
How to Run Experiments with Large Peer-to-Peer Data Structures

Erik Buchmann, Klemens Böhm
Otto-von-Guericke Universität, Magdeburg, Germany�

buchmann � kboehm � @iti.cs.uni-magdeburg.de

Abstract

Distributed Hash Tables (DHT) promise to administer
huge sets of (key, value)-pairs under high workloads. DHT
currently are a hot topic of research in various disciplines
of computer science. Experimental results that are con-
vincing require evaluations with large DHT (i.e., more than
100,000 nodes). However, many studies confine themselves
to (less convincing) experimental examinations with much
fewer nodes. Information on how to run experiments with
DHT with many nodes is not available. Based on experience
gained with a DHT implementation of our own [4], this ar-
ticle describes how to carry out such experiments success-
fully. The infrastructure used is a cluster of 32 commodity
workstations. The article starts by compiling requirements
regarding such experiments. We then identify the various
bottlenecks that may be the result of a naive implementa-
tion, and we describe their negative effects. The article pro-
poses various countermeasures, e.g., an experiment clock,
and a component that maintains persistent network connec-
tions between cluster nodes. The features proposed are ben-
eficial: A naive experimental setup allows for 10,000 peers
maximum and a total of 20 operations per second, a sophis-
ticated one following our proposal for 1,000,000 peers and
150 operations per second. Furthermore, we say why ex-
perimental results gained in such a way are meaningful in
many situations.

1 Introduction

Distributed Hash Tables (DHT) promise to administer
huge data sets and to cope with very high workloads in a
decentralized manner. The number of applications is large,
in the context of the WWW and elsewhere. DHT follow the
Peer-to-Peer (P2P) paradigm [11]: They consist of indepen-
dent nodes (peers) that form an overlay network on top of
the Internet. Each node acts as server and client at the same
time and is responsible for a certain part of data. There
are many open questions in the DHT context with regard to
load balancing, reputation management, query processing,

etc. Researchers are coming up with new proposals at a high
rate. With most of such proposals, experimental evaluations
are enlightening.

The claim behind DHT is Web scalability. Thus, ex-
periments that are instructive should run in a setup with a
large number of independent peers – 100,000 and above.
Running such experiments is difficult, be it on a single ma-
chine, be it on a cluster of workstations. One difficulty is
on the methodology level – there currently does not even
seem to be a common understanding regarding the require-
ments on and the characteristics of experiments with DHT.
On the technical level, various hardware and software lim-
itations are in the way of simply starting many peers in an
experimental setting. Examples of these limitations are the
boundedness of the numbers of parallel tasks or of parallel
network connections per machine. Another difficulty is the
development of logging and accounting facilities, adopted
to the special needs of DHT. For these reasons, experiments
are frequently limited to simulations with some hundred
nodes in a simplified environment. However, this does not
allow to verify the original claim. Furthermore, one should
be able to use the system not only for large-scale experi-
ments – it should be operational as well, in order to run
real applications. This requirement, i.e., being able to use
the system both for experiments as well as for real applica-
tions is difficult to meet. The reason is that the first kind of
deployment requires specific tuning measures, while appli-
cations require a prototype for stand-alone execution. The
article will illustrate this.

We for our part have conducted extensive experiments
with a Content-Addressable Network (CAN) [12] imple-
mentation of our own with 100,000 to 1,000,000 peers [4].
(A CAN is a prominent variant of DHT.) Our concern is
not to describe these specific experiments. Rather, we want
to say what one can do in order to carry out experiments
with P2P data structures on that scale. Even though we will
mention some features of our proprietary CAN implemen-
tation, we only do this to ease presentation. The concern of
this article is much broader – it should be helpful to any-
body trying to run arbitrary experiments in a setup similar
to the one hinted at so far. The environment we have used

is a small cluster of off-the-shelf workstations, a setup that
is becoming more and more common. Our cluster consists
of 32 PCs equipped with 2 GHz CPU, 2 GB RAM and 100
MBit Ethernet. Our CAN variant is written in Java.

Clearly, the operating-systems and distributed-system
communities have proposed a huge number of measures
to improve performance of distributed systems and to cope
with hardware and software limitations. This article in turn
answers the following questions: Taking into account that
the prototype should allow for both large-scale experiments
as well as real applications, which ones of those measures
are relevant? Which ones should be used when it comes
to experiments with P2P data structures? What exactly is
the impact on performance? These questions have aroused
much interest – the group of people doing research work on
P2P data structures is large and is growing, in various re-
search communities. In more detail, our contributions are as
follows: First, we list requirements regarding experiments
with P2P data structures. We then identify various hard-
ware and software bottlenecks that may arise with a naive
implementation, and we describe their negative effects. To
counter this, we have designed and implemented an experi-
mental framework with several new components, e.g., a so-
called peer manager that runs on each cluster node1. The
peer manager allows to share persistent network connec-
tions and to bundle threads. Another essential component
of our framework is an experiment clock, which we will mo-
tivate and describe. Furthermore, it is important to keep the
code clean from modifications done for experimental pur-
poses only. A precompiler is a simple mechanism to ac-
complish this. – Again, even though we have used Java 2
SDK 1.4 on Linux, we think that our propositions described
here are useful for other runtime environments and settings
as well. Our results are positive: while a naive setup would
allow for 10,000 peers maximum and 20 operations per sec-
ond issued by all peers, a setup incorporating our measures
allows at least 1,000,000 peers and 150 operations per sec-
ond.

