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Abstract

Active learning methods collect annotations in the form of

class labels, often from human experts, to improve upon

some classification task. In many cases, one can collect an-

notations for a batch of observations at a time, e.g., when

several annotators are available. This can make the annota-

tion process more efficient, both regarding human and com-

putational resources. However, selecting a good batch is dif-

ficult. It requires to understand several trade-offs between

the costs of classifier training, batch selection, annotation

effort, and classification accuracy. For one-class classifica-

tion, a very important application of active learning, batch

selection has not received any attention in the literature so

far. In this article, we strive to find a sweet spot between

the costs of batch-mode learning and classification accuracy.

To this end, we first frame batch selection as an optimiza-

tion problem. We then propose several strategies to identify

good batches, discuss their properties, and evaluate them on

real-world data. A core result is that a sweet spot indeed

exists, with active learning costs reduced by up to an order

of magnitude compared to a sequential procedure, without

sacrificing accuracy.

Keywords one-class classification, active learning,
batch queries

1 Introduction

Active learning is the machine-learning paradigm to ask
an oracle for auxiliary information, to increase classifi-
cation quality. The oracle often is a human annotator
who provides class labels for observations. Annotations
may also be of different nature, like the outcome of a
simulation or experiment [4]. An important application
of active learning is anomaly detection with one-class
classifiers [1, 13–15, 33, 40]. Here, the oracle provides
a binary class label – “inlier” or “outlier”. Feedback
typically is sequential, i.e., once the oracle has provided
a class label for a single observation, the classifier is re-
trained. But there are cases when the sequential mode is
unfavorable, e.g., when classifier retraining is slow [34],
if several annotators are available in parallel [27], or with
changeover costs of experiments and simulations [12]. In
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such cases, it seems natural to ask the oracle to annotate
a batch of observations at a time. However, the benefit
of batch active learning hinges on trade-offs between the
cost of active learning, which comprises batch selection,
classifier retraining, and the annotation effort, and the
increase in classification accuracy. Literature tends to
oversimplify these trade-offs: Large batches yield slower
learning rates, but they reduce the overall cost of ac-
tive learning because of less frequent classifier training,
see [21, 23] for example. In reality, however, batch se-
lection is more involved. For example it is difficult to
model the cost terms or to select a good batch size.
Further, selecting a good batch requires (i) quantifying
the expected utility of a batch, and (ii) a strategy to
traverse the space of candidate batches, which is pro-
hibitively large. These issues have not been studied for
one-class active learning so far. So this article is first
to study when exactly batch one-class active learning is
useful, compared to the sequential case. We break this
general motivation down into three specific questions:

(Q1) How can batch utility be quantified in the one-
class setting?

(Q2) What are suitable schemes to select candidate
batches?

(Q3) Is there a sweet spot between the costs of batch
active learning and classification accuracy?

Studying these questions is difficult. First, there are
multiple ways to approach batch selection, with varying
levels of complexity. One example are the different
models for annotation costs. The costs can either be
constant per label, can decrease with the batch size or
may depend on the individual queries of the batch [27].
While some of these aspects have been mentioned in
literature, there neither exists an overview nor a formal
model of them. This makes it very hard to understand
the trade-offs, to detect simplifications of the batch-
selection problem, and to justify the benefit of batches.

Second, literature does not feature a method to
calculate the batch utility for one-class active learning.
In other domains, such as multi-class classification,
the naive alternative to select the top-k sequential
queries for a batch often is sub-optimal, since these
observations tend to be similar to each other [26, 28, 29].
Different ways to approach this issue are conceivable,
e.g., by introducing notions like batch diversity and
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representativeness. But which notions actually are
useful in a one-class setting, and how to possibly
combine them into one aggregate measure is unclear.

Finally, batch selection is a combinatorial problem:
there are 2N − 1 potential batches for N unlabeled ob-
servations. Current work on batch utility is confined to
balanced domains and multi-class classification [9, 24,
38]. However, one-class problems have several distinc-
tive properties, such as a significant class imbalance and
undefined densities for the outlier class. These proper-
ties require specific sequential selection strategies [33],
and we expect this for batch strategies as well.

