of feedback repository;
unit: number of peers J3GMG

Q3T size of contact cache; unit:
number of peers P G

Experiment-related Parameters
Symbol Description Default ValueU number of peers J3GMG�N1GMGMGV

dimensionality of the key space PW percentage of uncooperative
peers X8Y

Table 1. Relevant Parameters.

positive feedback lets a peer be reliable in the eye of others. Feedback is generated in
the following situations:

F1 After joining the CAN, the new peer generates @ Feedback objects for the peer who
handed over the zone.

F2 After receiving an answer to a query, a peer generates one Feedback object for the
node that has answered.

F3 After observing a message forward, the current peer generates one Feedback object
with probability Z .

F4 After having obtained a ProW, the receiver creates @ Feedback objects for the peer
that has delivered it.

F2 acknowledges answering queries. Because forwarding messages consumes less
resources than answering queries, F3 generates feedback only with probability Z . Fi-
nally, providing a ProW (F4) or helping a new peer join the CAN (F1) are strong in-
dications that the peer is cooperative. Because at least @ Feedback objects are needed
to deem a peer reliable, this is the number of Feedback objects created. In each case,
the timestamp of the Feedback object is the current time, and the feedback originator is
the current peer. The Feedback object is stored in the feedback repository of the current
peer.

Fig. 2. Sources of feedback.

Example 3: Consider the situation depicted in Figure 2. Peer � answers a query
issued by 	 . Because [\� is the peer closest to 	 that � deems reliable, � sends it the
message. According to F3, [\� decides to create a Feedback object1 with subject � , in
order to acknowledge that � has forwarded the message. []� then forwards the message
to [� . In our example, [� does not generate feedback with subject [\� because this only
happens with probability Z . The only next peer possible is 	 , but [� does not know
if it is reliable or not. Therefore, [� asks for a proof of work. 	 returns this proof, so
[� creates @ Feedback objects with subject 	 and forwards the message to it. Finally
	 obtains its answer. It creates one Feedback object with subject � for answering, and
one with subject [� for forwarding. �

4.3 Disseminating Feedback Information

Sharing feedback between peers results in logical networks of peers that are transitive:
one peer sees that another one performs useful work and spreads this information to
others. To bound the overhead of our protocol, a node appends a small set of ^ Feedback
objects to messages that it sends out anyhow.

Method generateFeedbackAttachment (Figure 3) determines an adequate set of Feed-
back objects to be attached. It is invoked with the outgoing message and the peer the
message will be forwarded to. objectives of our feedback dissemination algorithm. Sub-
section 2.1 has pointed out that each peer needs a well-balanced set of reliable contacts
to forward messages to. Each peer must be provided with a good set of feedback objects
on peers in its contact cache. There are two locations where feedback is helpful:
(1) peers far away from the feedback subject who have the feedback subject in their

contact caches, and
(2) neighbors of the feedback subject.

According to (1), method generateFeedbackAttachment first selects Feedback ob-
jects whose subjects have forwarded the current message. It starts with the node that
has forwarded the message directly to it, and selects all feedback from its repository
regarding that node. The procedure recurs with the next peer in the chain of the last

1 Rounded rectangles stand for Feedback objects, located next to their originator, with the feed-
back subject in parentheses.

1 generateFeedbackAttachment(Message m, TargetPeer _$`) �
2 FeedbackAttachment F := a ;
3 // (1) get Feedback objects about the last forwarders
4 forall (p b m.lastForwarders in chronological order)

�
5 Feedback F c :=

�
f � p = f.subject d f b

6 this.FeedbackRepository � ;
7 add F c to F;
8 if (� F �Me b/2) break;
9 �

10 // (2) get feedback objects close to _ `
11 sort this.FeedbackRepository by dist(_ ` , f.subject) with f b
12 this.FeedbackRepository;
13 forall (f b this.FeedbackRepository d f.subject fg _$`) �
14 add f to F;
15 if (� F �Me b) break;
16 �
17 return F;
18 �

Fig. 3. Feedback Dissemination

forwarders, until there are ^h��i feedback objects in the attachment, or the issuer of the
message is reached. Regarding (2), the current peer then looks at the peer it intends to
forward the message to. It orders the feedback objects in its repository by the distance
of the subject and the target peer. It then adds objects from the top of the list to the
attachment of the message until its size is ^ .

Fig. 4. Forwarding Feedback.