The remainder of the article is organized as follows: Sec-
tion 2 describes prerequisites and related work. In Sec-
tion 3, we discuss requirements on an experimental envi-
ronment intended to run a large number of peers. In Sec-
tion 4 we identify potential software and hardware bound-
aries. Section 5 shows how one can overcome them. Sec-
tion 6 describes further points necessary to carry out the
experiments successfully. Section 7 concludes.

2 Prerequisites and Related Work

Peer-to-Peer (P2P) technology for data management has
received much attention in the recent past. The reasons

1In what follows, we will refer to cluster nodes as ’host’, whenever
’node’ is not sufficient to distinguish between ’host’ or ’peer’.

are that it promises Web scalability, avoids single points
of failure, and has the potential to distribute the infrastruc-
ture costs in a fair way by assigning work to many nodes
maintained by independent carriers. Distributed Hash Ta-
bles (DHT) are an example of this technology, allowing to
manage huge volumes of data with a hash table interface.
The data are (key, value)-pairs. A key addresses each oper-
ation, such as insert, delete, query. A peer invokes
an operation on another peer by sending it a respective mes-
sage, and in what follows, we may speak of the key of a
message. In analogy to buckets of a hash table, each peer
is responsible for a certain part of the key space and knows
some other peers. A peer can either process an operation
itself or forward it to another peer that is more likely to be
able to process it. Note that DHT messages are ’high-level’
messages addressed by keys. This is orthogonal to Inter-
net datagrams addressed by IP numbers. Thus, a DHT is
an overlay network that is independent from the underlying
physical topology.

Content-Addressable Networks (CAN) [12] are an im-
portant, well-known instance of DHT. The key space is a
torus of Cartesian coordinates in multiple dimensions. In
addition to its (key, value)-pairs, a CAN node also knows
its neighbors, i.e., nodes responsible for adjacent parts of
the key space. A peer forwards a message to another peer
by using the Greedy Forwarding Protocol. Greedy Forward-
ing means that the distance between the key of the message
and the key space of the current peer must decrease with
each forwarding step. Other DHT use concepts similar to
the ones of CAN and will profit from experience with large
experiments as well. The DHT variants differ primarily in
the topology of the key space and the message passing al-
gorithm [8], but not in the interfaces. LH* [10] computes
the node responsible for a certain key statically by a given
hash function. Chord [14] organizes the data in a circular
one-dimensional key space. Pastry, Tapestry [13, 15] use a
Plaxton Mesh to store and locate the data.

CAN leaves room for improvements in various respects.
In [4] we proposed that each peer implements a contact
cache storing a number of further contacts in addition to
its neighbors. This cache is adaptive, i.e. peers may select
contacts according to their requirements. As long as a peer
knows only its neighbors, messages travel along routes that
are static. Following our proposal, experiments [4] show
that even a small number of additional contacts decreases
the average number of forwarding steps of a message sig-
nificantly. For instance, a contact cache storing 20 peers in
addition to the neighbors reduces the forwarding steps in a
CAN of 100,000 peers by more than ����� . Therefore, evalu-
ation of DHT structures and behavior evolving over time is
a relevant topic.

So far, evaluation of DHT is frequently based on simula-
tors. While there are general discrete event simulators like

simjava [9], other ones are more specialized. For example,
the Network Simulator ns-2 [3] or the Stanford Narses sim-
ulator [6] target at networking research. However, this is
only useful for abstraction levels lower than the DHT pro-
tocols. At higher levels, there do exist frameworks as well,
but mostly for specific aspects like incentive sharing [5] or
document routing in a swarm-like fashion (Anthill [2]).

A recent approach more similar to our topic is JXTA [7].
JXTA defines a network programming environment useful
for DHT applications. JXTA is not based on DHT. Instead,
every peer propagates resources it wants to share to a so-
called Superpeer in a random graph network model. In ad-
dition, there is a load-test framework [1] that provides a
set of test suites for discovery of new peers, security, and
communication between peers. Like our proposal, this test
suite tries to limit the resources necessary by running sev-
eral peers in the same JVM.

3 Experiments with DHT – Requirements

In this article, we differ between simulations and experi-
ments. In our context, simulations attempt to predict the be-
havior of DHT data structures by providing an approximate
model. In contrast, experiments require a prototype that
is fully functional, and that is written in a general-purpose
programming language. Following our line of thought, the
main difference between a prototype used for experiments
and a ready-to-market program is the omission of some fea-
tures (e.g., Graphical User Interface) that are not needed to
assess the performance characteristics of the system.