Contributions. This article features the first princi-
pled approach to batch active learning for one-class clas-
sification. We make two specific contributions: (i) We
formalize batch selection as a general and comprehen-
sive optimization problem. Our framework trades off
batch utility against annotation, batch-selection and
classification costs under varying batch sizes. To our
knowledge, this is the first formal framework that makes
assumptions and simplifications for batch selection ex-
plicit. (ii) We propose several strategies to measure
batch utility, specific to one-class classification. We
then combine our utility measures with search strategies
from four categories: top-k, iterative, partitioning and
filtering strategies. We discuss their theoretical proper-
ties and compare them empirically on real-world data,
against sequential selection and random baselines.

An important takeaway from this article is that
batch queries with outlier detection are indeed differ-
ent from their multi-class counterparts. In contrast to
the multi-class case, batch diversity is not essential. In-
stead, selecting the top-k observations by informative-
ness suffices for good learning rates. There also is a
sweet spot, and it is to use the top-k observations ranked
by a sequential strategy with batch sizes between 8 and
16 observations. This decreases computational cost by
up to an order of magnitude, while retaining the classi-
fication accuracy from the sequential case.

2 Formalization

In this section, we derive a formal model of batch
selection, by framing it as an optimization problem.
We start with some theoretical considerations and then
discuss assumptions and simplifications.

Batch active learning selects a sequence of sets of
observations for annotation and retrains a classifier af-
ter each set has been annotated. The ultimate objective
is that the model has good classification accuracy after
the last batch has been annotated. In general, annota-
tions have a positive expected marginal utility. This is
because each one provides additional information that
helps to improve the classification model. But annota-

tions may introduce a short-term bias, which can dete-
riorate classification accuracy temporarily [2]. This bias
diminishes when more annotations become available.
Next, one further assumes that active learning is subject
to some budget restriction. For one, annotations require
resources of real entities, such as humans or technical
equipment. Next, retraining a classifier and searching
for a good batch requires computational resources. One
can assign resources specific costs, be they monetary, be
they in time equivalents, and restrict the resources to
the budget available. Existing cost-sensitive approaches
merely focus on the annotation costs [8, 16, 31, 35] and
lack a comprehensive model.

2.1 A Theoretical Model Let X be a data set with
N observations and M dimensions. The ground truth
labels are y ∈ {inlier, outlier}. Formally, the objective
of batch selection is to find a sequence of batches
B = (B1, . . . , Bl) where Bi ∈ P(X ), Bi ∩Bj 6=i = ∅ that
yields the best possible classification accuracy acc on
data X with labels y, with a semi-supervised classifier
that trains a model on the annotated observations⋃

Bi∈BBi = L and the remaining observations U , a
budget T , and a cost function c : Bi 7→ R.

maximize
B

acc

(
model

( ⋃
Bi∈B

Bi ∪ U

)
,X , y

)
subject to c(B) ≤ T

This optimization problem only is of theoretical value,
for two reasons. First, calculating acc requires access
to ground truth labels. Since the very objective of
active learning is to obtain these labels, one cannot solve
this optimization problem directly. Instead, one must
estimate the value of annotating a batch by a utility
function u that is independent of a ground truth. One
can interpret u as a proxy, i.e., a high utility value of
a batch is expected to improve classification accuracy.
An important property of u is that it depends on all
batches that have already been annotated. This is
because annotated batches provide information on the
classification problem that the batch selection method
in turn can use when selecting future batches. So
the optimal sequence of batches is the one with the
maximum cumulative utility, i.e.,

∑l
i=1 u(Bi|

⋃i−1
j=1Bj).

Second, the cost function is difficult to estimate.
On the one hand, the different costs depend on each
other. For instance, humans may idle during classifier
retraining, but this only is cost-relevant when they
cannot resort to some intermediary tasks. On the other
hand, annotation costs may vary over time, e.g., because
of the complexity of the query [27, 35] or because
humans become more experienced with annotating.
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While this optimization problem is theoretical, it
is important to state it, to specify the goal of batch
active learning. The problem is a basis for deriving
another problem that one can solve in practice. Existing
literature omits this step and does batch selection for
each iteration of active learning independently.