Example 4: Suppose the peer ��j in Figure 4 is about to forward a message to
�6k . Peers that have forwarded the message in the past are labeled with �:l � , �ml � , �ml � .
Other peers known by ��j are shown as dashed boxes. Assume �nj has feedback available
about all peers depicted in the figure. It has to determine ^ objects to be attached to the
message. Following our protocol, � j will select Feedback objects whose subjects are
the nodes in light grey. �

4.4 Managing Local Feedback Objects

Each peer administers a repository of Feedback objects. It must decide which objects
should be inserted into or removed from the repository. Some rules for removal are
simple – feedback that has expired can be discarded. Insertion is more complex: with
the protocol described so far, the number of incoming or newly generated Feedback
objects is very large. Thus, when obtaining feedback, a node works off the following
rules:
R1 If a Feedback object is part of a message from a peer that the current peer does not

deem reliable, then discard it.
R2 If the timestamp of a Feedback object is older than C , then discard it.
R3 If the repository contains a Feedback object s.t.

– both the originators and the subjects of the incoming Feedback object and the
one in the feedback repository are identical, and

– the originator of the feedback is different from the current peer,
then keep the object whose timestamp is newer, and discard the other one.

R4 If the feedback repository already contains at least @ Feedback objects about the
same feedback subject, append the incoming one, and remove the Feedback object
with the oldest timestamp.
R1–R3 ensure that the feedback repository contains up-to-date feedback from reli-

able sources. R3 prevents from perceiving a peer as reliable based on observations of
a single node only. An exception is feedback from the current node itself. R4 avoids
unnecessarily large numbers of Feedback objects. Since @ objects are already sufficient
for reliability, more feedback does not provide any further value. Having survived Rules
R1–R4, a Feedback object is added to the feedback repository. If the size of the repos-
itory exceeds AMB4op@ , all Feedback objects regarding one peer are removed. That peer
is the one with the smallest number of valid Feedback objects. This is natural, because
peers can set unreliable peers aside, but want to keep useful ones.

4.5 Reliability-Aware Forwarding

We now explain how peers use feedback information. Our objective is twofold: on the
one hand, we want peers to forward messages via reliable peers as far as possible. On
the other hand, query results must not be given to peers that might be uncooperative.
A peer estimates the reliability of another peer by counting the respective Feedback
objects in its feedback repository. If the number is at least threshold @ , it is reliable. A
valid Feedback object is one that has passed the rules from Subsection 4.4.

Method forwardMessage (Figure 5) is responsible for sending messages to appro-
priate peers. Note that Message m, which is parameter of forwardMessage, always con-
tains a key to determine the target of the message in the key space. If the message is
not a query, the key is the center of the zone of the target peer. Reliability-aware greedy
forwarding now works as follows: each peer wants to find not only a close, but a close
reliable node that is nearer to the target of the message than itself. If the peer has such a
node in its contact cache, it sends it the message. If not, it makes a distinction between
query results and other messages.

1 forwardMessage(Message m)
�

2 // determine candidates to forward the message to
3 CandidatePeers C :=

�
p � dist(p, m.key) q dist(this, m.key) d p

4 b this.ContactCache � ;
5 sort C by dist(m.key, p) with p b C;
6

7 // search for a reliable addressee
8 forall (p b C)

�
9 Feedback F :=

�
f � f.subject = p d f.type = positive d f

10 b this.FeedbackRepository � ;
11 if (� F �Mr D

)
�

12 m.attachment = generateFeedbackAttachment(m, p);
13 send(m, p);
14 return;
15 �
16 �
17 // the current peer does not know a reliable node
18 if (m.type = query result)

�
19 Neighbors N := all neighbors of this in C;
20 forall (p b N)

�
21 requestProW(p);
22 waitForProWAnswer (timeout);
23 if (ProW answer returned in time)

�
24 generateFeedback(p);
25 m.attachment = generateFeedbackAttachment(m, p);
26 send(m, p);
27 break;
28 �
29 �
30 � else

�
31 Peer p := first element in C;
32 m.attachment = generateFeedbackAttachment(m, p);
33 send(m, p);
34 �
35 �

Fig. 5. Reliability-Aware Forwarding in CAN.

Query Results: If the current peer wants to forward a query result, it does so to one of its
(possibly unreliable) neighbors in the right direction, but asks for a ProW before doing
so. If the ProW arrives in time, it forwards the message to the neighbor. Otherwise,
the peer tries another neighbor. In the extreme situation that there is no further contact,
the current peer drops the message. [19] tells us that a P2P system must not provide
any service to nodes that have not yet proven their willingness to cooperate. Therefore
such messages must not go to unknown peers until they have proven their reliability.
The ProW is limited to neighbors for security reasons: this prevents peers from asking
random other ones for a ProW in order to perform DoS attacks.