From our perspective, experiments with DHT have some
strong advantages over simulations and formal analyses.
The latter can become extremely complex, and the num-
ber of parameters and ’tuning knobs’ easily exceeds several
dozens. Since simulations target at a simplified model, it
is extremely difficult to say in advance which features are
less important when it comes to reduce reality. Both formal
analyses and simulations have difficulties with the estima-
tion of resource consumption. Experiments in turn show
roughly the same behavior with regard to most of the fea-
tures we are interested in as a system that is operational.
Finally, removing errors from the prototype code and im-
proving the prototype enhances applications immediately.

Having said why experiments are a viable approach to
evaluate DHT, we now list the most important requirements
on such experiments. Identifying and discussing them is
not only useful with regard to the methodology behind the
experiments, it is even more important when it comes to the
design of an experimental framework.

Repeatability Experiments must be repeatable. This is
necessary to assess the effect of changing parameter values

or algorithms. Given the complexity of DHT implemen-
tations, it also eases debugging and finding errors signifi-
cantly. In order to repeat experiments with DHT, we must
be able to generate the same initial state of the DHT when-
ever necessary. With ’same initial state of the DHT’, we
refer to the following DHT characteristics:

Same key spaces With some DHT, the assignment of a
peer to a portion of the key space takes place randomly
when the peer joins the DHT. Since different assign-
ments of peers to portions of the key space would lead
to different forwarding paths and would be in the way
of repeatability, our experimental framework must be
able to store and recover such an assignment.

Same initial contact information With DHT, each peer
’knows’ some other peers, in order to forward mes-
sages whenever necessary. With LH* for instance,
these ’contacts’ directly result from the hash func-
tion that maps keys to network addresses. In standard
CAN, the initial ’contacts’ of a new node result from
the current assignment of peers to portions of the key
space and from the peer where the new node joins the
network. Furthermore, each peer of our CAN imple-
mentation has some further contacts in addition to the
’adjacent’ peers with standard CAN. On the one hand,
this allows to improve the routing performance signif-
icantly. On the other hand, it makes the generation of
a DHT state identical to a previous one more complex.

Our experimental environment will store this informa-
tion in a configuration file. – To ensure repeatability of ex-
periments, the experimental framework must also be able to
run the same sequence of operations repeatedly. I.e., each
peer issues the same operation at the same time with the
same target key as before. Note that this does not mean that
a repeated message travels along the same forwarding path
– changed parameter values or modified algorithms may of
course change the behavior of the network.

Dynamicity Like any P2P system, a DHT is a dynamic
structure. Peers constantly enter and leave the network.
With some DHT, the portion of the key space assigned to
a peer may change over time. Furthermore, a peer may
adapt its view of the world, e.g., by replacing its contacts
with other peers. Consequently, experiments must not be
confined to individual operations. Instead, they also must
examine the effects of processing operations in parallel or
consecutively as well as the evolution of system character-
istics over time.

Performance Another important goal is to process many
operations in short time. As long as a single peer is running
on a single host, most hardware resources (except maybe

for the network interface) are consumed by the applications
and are unlikely to become a bottleneck for the underlying
DHT infrastructure. But as soon as some thousand peers are
running on the same host, hardware and operating-system
limitations will arise, and one must ensure that experiments
run with acceptable performance (see Section 4 for a more
detailed description of the bottlenecks).

Note that our concern is to speed up the experiment as a
whole, as opposed to optimization of individual peers. For
instance, proposals such as execution of one peer per CPU
on SMP servers or moving the storage layer from the server
to a SAN are orthogonal to our current topic.

Logging and Control Obviously, a logging service is an
essential component of the experimental framework envi-
sioned. It must enable us to evaluate the performance char-
acteristics both of individual peers as well as of the system
as a whole. This must hold even if the system consists of
many peers. The characteristics to be observed include the
forwarding paths of messages, the contact lists of individ-
ual peers and the ways they change over time, and internal
parameters that quantify the workload of individual peers,
the amount of data administered etc. Finally, this logging
service must be as thin as possible to avoid side effects.

Another important requirement is to control the system
load of all hosts. In general, different peers process oper-
ations at different rates. Without further measures, some
hosts will soon experience an overload or will become idle.
In consequence, the experimental framework should feature
an experiment manager component. It adapts the speed for
the whole experiment to the current load situation of the
hosts without distorting the relations between peers.

Small changes on source code In contrast to the previ-
ous requirements, this current requirement does not refer to
characteristics of the experimental setup itself. The require-
ment is that the code running in the experimental framework
envisioned shall differ as little as possible from the one of
a system that is operational. If the same code base is used,
removing errors from the prototype code and improving the
prototype leads to direct enhancements of applications.