2.2 A Relaxed Model A simplification is to relax
the budget constraint, as follows. First, one only re-
stricts the number of annotations. So the constraint
becomes |

⋃l
i=1Bi| ≤ T, T ∈ N. The second simplifica-

tion is to include the cost as independent and commen-
surable terms cs (select), ca (annotate) and ct (train) in
the objective function. This may require to normalize
cost and utility terms. This gives

maximize
B

l∑
i=1

u(Bi|
i−1⋃
j=1

Bj)−cs(Bi)−ca(Bi)−ct(Bi)

subject to |
l⋃

i=1

Bi| ≤ T, T ∈ N, B0 = ∅.

Obtaining a solution to this relaxed problem still is dif-
ficult. Namely, as explained earlier, the utility of Bi

depends on all previous batches. But the actual an-
notation of these batches is not available at the time of
optimization. At first sight, a remedy would be to calcu-
late the expected utility based on simulating all possible
outcomes (inlier or outlier), for all batches. However,
the state space to consider is P(X × {inlier, outlier})l.
Traversing this space is prohibitive for a reasonably
large number of observations, since it requires to retrain
the classifier in each state.

2.3 A Practical Model To make solving the opti-
mization problem feasible, one can use an additional
simplification. Instead of optimizing for all batches
(Bi, . . . , Bl), the optimization variable only is the cur-
rent batch Bi, after (B1, . . . , Bi−1) have already been
annotated. This allows to separate the problem into
two nested problems. The inner one is to find a good
batch for a given batch size k. For this inner problem,
only annotation costs are relevant. The reason is that
classifier retraining as well as the search for a batch are
the same for all batch candidates of size k. The outer
problem is to find an optimal k. Formally:

max
k



 max
Bi∈P=k(U)

u(Bi|
i−1⋃
j=1

Bj)−
∑
x∈Bi

ca(x,Bi)︸ ︷︷ ︸
inner problem


−ct(k)− cs ·

(
|U|
k

)]
· T
k
.

Here, ct depends on k if the classifier is incremental,
i.e., re-trained k times. Further, there are

(|U|
k

)
possible

batches of size k to consider. The last term T
k is a

technical constraint to adhere to the budget restriction.
It implicitly assumes that k is fix for all batches, and
that k ∈ {j ∈ N| (∃i ∈ N)[i · j = T ]}. However, this
restriction is not crucial. In practice, one can repeat
the optimization after the first batch is annotated, with
the remaining budget T ′ = T − k. The nested problem
now gives way to model the cost terms as follows.

Classifier training: There is an essential differ-
ence between incremental and non-incremental classifier
training. If a classifier features dynamic updates, ct lin-
early depends on k. Otherwise, ct is constant, i.e., there
only occurs one full retraining per batch. However, ct
is likely to be much higher for a full retraining than in
the incremental case.

Batch Selection: cs requires to calculate the utility
for each possible batch. Thus, cs is multiplied with the
number of possible batches of size k.

Annotation: The costs of annotation are specific
for each observation and may depend on the batch [27,
35]. Further, observations may be easier to annotate in
sufficiently large batches [27]. However, a very common
simplification is to assume identical annotation costs for
all observations independently of the batch size [8]. In
this case, ca(·) reduces to c̄a ·k and becomes part of the
outer problem, since it only depends on k.

With these simplifications, the inner problem de-
pends solely on u. This is convenient, since it allows to
consider utility calculation and cost estimation indepen-
dently. Put differently, the inner problem, i.e., finding
a batch of size k with maximal utility, can be studied
independently of any cost function. So the remaining
problem to solve under the given simplifications is to
find a batch of size k given already annotated observa-
tions L by evaluating a given utility function u. One
can then vary k and u to find good batch sizes and a
suitable utility function.

3 Method

In this section, we propose different batch strategies
for one-class active learning. First, we discuss different
criteria to measure batch utility. Then we present batch
strategies to select a batch based on these criteria.