At first sight, carrying out ProW in the context of evaluation of queries issued by
other peers is not dominant. However, recall our assumption that peers issue queries at a
steady rate. A peer with a poor standing would have to carry out a ProW insignificantly
later anyhow, when issuing a query itself. Besides that, doing a ProW now does not

delay the evaluation of its own query later on. – Further, ProW might seem to be a
disincentive to join the network. But the issue is application-specific, i.e., is the benefit
from joining the CAN higher than the ProW cost plus the cost of processing queries?
Our experiments in Section 5 indicate that the number of ProW is rather small, so the
answer to the question should be affirmative in most scenarios.

Other Messages: If a message is not a query result, an uncooperative node cannot
benefit from it. So the current peer selects the peer closest to the message key from its
contact list and sends it the message. A node that is not reliable in the eye of others is
either uncooperative or did not yet have a chance to prove its cooperativeness. The hope
is that the second case is true.

4.6 Discussion

So far, we have described a protocol that detects and excludes uncooperative nodes.
Let us say why this is the case: Recall that a node is uncooperative if it tries to benefit
from the network with little effort. There are two ways to do so: (1) suppress messages,
by not answering or not forwarding them, (2) propagate spoof feedback, be it with the
peer in question as subject, be it with another peer. Both variants do not result in any
benefit: Namely, messages travel via chains of reliable peers, whenever possible. Only
messages containing no query results are sent to unknown, but not necessarily unco-
operative peers. Integration of peers depends on observations made by reliable peers.
Every peer discards incoming feedback from a peer that it does not deems reliable.
Since feedback expires after some of time, peers have to keep proving their reliability.

Applicability of the protocol is important as well. Because our protocol bypasses
not only uncooperative peers, but also suspicious ones, the number of peers forwarding
a message increases. On the other hand, many lost messages have to be repeated in
conventional CAN protocols in the presence of free riders. So their costs are not as low
as it seems at first sight. Furthermore, peers do not send out messages only to share
feedback information with our protocol, and all information attached to a message is
strictly limited in size. Finally, logical networks of peers make it unnecessary that a
peer stores feedback about all other peers.

Our protocol gives rise to many questions. The effectiveness of our selection policy
of Feedback objects to be forwarded is unclear. Next, small contact caches (A jts �� �>i>?
of all peers) have turned out to be surprisingly efficient for enhanced CAN [15]. We
wonder if small contact caches and feedback repositories, together with a small number
of Feedback objects appended, is effective as well. Here, effectiveness means ’good
differentiation between cooperative and uncooperative peers, with moderate overhead’.
We will now address these questions experimentally.

5 Experimental Evaluation

We have evaluated our reliability-aware CAN protocol by means of extensive experi-
ments. The most important question is as follows: How well does the protocol detect
uncooperative behavior (Subsection 5.3)? Put differently, does it pay to be cooperative

from the perspective of an individual node? Subsection 5.2 addresses another question:
What is the overhead of our reliability-aware CAN protocol, as opposed to the other
protocols from this article?

Our cost measure is the number of message hops, i.e., the number of peers involved
in a single CAN operation. This is in line with other research on DHT [20]. This article
leaves aside characteristics of the physical network, such as total latency. We have an
implementation of CAN that is fully operational, and our experiments use it as a plat-
form. All experiments ran on a cluster of 32 loosely coupled PC, equipped with 2 GHz
CPU, 2 GB RAM and 100 MBit Ethernet each. [21] provides more information on our
experimental framework.

5.1 Determining Parameter Values

For the evaluation, we must come up with meaningful parameter values (cf. Table 1).

u , v : The claim behind CAN is web scalability. However, with existing CAN protocols
where free riders remain unknown, scalability is bounded. The longer the paths, the
larger the probability that a message is lost (cf. Example 2). To verify that this is not
the case with our protocol, we have a large number of peers (100,000) and a small
dimensionality (2), in order to have long paths. Real applications would use a larger & .

whx : [15] has shown that a contact cache of size 20 is adequate, even for large networks.

y : In P2P networks without sanctions against free riders, their number is large [22]. In
our setting in turn, cooperative behavior is expected to dominate. Hence, a fraction of
5% of uncooperative peers is a highly conservative value.

whz , { : Feedback objects are small, i.e., a few bytes for the identifiers of feedback sub-
ject and object and the timestamp. However, their number should be limited, because
processing them is resource-consuming. We estimate that 20 Feedback objects attached
to a message and a feedback repository size of 100 are viable, even for mobile devices.

| : The number of Feedback objects generated for each forward depends on the appli-
cation on top of the CAN. We assume that storing data and answering queries is ten
times as expensive as forwarding messages. So we set q to ��}� .