4 Hardware and Software Limitations

A naive approach to experiments with DHT, which re-
sembles our first attempts to evaluate large DHT experi-
mentally, might look as follows. Each peer contains a log-
ging facility that records incoming messages, together with
a timestamp. Furthermore, each peer has a random-number
generator, in order to issue operations with random keys at
random points of time. A script starts as many peers as pos-
sible on all machines of the cluster. Each peer now joins the

DHT, one after the other, as specified by the DHT proto-
col. In order to forward messages, peers establish network
connections and disconnect on demand. – Unfortunately,
all this does not scale, due to the following problems: If
peers do not reduce the rate of operations issued, the envi-
ronment will soon raise exceptions like ”Too many open
Connections” or ”Could not start Thread”. Furthermore,
even though some machines are overloaded, others are idle
all the time. In addition to this, the number of peers that can
run on one machine is too small. The reasons are various
hardware and software limitations. They need to be identi-
fied and eliminated, in order to run meaningful experiments.

CPU Limited computing power manifests itself as fol-
lows: the host is unable to process incoming messages as
quickly as they arrive. After a short period of time, any
queue or network buffer has an overrun, and the experiment
breaks down. Such overloads are difficult to avoid, since
other hosts generate the load randomly – at least, this is
the local perspective of an individual peer. Consequently,
it would be good if there was a centralized control compo-
nent that is allowed to adopt the rate of operations issued
by the various peers. Note that such a component does not
contradict the peer-to-peer nature of the system under eval-
uation. It is merely the experimental framework that is not
peer-to-peer any more.

Main Memory Normally, a single peer on one host
should not exhaust the main memory. But with peers writ-
ten in a high-level programming language, starting the run-
time environment for each peer leads to a significant mem-
ory consumption and limits the number of peers per host.
The programming language of our choice is Java, and a Java
Virtual Machine (JVM) consumes between 2 and 64 MB
main memory by default.2 If the JVM is short of memory,
it invokes its garbage collector very frequently, and perfor-
mance becomes worse.

Timer A very hidden and nearly undocumented limita-
tion comes from the timer. Our CAN implementation uses
it for various tasks, e.g., to delay messages. Furthermore,
we have experimented with reputation mechanisms where
reputation times out after a certain time period. This re-
quires the use of the timer as well. Despite the Java
feature to schedule timer events with nanosecond preci-
sion (java.lang.Object.wait(long timeout,
int nanos)), the resolution used depends on the hard-
ware and operating system. For instance, the JVM 1.4.0
shipped from Sun seems to use the system timer. On our

2One could question the necessity of using Java to implement the peers.
However, application-development complexity in our context and porta-
bility issues lead to powerful, but easily usable tools and programming
libraries.

machines running x86-Linux, the system timer resolution
defined in include/asm-i386/param.h is 100 Hz.
Other machines or operating systems use different time res-
olutions. This can result in strange effects during experi-
ments. For instance, the minimum time interval between
operations is 10 ms on our Linux machines, but may have
other values on other systems. In fact, our machines will
process an event timed for 1 ms in 10 ms, other machines
may use other times. In many situations, we do not know
this value – one reason is that we may not have access to the
source code. Thus, explicitly controlling the rate of opera-
tions during experiments is problematic.

Network In our setting, the most critical resource is the
network connection (TCP/IP over 100 MBit Ethernet). It
restricts experiments in various ways: latency, the number
of parallel open connections, and the number of available
ports. We will now explain these points – they are strongly
interwoven. Because ports from 0 to 1023 are reserved for
daemons and services, the range of ports usable for non-root
users on x86-Linux is from 1024 to 65535. With the naive
setup, each peer binds to one port. Every time a peer wants
to send a message to another one, the operating system oc-
cupies a free port and establishes a connection between that
port and the port of the target peer. After the communication
has taken place, the previously occupied port remains in the
TIME WAIT state for some OS-dependent time. Given the
high number of parallel operations in our setup, a host may
run out of available ports. The connect operation then
raises an Exception, and the experiment has to stop until
some ports are freed. In addition, a huge number of par-
allel connections (we have counted more than 20,000 with
netstat | wc -l) puts a heavy burden on the TCP/IP
Stack maintained by the operating system. Furthermore, a
connection in a TCP/IP network is established by a three-
way handshake. Disconnection is by means of three or four
further packets. Thus, connecting and disconnecting causes
a significant amount of traffic overhead and needs some mil-
liseconds. This latency limits the number of sequential op-
erations of a single peer to a few per second (cf. Table 1).

Parallel network
connections

Parallel
Threads

Operations
per second

unoptimized � 20,000 � 2500 20
optimized 62 45 150

Table 1. Comparison of unoptimized and op-
timized code

A naive approach for solving network problems may be
the use of UDP instead of TCP. UDP is a connectionless
protocol without handshaking mechanisms or state manage-
ment datagrams. This reduces the overhead of the network

protocol significantly. But UDP has two drawbacks with
DHT: first, UDP datagrams are limited in size. Without
protocol-inherent fragmentation, our DHT must split larger
messages and recombine them ’manually’. Second, in the
absence of connection management, datagrams may disap-
pear without any notice. In contrast, TCP uses an internal
recovery algorithm to make sure that datagrams arrive at
their target host, or the sender gets an error.