3.1 Batch Utility Intuitively, a utility function u
quantifies the expected benefit of annotating one or
more observations with respect to classification accu-
racy. In the sequential case, u is a function useq :X → R,
i.e., it assigns a utility per observation. For batch se-
lection, the function is of type u : P(X ) → R. So u
quantifies the utility of a set. This allows to consider

Copyright c© 2020
Copyright for this paper is retained by authors



inter-observation relationships. For instance, annotat-
ing similar observations may have information overlap,
and having them in one batch can be suboptimal. So u
typically considers three criteria: informativeness, rep-
resentativeness, and diversity [28]. In the following, we
elaborate on these criteria, review different possibili-
ties to implement them with one-class classifiers and
describe our choice for this current article. We focus on
general ways to quantify these criteria and do not con-
sider application-specific ones, like remote sensing [30]
or document relevance [39].

3.1.1 Informativeness Informativeness is a func-
tion τ(x) that quantifies how much a classifier is ex-
pected to benefit from knowing the label of a single
observation x ∈ X . There are several categories of in-
formativeness functions, and many of them have been
proposed explicitly for one-class classification [33]. In
general, one can distinguish between data-based and
model-based informativeness. Data-based informative-
ness solely depends on L and U . An example is to
attribute high informativeness to observations where
the distribution of the class probability has a high en-
tropy [13]. Model-based informativeness depends on a
trained classifier. One example is the decision-boundary
strategy, where observations are more informative the
closer they are to the decision boundary. There also are
hybrid strategies that combine both aspects [15, 40].

Our choice: Based on the experimental evaluation
in [33], we choose two model-based functions. Let f(x)
be the decision function of a one-class classifier, which
returns f(xi) > 0 for outliers and ≤ 0 for inliers. The
first function is the decision-boundary strategy τDB =
−|f(x)|, which gives high informativeness to regions
of high classification uncertainty. The second function
is τHC = f(x), which prefers observations which are
predicted to be an outlier with high confidence [1].

3.1.2 Representativeness Representativeness is a
function rep(x) that quantifies how well an observation
represents the underlying data set, and observations do-
ing this well are preferred. However, there are different
interpretations of representativeness. An observation
can be representative if it lies in a dense area of the data
distribution. This can be quantified by kernel density
estimation [18] or by calculating the average distance
to the k-nearest neighbors [20, 41]. A different, im-
plicit, approach is to cluster data and select the cluster
medoids as representative observations [10, 29, 39]. Fi-
nally, some approaches quantify representativeness for
a batch [7, 9, 11, 37, 38]. They use maximum mean dis-
crepancy (MMD) to measure how well the batch follows
the full data distribution.

Literature has proposed strategies that use a com-
bined notion of representativeness and informativeness
for sequential query selection, e.g., a linear combina-
tion of the distance to the decision boundary and to
the nearest neighbors [40]. Whenever such a sequen-
tial strategy is applicable in the following, we make this
clear by writing useq instead of τ or rep.

Our choice: In our article, we quantify representa-
tiveness using kernel density estimation. However, we
also present two clustering approaches that choose rep-
resentative queries implicitly, see Section 3.2.3.

3.1.3 Diversity While the first two criteria are de-
fined for individual observations, the diversity criterion
is for batches. Intuitively, a batch is diverse if its obser-
vations are dissimilar to each other. High diversity of a
batch is good, since dissimilar observations are expected
to have little information overlap. There are several
ways to enforce diversity either implicitly or explicitly.
One explicit method is to maximize pair-wise distances,
e.g., in the data or kernel space [3, 7]. Cluster-based
strategies consider diversity implicitly, since they select
observations from different clusters, which is likely to
yield a diverse batch.

Our choice: We follow previous work to quan-
tify the diversity div of a batch B as the min-
imum pair-wise distance d of two observations
div(B) = min

xi,xj∈B
d(xi, xj) [3, 6, 20]. We use two

distance functions. The first one is the Euclidean
distance dED in the data space. The second one is a
distance in the reproducing kernel Hilbert space of a
kernel-based classifier dAK = − |cos(∠(φ(xi), φ(xj)))|.
Intuitively, dAK is proportional to the angle of two
observations in the kernel space [3].