~
, � : Threshold @ and lifetime2 C are security-relevant parameters. A low threshold @

and a high value for C allow uncooperative peers to get by with processing only few
incoming messages. The opposite case, i.e., large @ and small C , would burden cooper-
ative peers with ProW requests. We use values @���� and C����8�>�����I�I� , obtained from
previous experiments (not described here for lack of space).

2 Here the unit of time is given in experiment clock cycles, i.e., this is the number of queries
issued.

5.2 Performance Aspects

We anticipate that the number of hops per message is higher with the reliability-aware
CAN protocol, than with the enhanced CAN. The reason is that the target node of a
message is not the node that is closest to the destination, but the closest reliable node.
An experiment examines these issues quantitatively. Next to the number of hops, we are
also interested in the number of proofs of work requested. A proof of work3 also leads
to an additional pair of messages.

0.0 0.03

28.6

1.0

25.3 26.6

0

5

10

15

20

25

30

35

N
um

be
r

of
 H

op
s

Query Request
Query Response

ProW Request + Response

Enhanced CAN Reliability−Aware CAN

Fig. 6. Total number of hops.

This experiment uses 2,000,000 queries whose keys are uniformly distributed. We
also have carried out experiments with real data, but they do not provide any further
insight. We omit them here for lack of space. In order to compare the overhead of our
protocol with the enhanced CAN running on optimal conditions, we use cooperative
nodes only. In the presence of free riders, enhanced CAN would loose many messages,
distorting the measurement results. In other words, the setup lets enhanced CAN looks
better.

After an initialization period of 500,000 queries, we counted the message hops for
each query. We distinguish between message hops necessary to deliver the query it-
self, those necessary to return the result, and those necessary to request and to return a
ProW. Figure 6 graphs the number of hops per query. The figure tells us that the over-
head (number of message hops) of the reliability-aware protocol for cooperative nodes
is reasonable. Delivering queries only takes slightly more hops in the reliability-aware
CAN than in the enhanced CAN. Clearly, our protocol must forward query results be-
tween reliable nodes instead of returning them directly to the issuer. So the number of
hops is now around twice as large, which we deem acceptable. Finally, the number of
proofs of work is tolerable as well.

3 We are interested in general characteristics of the reliability-aware CAN. To this end, it is
sufficient to simulate the proof of work. The advantage is that this does not slow down the
experiments.

5.3 Effectiveness

Uncooperative peers try to reach their goals with minimal effort. A peer may try to
trick the feedback mechanism by processing only a fraction of incoming messages,
hoping that this is sufficient to become cooperative in the eyes of other peers. In what
follows, we examine if this kind of uncooperative behavior may be successful. To do
so, we have refined the uncooperative peers. First, they never return proofs of work
requested. This is natural because these are the most costly requests. Second, they react
to some, but not all incoming messages. The percentage of messages reacted to is a
parameter that we adjust in our experiments. In what follows, 50 peers are reacting with
0% probability, another 50 with 1% and so on up to 99%. The remaining peers are
fully cooperative. Our objective is to block all uncooperative peers, independent of the
degree of uncooperativeness, and serve only fully cooperative ones.

B

A
C

D

0

0.2

0.4

0.6

0.8 0.2

0.4

0.6

0.8

10
0.2
0.4
0.6
0.8

1

Rate of Q
ueries A

nswered (y)Cooperativeness (x)

Frequency of Peers (z)

Fig. 7. Behavior vs. Benefits

Each peer corresponds to a point in the xy-plane in Figure 7. The x-coordinate of
a peer is the percentage of the messages it reacts to. Its y-coordinate is the rate of
its queries that are successful. In other words, a fully cooperative peer that does not
obtain any result to its queries corresponds to Point B. A fully uncooperative peer that
obtains results to all of its queries corresponds to Point D. There should not be any such
peers; and our protocol works well if uncooperative peers have a low rate of ’successful’
queries. Note that we can already ’declare success’ if a lower degree of cooperation
leads to a much lower rate of ’successful’ queries on average. The reason is that this is
sufficient to deter uncooperative behavior.