System Software Not all limitations are hardware limita-
tions. There is a software-related problem as well. When
using x86-Linux, the number of threads available for ap-
plications is a bottleneck. In general, the OS scheduler
allows non-root users to use only half of the value of
/proc/sys/kernel/threads-max threads.

max_threads =
mempages / (THREAD_SIZE/PAGE_SIZE) / 8;

init_task.rlim[RLIMIT_NPROC].rlim_cur =
max_threads/2;

init_task.rlim[RLIMIT_NPROC].rlim_max =
max_threads/2;

Figure 1. Thread Limit (Part of kernel/fork.c)

The value is calculated in kernel/fork.c
as shown in Figure 1 and depends on the avail-
able main memory. Values typically range between
4096 and 16384. Next to the kernel, the glibc
shared library also limits the number of threads. The
line #define PTHREAD THREADS MAX 1024 in
bits/local lim.h allows only 1024 threads usable by
a program, e.g., a single JVM. Because every peer starts
new threads to process incoming messages, the thread limit
is in the way of running more than a few hundred peers per
JVM.

Number
of Threads

Duration in s
Linux 2.4.18

Duration in s
Windows XP

1 86 62
10 99 66

100 152 211
1,000 121 238

Table 2. Computing the Rabin Hash Func-
tion 1,000,000 times with different numbers
of threads

Furthermore, the OS scheduler is not optimized for run-
ning a large number of parallel threads. A simple test shows
that thread scheduling consumes many CPU resources. As
shown in Figure 2, we calculated the Rabin Hash Function
one million times for a given String with different num-
bers of parallel threads. The first line of Table 2 stands

class Test {
int c = 100;

Test() {
for (int i = 0; i < c; i++) new Helper();

}

class Helper extends Thread {
Helper() {

start();
}

void run() {
for (int i = 10000000 / c; i > 0; i--)
RabinHashFunction.getDefaultHashFunction()

.hash(this.toString().getBytes());
}

}
}

Figure 2. Estimate the effect of the number of
threads

for one thread having carried out all one million compu-
tations. Another run was such that 1,000 threads carried
out 1,000 calculations each. Table 2 shows that the time to
carry out the computations increases by 40 and 280 percent
with Linux and Windows XP, respectively, by using 1,000
parallel threads.

5 Eliminating the Bottlenecks

To overcome the limitations from the previous sec-
tion, we have developed an experimental framework that
consists of three components, as shown in Figure 3. A
Class PeerManager controls resources for all peers run-
ning on a certain host. A control component called
ExperimentManager that is centralized manages the
experiment itself. For instance, it tells each peer which
query to issue at what time. Finally, a central logging fa-
cility named LogConsole is responsible for recording
events monitored on all peers, together with timestamps.
This section will describe these components. Section 6 will
discuss further steps necessary to run large experiments,
which do not exactly fit under the umbrella ’bottleneck
elimination’.

Our CAN implementation is a stand-alone program, to
be used by any application. Integration of the experimental
framework requires some modifications of the source code.
Small Changes on Source Code states that such modifica-
tions must not remain in the code shipped to application de-
velopers. Thus, we mark up experiment-related code with
precompiler-statements like #ifdef, #else, #endif3.

3Even though there are more powerful ways to accomplish this, for

Figure 3. Experimental framework architec-
ture

Input files are located in ./base/p2pnet
Output files are written to ./p2pnet
createoutputdir:

@echo "removing old output directory"
rm -rf ./p2pnet
@echo "creating new directory tree"
mkdir -p ‘find ./base -name "*.java" |sed -e \

"s/ˆ\.\/base/./;s/\/[a-zA-Z1-9]*\.java//"‘

derive_experiment: createoutputdir
@echo "deriving code for experiment purposes"
cd ./base ; find p2pnet -name "*.java" | \

xargs --replace=X gcc -E -nostdinc -I- -C \
-P -D _experiments_ -x c X -o ../X

Figure 4. Makefile to separate experiment-
related code

The problem is that Java does not support such precompi-
lation. Fortunately, the current gcc allows to parse files in
other formats. The flag -x c tells the precompiler to treat
input files as if they were written in ’C’. This allows for
precompiler statements. Note that this is feasible only be-
cause of the narrow similarity of the syntax of C and Java
– for instance, if ’#’ was a Java symbol, all this would not
work. Figure 4 shows a part of our Makefile to sepa-
rate experiment-related code from system code. The state-
ment make derive experiment simply creates a new
empty directory tree and uses the gcc to parse all java files
from the ./base/p2pnet directory into ./p2pnet.

In general, we can reduce resource consumption by low-
ering parameter values and by using smaller data objects,
for instance changing peer names from fully featured String
Objects to sequential numbers stored in an Integer. But sim-
ple solutions like this will not solve all those problems. We
now say how we have overcome those various limitations.

example Aspect Oriented Programming, we have settled for a precompiler
because of its simplicity and adequateness.