A key challenge is to combine these so-called batch
criteria [28] into a single utility measure. Before ad-
dressing this, we discuss some theoretical properties of
the criteria in the context of one-class classification for
outlier detection. First, with outlier detection, a large
share of the data space is sparse. Given such a spar-
sity, diversity may not be useful. This is because it is
likely to include observations from sparse regions, which
only provide little information for the classifier. Sec-
ond, with outlier detection, representativeness may not
be very useful either. The reason is that it focuses on
regions of high density, which are likely to contain only
observations from the inlier class. The following exam-
ple illustrates these properties.

Example 3.1. Figure 1 shows a 2-dim synthetic data
set with inliers (white circles) and outliers (gray
squares). We fit a one-class classifier, considering all
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(a) Informativeness (b) Representativeness (c) Diversity

Figure 1: Comparison of batch selection based on different criteria.

observations as unlabeled; the decision boundary is the
black line. We then compute batches of 10 observations
for each criterion independently (red diamonds).

As expected, representativeness selects the observa-
tions where the data density is high. The resulting batch
contains a bulk of observations in a small region, with
high similarity. With diversity, the observations in the
batch are well spread. Yet some queries lie in very
sparse regions where feedback might only influence the
classification of very few observations. Informativeness
with τDB selects the 10 observations closest to the deci-
sion boundary, see Figure 1a. Although the batch does
not cover the full data space, the visual inspection shows
that the observations selected are diverse and represen-
tative, without explicit consideration of these criteria.

Given this, we propose the following hypothesis.

Hypothesis 3.1. (Batch Criteria) With one-class
outlier detection, representativeness and diversity cri-
teria are not useful for batch selection.

Our experiments on real world data will confirm this
hypothesis. The hypothesis also holds for weighted
combinations of the criteria, see Section 4.

3.2 Batch strategies In general, many ways to com-
bine batch criteria to select a batch are conceivable.
Some strategies have been proposed for binary and
multi-class settings [9, 38]. We only are aware of one
summary for multi-label data [24] which requires other
approaches than our one-class setting. Further, there
does not seem to be any strategy specific to one-class
classification. It is unclear whether existing multi-class
approaches transfer to the one-class setting. In this
section, we therefore propose different batch selection
strategies for one-class active learning. We classify them
into four categories: baseline, iterative, partitioning,
and filtering strategies.

3.2.1 Baselines As one baseline, we propose random
batch, which samples k unlabeled observations indepen-

Algorithm 1: Iterative Strategy

Input : τ(x), rep(x), div(B), λinf, λrep, λdiv, k
Output: B

B =

{
arg max

xi∈U

(
λinf · τ(xi) + λrep · rep(xi)

)}
for i← 2 . . . k do

x∗i = arg max
xi∈U\B

(
λinf · τ(xi) + λrep · rep(xi) +

λdiv · div(B ∪ {xi})
)

B = B ∪
{
x∗i

}
end

dent of any criteria.
The second baseline is TopK, a straightforward ex-

tension of the sequential mode. The idea is to calculate
utility for each observation independently, with a given
useq, and then choose the top k observations.

3.2.2 Iterative Strategy Iterative strategies are
heuristics to find a batch that maximizes the weighted
sum of batch criteria. Formally, this is

(3.1) u(B) =
∑
x∈B

λinf ·τ(x)+λrep ·rep(x)+λdiv ·div(B),

with weight parameters λinf, λrep, λdiv ∈ R to specify
the importance of the three criteria. A fundamental
difficulty with this approach is that one must calculate
u for

(|U|
k

)
candidate batches. So to find a good solution,

one can instead build the batch in a greedy way [17, 39].
This is, the observation that maximizes the weighted
sum of the three criteria is added to the batch in each
iteration until the batch contains k observations; see
Algorithm 1. If τ , rep and div are submodular, the
greedy solution has a lower bound of (1 − 1

e ) · u(B∗),
relative to the optimal utility u(B∗) [17].