The z-axis is the number of peers that correspond to the point in the xy-plane. For
instance, consider the z-values corresponding to points on the y-axis, i.e., fully uncoop-
erative peers. There are no fully uncooperative peers that benefit much from the CAN,
since �;��� for ������� � . This is a positive result. Analogously, consider the z-values
corresponding to points with ����� , i.e., fully cooperative peers. The y-coordinate of
most of these points falls into the interval � ��� ���8�I� ��� . In other words, cooperative peers
have most of their queries answered. This is again positive. Note that the values on the
z-axis are scaled to 1 in the direction of peers with the same degree of cooperativeness.
That is, the sum of all peers with the same behavior equals 1. This is why the elevation

at the bottom left of the figure is very high. Finally, the figure tells us that the CAN
more or less blocks all peers that are uncooperative and serves only cooperative ones.
This is in line with our objective mentioned above. Our main result is that the protocol
levels up to our objectives. Cooperative behavior actually pays off.

6 Related Work

Distributed Hash Tables administer a large number of (key, value)-pairs in a distributed
manner, with high scalability. The variants, next to CAN, differ primarily in the topol-
ogy of the key space. LH* [23] determines nodes responsible for a certain key statically
by its hash function. Chord [12] organizes the data in a circular one-dimensional data
space. Messages travel from peer to peer in one direction through the cycle, until the
peer whose ID is closest to the key of the query has been found. Pastry, Tapestry [13,
14] use a Plaxton Mesh to store and locate its data. The forwarding algorithm is similar
to the one of Chord. Pastry and Tapestry forward to peers such that the common prefix
of the ID and the query key becomes longer with each hop. Because of the organiza-
tion as a Plaxton Mesh, multiple routes to the addressed position in the data space are
possible. With CAN in turn, the number of possible alternative routes for forwarding
messages increases with the number of neighbors, i.e., with the dimensionality of the
key space. The choice of possible paths is much bigger with CAN. This is important to
bypass unreliable peers.

Free riding [2] is an important problem in any computing environment with many
anonymous participants. There are approaches against free riding in many different
application scenarios. Related work in mobile ad-hoc networks [4, 5] assumes that ad-
jacent nodes can eavesdrop traffic in the same radio network cell and control access to
the parts of the network they are supposed to forward messages to. Here, detecting and
punishing uncooperative behavior is easy.

[10] uses a P2P network to run a global reputation repository. The approach does
not address most of the questions that are relevant in our context, e.g.: Who should be
allowed to give feedback? What to do with feedback that comes from untrusted peers?
What happens if the originator of a feedback item becomes malicious? From a different
perspective, our contribution is a tight coupling of reliability management and message
forwarding in P2P networks. [10] in turn deals with trust management on top of such a
network.

Another approach to rule out uncooperative behavior is based on micropayments [9,
24]. But while monetary schemes provide a clean economic model, infrastructure costs
may simply be too high in a setting such as ours. A further disadvantage is that they
require a central bank. This is not in line with our design rationale.

[11] offers a direct way of sharing reputation information without intermediates.
Every peer describes each other node with a rating coefficient, i.e., a numeric value.
The coefficients are shared after every transaction between nodes involved. A node up-
dates its coefficients by adding the new value weighted by the coefficient of the sender.
This is not applicable to large networks because the way of updating coefficients limits
reputational information to nodes next to the rated node.

Banning uncooperative nodes may also be the result of using Public Key Cryp-
tography. Public Key Certificates signed by a large number of peers provide verifiable
identities [8]. The idea is that groups of peers are mutually verifying and signing their
identities. Unfortunately, whenever such a group recognizes that one of their members
became uncooperative, certificates must be revoked. In other words, an individual un-
cooperative peer may break its entire group.

7 Conclusions

This article has presented a CAN protocol that deals with one of the biggest obstacles in
P2P systems, namely free riding. In CAN, uncooperative peers basically are those that
do not process incoming messages related to queries issued by other nodes. Our proto-
col explicitly acknowledges work carried out by peers. This facilitates the emergence of
self-organized virtual networks within the CAN. The protocol ensures that unreliable
peers do not obtain any benefits. Uncooperative behavior is unattractive. The ’down-
side’ of the protocol are slightly longer message paths, in order to bypass unreliable
peers, and a number of proofs of work that seemingly unreliable nodes must perform.
Several issues remain open for future research. We for our part want to address security
issues.