Several Peers in one JVM Because every JVM comes
with some further functionality like Garbage Collection,
running each peer with its own JVM consumes a lot of free
memory and computing power. Running several peers with
one JVM allows to overcome the Bottlenecks Main Mem-
ory and CPU in a relatively simple way. One has to make
sure that the peer class can be invoked from outside by call-
ing its constructor, and that shutting down a peer does not
shut down the whole JVM. This would happen with the
usual System.exit() call. Besides that, one has to en-
sure that the source code does not contain static objects
that are not intended to be shared between peers. Class
PeerManager can now read the command line param-
eters identifying a configuration file and create the peers.
Figure 5 illustrates this by means of some sample code.

class Peer extends Thread {

boolean standalone = false;
boolean isRunning = true;

static void main(String[] args) {
standalone = true;
new Peer(args);

}

Peer(String[] args) {
...

}

void shutdown() {
...
isRunning = false;
if (standalone) System.exit(0);

}
}

class PeerManager {

PeerManager() {
FileReader in = new FileReader("start.dat"));
String s = in.readLine();
while(s != null) {

new Peer(stringToArray(s));
s = in.readLine();

}
}

}

Figure 5. Running several peers with one JVM

Persistent network connections As described above,
connecting and disconnecting network sockets for each
transferred message consumes a lot of time, causes un-
necessary network overhead and leads to a large number
of parallel connections maintained by the OS. Our way
around the Bottleneck Network is to use persistent con-
nections, i.e., connections are established and kept open

during the experiment. But while persistent connections
from one peer to its most important contacts are feasible
with one peer per host, this is not possible for some thou-
sands of them. Thus, we have built a peer manager that
controls all connections to and from peers running on the
particular host. An important requirement is that the peer
manager does not affect the ’natural’ behavior of peers in
any way. One can achieve this as follows: suppose that
the peer class owns a method named send(Message,
Target) to send messages and one named receive()
to wait for incoming ones. receive() invokes a third
method process(Message).

class Peer extends Thread {

void receive() {
#ifndef _experiments_

ServerSocket s = new ServerSocket(port);
while (isRunning) {

process(s.readObject());
}

#endif
}

void send(PeerDescriptor p, Message m) {
#ifdef _experiments_

PeerManager.send(p, m);
#else

openSocket(p).writeObject(m);
#endif

}

void process(Message m) {
...

}
}

class PeerManager {
Map peers;
Map connections;

void receive() {
ServerSocket s = new ServerSocket(port);
while (isRunning) {

Message m = s.readObject();
Peer p = peers.get(m.targetPeer);
p.process(m);

}
}

void send(PeerDescriptor p, Message m) {
if (peers.contains(p)) {

Peer n = peers.get(p);
n.process(m.deepClone());

} else {
Socket s = connections.get(p.address);
s.writeObject(m);

}
}

}

Figure 6. Connection management

Let us first consider the case that the peer is standalone.
This happens if the peer is part of a system that is oper-
ational. Then send() opens a new connection for each
message, sends it, and closes the connection afterwards. For
experiments on the other hand, we replace that piece of code
with a call to Class PeerManager. It does the networking
for all peers in the JVM. The class maintains persistent con-
nections to all other instances of this class running on other
hosts, and passes the message to the one responsible for the
peer addressed. As soon as a PeerManager receives a
message, it extracts the name of the target peer and invokes
process(Message). Figure 6 shows all related parts of
our source code.

Class PeerManager handles connections between
peers running in the same JVM internally, without invok-
ing network sockets. But simply transferring the message
internally to the target peer has side effects: in Java, it is not
the content of data object that is transferred, but the object
ID. If the first peer changes the message object after having
sent it, the object is altered at peers who have received it
as well. One way around this problem is to deep-clone the
message. In Java, Object.clone() only makes copies
of the object itself, not of other objects contained in deep
structures like vectors or maps. So one has to implement a
deep clone oneself. A general way to do this is to serial-
ize the whole message to a ByteArray stream and read
it. Furthermore, addressing a target peer by its host name
and port number is ambiguous if the peer manager receives
messages for a lot of peers by using only one address. Thus,
each peer must have a globally unique name in addition.

Controlling the Number of Threads Up to now, each
peer is an instance of Thread. The rationale is to pre-
vent the peer from blocking the application while waiting
for incoming messages. This allows to run a few hundred
peers in one JVM (around half of the glibc limit), and a few
thousand if we depended only on the OS limit per host. To
increase the number of peers, i.e., to do away with Bottle-
neck System Software, we have to utilize the threads avail-
able as much as possible. We therefore propose the fol-
lowing: We observe that peers in our experimental frame-
work only process incoming messages. They even do not
issue queries themselves any more. Instead, the experiment
manager sends them messages asking to invoke a particu-
lar query at a certain point of time. (Section 6 will provide
more details on this feature.) Having said this, it is not nec-
essary that a peer is constantly up and running. Instead, the
peer manager now generates a thread corresponding to a
particular peer only if there is an event which the peer must
react to. This requires that the peers do not inherit from
Thread. Furthermore, they may not invoke its method that
listens on a network socket and waits for connections. Note
that this optimization is only feasible within our experimen-

tal framework. Namely, it is only here that there is a peer
manager responsible for the creation of new threads, instead
of the peers themselves.