3.2.3 Partitioning Strategies A different approach
is to put emphasis on diversity. The idea is to first divide
the data set into k random or disjoint subsets and then
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Algorithm 2: Cluster-TopK Strategy

Input : τ(x), k, m ≥ k
Output: B

M = top m observations from U ranked by τ(x)
C = KMedoidsClustering(M, k)
B = ∅
foreach cluster C ← C do

xC = medoid of C
B = B ∪

{
xC

}
end

Algorithm 3: Ensemble Strategy

Input : X1, . . . ,Xk, C1, . . . , Ck, useq

Output: B

B = ∅
foreach sample Xi with classifier Ci do

x∗i = arg max
xi∈Xi,xi /∈B

useq(xi)

B = B ∪
{
x∗i

}
end

Algorithm 4: Filter Similar Strategy

Input : τ(x), d(xi, xj), k
Output: B

B = U
while |B| > k do

a, b = arg min
xi,xj∈B

d(xi, xj)

B = B \
{

arg min
x∈{a,b}

τ(x)
}

end

select one observation from each subset. To this end,
two common approaches are to cluster data [10, 22,
28, 29, 39] and to train several classifiers on different
samples of the data as an ensemble [22].

One cluster strategy partitions U into k clusters, for
instance by k-medoids clustering. The medoids of each
cluster then form the batch. Cluster only considers rep-
resentativeness and diversity, but not informativeness.

An extension is cluster-TopK, see Algorithm 2. The
idea is to include informativeness to filter unlabeled
observations. This is, cluster-TopK selects the m
highest ranked unlabeled observations according to τ(x)
where |U| � m � k and clusters them into k clusters.
As before, the medoids of each cluster are the batch B.

An ensemble strategy randomly samples k subsets
of size |X |/k, see Algorithm 3. For each subset,
the strategy trains a classifier and selects the best
observation according to a given useq.

Algorithm 5: Filter Hierarchical Strategy

Input : τ(x), rep(x), div(B), k
Output: B

M = 4 · k highest ranked x in U by rep(x)
M = 2 · k highest ranked x in M by τ(x)
B = {select highest ranked xi in M by τ(x)}
for i← 2 . . . k do

x∗i = arg max
xi∈M\B

div(B ∪ {xi})

B = B ∪
{
x∗i

}
end

3.2.4 Filtering Strategies Finally, there are filter
strategies which proceed top-down to select a batch.
The idea is to start with all unlabeled observations and
step-wise apply filter criteria until only k observations
are left. We see two types of filter strategies.

The filter similar strategy searches for the two
most similar observations and removes the one with less
informativeness [25], see Algorithm 4.

The filter hierarchical strategy filters for each of
the three criteria, step by step [19], see Algorithm 5.
This is, filter hierarchical first selects the 4 · k most
representative observations and from these the 2 · k
most informative ones. From them, it greedily selects
the batch, similarly to the iterative strategy.

All batch strategies presented have the same ob-
jective, increasing classification accuracy. But the real-
izations differ significantly. Based on plausibility argu-
ments, there is no single, superior approach. While liter-
ature has proposed strategies for the multi-class setting,
it is unclear which conclusions transfer to the one-class
setting. We now derive two hypotheses. If they hold,
they help with the selection of a suitable approach in
the one-class setting.

The first hypothesis extends Hypothesis 3.1 to
batch strategies.

Hypothesis 3.2. (Batch Selection Strategy)
With one-class outlier detection, a strategy solely
based on informativeness is expected to outperform
more sophisticated strategies that explicitly incorporate
representativeness and diversity.

Based on this hypothesis, we expect TopK to perform
well, compared to more sophisticated approaches.

The second hypothesis concerns the cost trade-offs,
see Section 2. Batch selection strategies have different
complexity. When assuming constant evaluation costs
for useq and τ , we derive the following complexities:
constant for random batches, O(n) for TopK, O(kn) for
Iterative, approximately O(kndi) with dimensionality
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d and a number i of clustering steps for cluster-based,
O(k (n/k)

2
) for Ensemble where k classifiers are learned

on n/k large partitions, O(k + n2) for Filter Similar
where n2 is the complexity of computing the similarity
matrix, andO(kn) for Filter Hierarchical. With this, we
expect the runtime cost of the batch selection strategies
to be low compared to the classifier training, which
requires solving a quadratic optimization problem for
standard one-class classifiers, like SVDDneg. All this
motivates the following hypothesis.