References

1. Ratnasamy et al., S.: A Scalable Content-Addressable Network. In: Proceedings of the ACM
SIGCOMM 2001 Conference, New York, ACM Press (2001) 161–172

2. Ramaswamy, L., Liu, L.: Free riding: A new challenge to peer-to-peer file sharing systems
(2003)

3. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)
4. Buchegger, S., Boudec, J.Y.L.: Coping with False Accusations in Misbehavior Reputation

Systems for Mobile Ad-hoc Networks. Technical Report IC/2003/31, EPFL, EPFL-IC-LCA
CH-1015 Lausanne, Switzerland (2003)

5. Buttyan, L., Hubaux, J.P.: Enforcing Service Availability in Mobile Ad-Hoc WANs. In:
Proceedings of the 1st ACM International Symposium on Mobile Ad Hoc Networking &
Computing, IEEE Press (2000) 87–96

6. Marti et al., S.: Mitigating Routing Misbehavior in Mobile Ad Hoc Networks. In: Mobile
Computing and Networking. (2000) 255–265

7. Srinivasan et al., V.: Cooperation in Wireless Ad Hoc Networks. In: Proceedings of the IEEE
INFOCOM. (2003)

8. Gokhale, S., Dasgupta, P.: Distributed Authentication for Peer-to-Peer Networks. Workshop
on Security and Assurance in Ad hoc Networks. (2003)

9. Golle et al., P.: Incentives for Sharing in Peer-to-Peer Networks. LNCS 2232 (2001) 75ff.
10. Aberer, K., Despotovic, Z.: Managing Trust in a Peer-2-Peer Information System. In: Pro-

ceedings of the CIKM-01, New York (2001) 310–317
11. Padovan et al., B.: A Prototype for an Agent based Secure Electronic Marketplace Including

Reputation Tracking Mechanisms. In: HICSS. (2001)
12. Stoica et al., I.: Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applications.

In: Proceedings of the ACM SIGCOMM 2001 Conference. (2001) 149–160

13. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and Routing for
Large-Scale Peer-to-Peer Systems. In: IFIP/ACM International Conference on Distributed
Systems Platforms. (2001) 329–350

14. Zhao, B.Y., Kubiatowicz, J., Joseph, A.D.: Tapestry: an infrastructure for fault-resilient wide-
area location and routing. Technical Report UCB//CSD-01-1141, University of California at
Berkeley (2001)

15. Buchmann, E., Böhm, K.: Efficient Routing in Distributed Scalable Data Structures (in Ger-
man). In: Proceedings of the 10th Conference on Database Systems for Business, Technology
and Web. (2003)

16. Back, A.: Hashcash - A Denial of Service Counter-Measure.
http://www.cypherspace.org/ � adam/hashcash/ (2002)

17. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols. In: In Proceedings
of the IFIP TC6 and TC11 Joint Working Conference on Communications and Multimedia
Security (CMS ’99), Leuven, Belgium. (1999)

18. Xiong, L., Liu, L.: A Reputation-Based Trust Model For Peer-To-Peer Ecommerce Commu-
nities. In: IEEE Conference on E-Commerce (CEC’03). (2003)

19. Friedman, E., Resnick, P.: The Social Cost of Cheap Pseudonyms. Journal of Economics
and Management Strategy 10 (1998) 173–199

20. Kleinberg, J.: The Small-World Phenomenon: An Algorithmic Perspective. In: Proceedings
of the 32nd ACM Symposium on Theory of Computing. (2000)

21. Buchmann, E., Böhm, K.: How to Run Experiments with Large Peer-to-Peer Data Structures.
In: Proceedings of the 18th International Parallel and Distributed Processing Symposium,
Santa Fe, USA. (2004)

22. Adar, E., Huberman, B.: Free Riding on Gnutella. First Monday 5 (2000)
23. Litwin, W., Neimat, M.A., Schneider, D.A.: LH* - Linear Hashing for Distributed Files. In

Buneman, P., Jajodia, S., eds.: Proceedings of the 1993 ACM SIGMOD International Con-
ference on Management of Data, Washington, D.C., May 26-28, 1993, ACM Press (1993)
327–336

24. Yang, B., Garcia-Molina, H.: PPay: micropayments for peer-to-peer systems. In Atluri, V.,
Liu, P., eds.: Proceedings of the 10th ACM Conference on Computer and Communication
Security (CCS-03), New York, ACM Press (2003) 300–310