The modifications described so far are only ’minimally
invasive’. Nevertheless, the savings with regard to resources
and the total number of DHT operations per second increase
significantly, as shown in Table 1. We have obtained these
values regarding connections and threads from a single host
communicating with 31 other hosts in the cluster. Opera-
tions per second refers to the experiment as a whole. While
the numbers are of course experiment-specific, one can ex-
pect similar improvements in other contexts.

6 Managing Experiments

Eliminating the bottlenecks on a rather technical level
is not yet sufficient in order to run large experiments with
DHT. The current section will show this, together with a
description of the measures necessary.

Startup of Experiments Requirement Repeatability
states that the experimental setup must allow to rerun the
same experiment from exactly the same system state. If
the experiments do not require that the DHT actually main-
tains data at startup, peers (be it with CAN, be it with most
other DHT architectures following the Document Routing
Model) are sufficiently described by their portion of the key
space and their contact list. As described in the last section,
the peer manager is capable of starting an arbitrary num-
ber of peers. It does so by reading the configuration file
and generating command line parameters. To achieve a re-
peatable startup, the configuration file also contains param-
eters that specify key spaces and peer contacts of individual
peers.

Next to repeatability, being able to start experiments
from a certain configuration has further advantages. For
instance, this allows to create specific distributions of key
spaces in order to focus on load balancing mechanisms. As
another advantage, it allows to speed up the startup process.
This is worthwhile if one wants to carry out experiments re-
garding the behavior of a running system. Our setup mech-
anism as part of the peer manager allows to bypass the con-
ventional startup process, where peers join the DHT net-
work [12]. Letting 100,000 peers join the network one by
one using the join takes more than 90 minutes, in contrast to
only five minutes when using our setup mechanism. Thus,
another task for the precompiler is to switch between new
nodes joining the network in the ’conventional’ way and
fetching all relevant information from the configuration files
to start the network.

Issuing Operations It is not only the experimental setup
that must be predictable and repeatable, but also the oper-

ations issued during an experiment. For example, specific
distributions of key values, of arrival times of operations,
and of the peers issuing them would allow to investigate
DHT both in worst-case and in real settings. In this context,
it is important that the code needed to run stand-alone ap-
plications remains unchanged in spite of possible changes
to the prototype. Thus, we emulate a large number of oper-
ators using the same interfaces as real applications do. To
ensure repeatability of experiments, we for our part have in-
troduced a special type of message. The central experiment
manager issues this kind of message. It instructs the tar-
get peer to carry out the operation attached to the message.
The experiment manager reads a script file whose lines say
which peer has to issue a certain operation. For example,
one line of the script might be ”Peer 8632: issue a query for
Point (0.2; -0.4; 0.4).”.

Load Supervision The average number of messages gen-
erated to evaluate a single query may change over time. For
instance, [4] describes adaptation mechanisms for CAN and
respective experiments. With these mechanisms, the num-
ber of forwarding steps of a query decreases significantly
over time. If the rate of queries issued was always the same,
machines would become idle. Performance of experiments
would be low, and Requirement Dynamicity would not be
met. Consequently, we want to speed up the global rate of
queries issued. A naive way to do this would be to spec-
ify the rate of queries issued as a function of time elapsed.
However, this is tedious, and the specification work needs
to be carried out anew for each experiment. Monitoring the
CPU load on every node in the cluster is not straightforward
as well. The reason is that peers are mostly engaged in send-
ing and receiving network packets: as long as a peer com-
municates, it does not consume any CPU resources. Ac-
cording to our experience, the most useful quantity to mon-
itor for load supervision is the number of parallel threads
active on each host. This parameter is easily observable by
the peer manager. In our case, a peer manager sends an
Alert Packet to the experiment manager if the number of
parallel threads exceeds a certain limit – we use a value of
50 in our experiments. The experiment manager then de-
creases the global rate of new operations issued. On the
other hand, if there are no alert packets arriving for some
time, it increases this rate.

Experiment Clock Running experiments at an adaptive
rate prevents us from thinking in absolute times, i.e., we
should not use the system clock. For instance, message
expiration after a certain fixed period of time would be
counterproductive. This is because the number of oper-
ations taking place during this period of time is not pre-
dictable and typically varies. This is why we use the count
of operations issued as experiment clock. The experiment

manager program sends this number every few operations
(we use a value of 100 to save network overhead) to each
PeerManager instance through a network connection.
Each peer manager puts it in a public, static attribute vari-
able. All peers hosted by this class can access it. If a peer
does not run within our experimental setup, it must again
obtain the system time – the code fragment in Figure 7 ac-
complishes exactly this.