Hypothesis 3.3. (Cost Trade-Offs) The classifier
cost ct dominates the batch selection costs cs during
active learning with batches in most cases.

When this hypothesis holds, batch selection costs cs
are not relevant, and we can simplify the optimization
model, see Section 2.3. An exception is Ensemble, which
requires to train k classifiers on n/k partitions of the
data set. Our experiments on real world data confirm
both hypotheses, see Section 4.

4 Experiments

We now present our empirical findings and discuss them
in the context of the three hypotheses introduced earlier.
Our implementation, raw results, and notebooks are
available at https://www.ipd.kit.edu/bocal.

4.1 Setup We use 21 standard data sets for outlier
detection [5]. Each data set comes in three resamples,
with an outlier ratio of 5%, and up to 1000 observations.

Classifier: Our base classifier is SVDDneg [32] with
the Gaussian kernel, tuned as proposed in [36], and the
cost parameter set as proposed in [32]. We also use the
obtained kernel parameter for kernel density estimation
and for the kernel angle distance dAK.

Active Learning: We choose τDB as the informative-
ness criterion, since it has yielded the best results in pre-
liminary experiments of ours. For diversity, we use dAK

unless stated differently. We set m = 10k for Cluster-
TopK. We start with no labels, a budget of T = 128 and
evaluate k ∈ {1, 2, 4, 8, 16, 32, 64, 128}.

Evaluation Metrics: We evaluate classification
accuracy with the Matthews Correlation Coefficient
(MCC), which is well suited for imbalanced data. MCC
returns values in [−1, 1]; higher values are better. We
report the end quality (EQ), i.e., the accuracy after the
budget is exhausted, as the median over all data sets.
Our experiments run on an AMD Ryzen Threadripper
2990WX with 64 virtual cores. We measure the total
runtime t and the query selection time ts in seconds.

4.2 Results We first evaluate the usefulness of the
three batch criteria in the one-class setting. We then
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Figure 2: Influence of batch criteria on end quality.

compare the batch strategies presented in Section 3. We
compare all strategies against the sequential mode and
evaluate the sensitivity to varying batch sizes. Finally,
we present runtime measurements and discuss them
with resepect to the trade-offs introduced in Section 2.

Batch Criteria We evaluate the usefulness of
batch criteria by varying the weights of the iterative
strategy. Figure 2 shows the median EQ for the different
combinations with a batch size of k = 4. The EQ is
highest for λrep = 0, as indicated by the red dots on the
bottom line of the triangle. Results with different batch
sizes or τHC as the informativeness criterion are similar.
With dED as diversity, a small value λrep > 0 does not
reduce EQ as much as for dAK but λrep = 0 also results
in the highest EQ. On a per-data-set level, there are
some instances where setting λdiv > 0 has a positive
effect on EQ. However, tuning the weight parameters
per data set is unrealistic. Namely, this would require
a labeled training set. We conclude that a combination
of the three criteria with strictly positive weights does
not increase the model quality in the one-class setting.
Informativeness has a dominating influence on EQ – this
supports Hypothesis 3.1. So λinf = 1, λrep = 0, λdiv = 0
is the best choice, which corresponds to the TopK
strategy. This is a strong difference to the balanced
and multi-class domain [20].

Batch Strategies Next, we compare the perfor-
mance of the different batch strategies proposed in this
article. See Table 1 for the median EQ. TopK outper-
forms all other strategies. Up to a batch size of k = 8,
the EQ is 0.81 and hence equal to the sequential strat-
egy. Up to k = 64, the accuracy loss is small com-
pared to the sequential strategy. The more complex
partitioning or filtering strategies generally yield results
similar to or worse than TopK. This supports Hypoth-
esis 3.2. These results are again contrary to multi-class
batch strategies, where partitioning and iterative strate-
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k rand-B TopK Cluster ClusterTopK Ensemble FilterSim FilterHrch Sequential