#ifdef _experiments_
long l = PeerManager.currTime;

#else
long l = System.currentTimeMillis();

#endif

Figure 7. Switching between experiment
clock and system clock

Discussion Our experimental framework allows to focus
on relevant aspects of DHT behavior and gives us verifi-
able, accurate results. Side effects of the framework on the
behavior of peers are small: the chronological order of mes-
sages arriving a certain peer may be affected a little. The
reason is that message transfer between peers running on
the same host is faster than the transfer via network con-
nections. But compared to the situation found on common
Internet connections, we can leave aside these effects.

The first series of experiments with our prototype has
measured the benefit of contact caches [4], as mentioned in
Section 2. Without our experimental framework, the results
were quite unsatisfactory, i.e., only 10,000 peers and a few
operations. With our framework in turn, only the available
memory and the time needed for a meaningful number of
operations limit the number of peers. Some of the results
obtained with regard to contact caches are interesting and
were unexpected for us: First, a very small cache size al-
ready yields a significant benefit. The simple replacement
strategy RANDOM is competitive with more sophisticated
ones like LRU, LRD or LFU. (See [4] for more information
and explanations.)

7 Conclusion

Given that peer-to-peer data structures are important, ex-
periments to evaluate new ideas and proposals in this field
are important as well. This article has made a strong point
for large experiments in DHT networks. It has provided
a clear list of requirements that such experiments and ex-
perimental frameworks should fulfill. We have described
bottlenecks that materialize when approaching the problem
(the one of carrying out large experiments) in a naive way.

The article has then introduced countermeasures that help
to get rid of these limitations. These countermeasures do
not affect those parts of the prototype needed by real-world
applications. The countermeasures include the use of an
experiment clock and adaption of the rate of operations is-
sued. The results of our measures are pleasingly good: A
naive experimental setup allows for 1,000 peers maximum
and 20 operations per second, a sophisticated one follow-
ing our proposal in turn allows for 1,000,000 peers and
150 operations per second. We point out that this is not
yet the ’end of the road’. We are confident that we could
have many more peers and approximately the same experi-
ment runtimes without encountering a bottleneck if we had
a bigger cluster available. (The cluster currently consists of
32 hosts.)

Future work will deploy the experimental setup de-
scribed here for sophisticated experiments with DHT.

References

[1] Bench Project: A JXTA Load Test Framework.
http://bench.jxta.org/LoadTest.html, 2003.

[2] O. Babaoglu, H. Meling, and A. Montresor. Anthill: A
Framework for the Development of Agent-Based Peer-to-
Peer Systems, 2002.

[3] L. Breslau et al. Advances in Network Simulation. IEEE
Computer, 33(5):59–67, May 2000.

[4] E. Buchmann and K. Böhm. Efficient Routing in Distributed
Scalable Data Structures (in German). In Proceedings of the
10th Conference on Database Systems for Business, Tech-
nology and Web, Feb. 2003.

[5] C. Buragohain, D. Agrawal, and S. Suri. A Game-Theoretic
Framework for Incentives in P2P Systems. In Proceedings
of P2P2003, Sept. 1-3, Linkoping, Sweden, 2003.

[6] T. Giuli and M. Baker. Narses: A Scalable Flow-
Based Network Simulator. Technical Report cs.PF/0211024,
http://arXiv.org/, Nov. 20 2002.

[7] L. Gong. JXTA: A network programming environment.
IEEE Internet Computing, 5:88–95, 2001.

[8] K. Gummadi et al. The impact of dht routing geometry on
resilience and proximity. In Proceedings of the 2003 confer-
ence on Applications, technologies, architectures, and pro-
tocols for computer communications, pages 381–394. ACM
Press, 2003.

[9] F. Howell and R. McNab. simjava: A discrete event simula-
tion library for java, 1998.

[10] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH* - Lin-
ear Hashing for Distributed Files. In P. Buneman and S. Ja-
jodia, editors, Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data, Washington,
D.C., May 26-28, 1993, pages 327–336. ACM Press, 1993.

[11] D. S. Milojicic et al. Peer-to-Peer Computing. Technical
Report HPL-2002-57, HP Labs, Palo Alto, Mar. 2002.

[12] S. Ratnasamy et al. A Scalable Content-Addressable Net-
work. In R. Guerin, editor, Proceedings of the ACM SIG-
COMM 2001 Conference (SIGCOMM-01), volume 31, 4

of Computer Communication Review, pages 161–172, New
York, Aug. 2001. ACM Press.

[13] A. Rowstron and P. Druschel. Pastry: Scalable, Decentral-
ized Object Location, and Routing for Large-Scale Peer-to-
Peer Systems. In IFIP/ACM International Conference on
Distributed Systems Platforms, pages 329–350, 2001.

[14] I. Stoica et al. Chord: A Scalable Peer-To-Peer Lookup Ser-
vice for Internet Applications. In Proceedings of the ACM
SIGCOMM 2001 Conference, pages 149–160, New York,
Aug. 2001. ACM Press.

[15] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: an
infrastructure for fault-resilient wide-area location and rout-
ing. Technical Report UCB//CSD-01-1141, University of
California at Berkeley, Apr. 2001.