1 0.49 0.81 0.00 0.70 0.81 0.70 0.00 0.81
2 0.43 0.81 0.28 0.81 0.81 0.81 0.64 -
4 0.49 0.81 0.35 0.79 0.81 0.79 0.78 -
8 0.49 0.81 0.54 0.76 0.81 0.78 0.79 -
16 0.49 0.80 0.57 0.68 0.80 0.78 0.77 -

32 0.49 0.79 0.60 0.62 † 0.75 0.75 -

64 0.49 0.79 0.57 0.60 † 0.70 0.74 -

128 0.49 0.75 0.57 0.57 † 0.70 0.71 -

Mean Rank‡ 5.10 1.99 4.72 3.42 - 2.79 2.98 -

Table 1: Median EQ over all data sets in comparison to a sequential baseline. †Optimization problem infeasible
for k > 16. ‡ Rank calculated for each data set and batch size. Sequential and ensemble strategy are excluded.

k rand-B TopK Cluster ClusterTopK Ensemble FilterSim FilterHrch Sequential

1 129s/0.1% 158s/6.7% 179s/1.9% 213s/6.3% 344s/49.2% 180s/12.4% 158s/13.4% 178s/5.9%
2 70s/0.1% 71s/6.2% 99s/1.8% 79s/5.4% 117s/34.7% 99s/10.3% 93s/7.5% -
4 41s/0.0% 45s/5.3% 58s/0.3% 44s/5.9% 53s/34.2% 55s/11.0% 40s/9.1% -
8 18s/0.1% 24s/5.1% 23s/0.1% 19s/7.1% 35s/45.9% 22s/11.0% 23s/7.4% -

16 10s/0.0% 12s/5.0% 13s/0.2% 14s/5.8% 25s/59.6% 14s/10.4% 12s/6.6% -
32 6s/0.0% 5s/5.4% 7s/0.1% 6s/6.1% - 8s/13.4% 6s/8.8% -
64 3s/0.0% 4s/3.5% 3s/0.3% 4s/4.7% - 4s/11.0% 4s/5.6% -

128 2s/0.0% 2s/3.6% 3s/0.4% 3s/2.9% - 3s/7.8% 3s/6.4% -

Table 2: Median experiment run time t in seconds and ratio t/ts of time spent for query selection in %.

gies outperform TopK [29, 39], and where end quality
increases with the batch size in some cases [24].

Trade-offs Table 2 shows the t and ts for varying
batch sizes. In all cases, t decreases considerably with
increasing batch size. As expected, batch selection
makes up only a fraction of the overall runtime, except
for ensemble. The total experiment run time is roughly
proportional to 1/k. The dominating factor is the
number of classifier trainings T/k.

Overall, the runtime costs of classifier training are
two magnitudes higher than the ones of batch selection,
i.e., ct � cs. This confirms Hypothesis 3.3. We con-
clude that, in a one-class setting, computational costs
can decrease by a factor of 10 with TopK without sacri-
ficing accuracy, compared to the sequential case. More
sophisticated batch selection strategies do not improve
results in the one-class setting (Q2). So the sweet spot
between active learning costs and classification accu-
racy is to use TopK batches with decision boundary
informativeness (Q1) and setting k to a value in [8, 16]
(Q3). The sweet spot relies on the assumption that
annotation costs are fix, see Section 2. However, our
conclusions also hold if annotation costs decrease with
the batch size until k = 8. Namely, increasing the batch
size does not affect classification accuracy.

5 Conclusions

Batch active learning gives way to annotating obser-
vations in parallel when classifier retraining is slow, or
experimental changeover costs are high. To utilize com-
putational and annotation resources most efficiently, we
strive to find a sweet spot between the costs of one-class
batch active learning and the improvement in classifica-
tion accuracy. To this end, we present a formal frame-
work for batch query selection. Based on it, we pro-
pose several batch selection methods tailored towards
one-class classification. Our general considerations and
experiments show that selecting the top-k observations
according to a sequential query strategy is a dominant
choice, compared to more sophisticated strategies. This
is a finding which is different from the situations in
multi-class and binary active learning. Batch active
learning even achieves the classification accuracy of a
sequential strategy, while reducing computational costs
by an order of magnitude.
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