
Efficient Interval-focused Similarity Search
under Dynamic Time Warping

Jens Willkomm
Karlsruhe Institute of
Technology (KIT)

jens.willkomm@kit.edu

Janek Bettinger
Karlsruhe Institute of
Technology (KIT)

uuecs@student.kit.edu

Martin Schäler
Karlsruhe Institute of
Technology (KIT)

martin.schaeler@kit.edu

Klemens Böhm
Karlsruhe Institute of
Technology (KIT)

klemens.boehm@kit.edu

ABSTRACT

Similarity search on time series from large temporal text corpora

is interesting in many settings. Our use case is the Google Books

Ngram corpus and historians interested in the changes of word

frequencies over time. More specifically, users are interested in

similarity search in a specific period of time, aka. interval-focused

similarity search. Related work formalizes interval-focused simi-

larity search, but the sparsely existing approaches are limited to

metric distance measures, like the Euclidean distance. Most other

approaches in this area, that address the usage of warping distance

measures, focus on whole matching similarity search. In this work,

we present a novel search tree that uses so-called time series en-

velopes to group objects. To speed up the tree traversal, our search

tree approximates the envelopes based on the node height, i. e.,

envelopes are tighter further down in the tree. We combine this

with various time series pruning techniques, mainly to reduce the

number of expensive distance computations. Our experimental

evaluation shows that this combination is worthwhile and indeed

decisive for a significant speedup, compared to less sophisticated

adaptations of known approaches. We, first, show that a combina-

tion of both pruning groups of time series and single time series

outperforms the usage of a single pruning technique. Secondly, we

compare the wall-clock run times of our data structure to exist-

ing approaches and determine a significant speed up for focused-

interval similarity search queries on large temporal data sets, like

the Google Books Ngram corpus.

CCS CONCEPTS

· Information systems→ Nearest-neighbor search.

KEYWORDS

data structure, time series, similarity search, dynamic time warping

ACM Reference Format:

Jens Willkomm, Janek Bettinger, Martin Schäler, and Klemens Böhm. 2019.

Efficient Interval-focused Similarity Search under Dynamic Time Warping.

In 16th International Symposium on Spatial and Temporal Databases (SSTD

’19), August 19ś21, 2019, Vienna, Austria.ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3340964.3340969

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSTD ’19, August 19ś21, 2019, Vienna, Austria

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6280-1/19/08. . . $15.00
https://doi.org/10.1145/3340964.3340969

1 INTRODUCTION

Knowledge discovery features methods to support users from var-

ious disciplines to find information in large amounts of data. An

example of users with a particular interest in temporal data are

historians, e. g., to investigate the history of concepts or words.

Our running example comes from this domain, even though our

techniques are not limited to this field. A large real-world data set

relevant to historians is the Google Books Ngram corpus [22]. It is

a collection of words and their usage frequency in new books from

a specific year. This frequency for every word is a time series over

more than 200 years. Examples 1.1 and 1.2 describe information

needs of historians regarding the Google Books Ngram corpus.

Example 1.1. Historians, conceptual historians in particular, study

the origin of words and their meaning changes over time. They consider

the usage frequencies of words over time as well as similarities of these

frequencies [5, 25, 28]. For instance, to examine the social change

coming and going with a dictatorship, a historian might question

for words that rise and fall similarly to the word regime. Since a

social system needs some time to adjust to a change of the government

form, interesting words might also rise and fall delayed to regime.

Next, suppose that the interest of the historian is confined to the time

interval between the two World Wars or the time interval from the

end of World War 1 to the end of World War 2. In general, historians

may want to look at various different time intervals in their studies.

Example 1.1 illustrates the following general case: The infor-

mation need is nearest neighbor search on time series confined

to arbitrary intervals. This kind of information need (which has

received little attention in the database literature so far) is called

interval-focused similarity search [4]. Research has paid much more

attention to kNN queries over the entire time interval [1, 10], which

is called whole matching. Asfalg et al. [4] formalize the problem of

interval-focused similarity search.

Example 1.2. A historian examines financial effects of the two

WorldWars. For this purpose, he searches for words similar to the word

battleship in the time interval from 1910 to 1960. When searching

in the Google Books Ngram data, the result set contains the word

reparations, whose shape is similar to the one of battleship with an

offset of approximately 5 years. See Figure 1.

Example 1.2 is an example of a meaningful kNN query on the

Google Books Ngram corpus using dynamic time warping (DTW)

as distance measure. The DTW distance measure allows warping,

e. g., a temporal delay between the two time series.

In this work, we address the problem of efficiently answering

interval-focused kNN queries on many time series. Here, a kNN

search returns k time series with the smallest distance to the query

SSTD ’19, August 19ś21, 2019, Vienna, Austria Jens Willkomm, Janek Bettinger, Martin Schäler, and Klemens Böhm

time series regarding a time series distance measure. Its generalized

version, the interval-focused kNN search kNN(k,Q, [i, j]), restricts

the distance measure to a time range [i, j] that the user specifies

as part of the query. In this article, we focus on DTW as distance

measure. However, this does not imposes any limitation, as one

can easily replace the DTW measure with the Euclidean distance

or any other Lp norm without violating any lower bound used

subsequently. This is because these distances are special cases of

DTW, i. e., the DTW distance without any alignment.

The literature gives only little attention to interval-focused simi-

larity search. However, an extensive study Ð of whole matching

similarity searchÐhas resulted in two fundamental techniques. One

common technique uses a spatial data structure, like an R- or R*-tree,

to index time series using minimal bounding boxes [2, 3, 10, 11, 31].

This only works for metric distances, like the Euclidean distance,

but does not work for semimetric distances that miss the triangle

inequality, like the DTW distance [33]. In contrast, there are other

techniques that use lower bounds for the DTW distance to prune

either single time series [15, 16] or groups of time series [18, 24].

These techniques sequentially scan the data element-wise or group-

wise. We refer to the first one as lower bound and the second one as

partitioning. To sum up, most related work dos not support DTW

as distance measure, considers every element, or does not support

interval-focused queries. This indicates that efficiently answering

interval-focused kNN queries is difficult.

To efficiently answer kNN queries on time series, like the one

shown in Example 1.1, one must cope with the following challenges.

• Handling Interval-focused Queries: Since a query can refer to

an arbitrary time interval, i. e., having an arbitrary start and

end point, an index has to hold relevant information, like a

lower bound estimation, for every possible time interval.

• Efficient Pruning: A data structure needs to organize the

data in a way so that the search needs to only deal with a

share of the elements. This reduces the number of distance

computations.

• High Dimensionality: Time series are high dimensional ob-

jects. This typically leads to high tree-traversal costs.

In this article, we present the Time Series Envelopes Index Tree

(TSEIT)1, a novel tree-based index structure to efficiently evaluate

interval-focused kNN queries. TSEIT is a dynamic data structure

that supports operations to insert, query and delete time series. Our

first contribution is the notion of hierarchically organized envelopes

that form the basis of our tree structure TSEIT. The leaf nodes stores

the time series, and the inner nodes stores envelopes that allow

TSEIT to prune sub-trees during query evaluation. Our second

contribution is a tree height based envelope approximation. It sets

the envelope approximation degree based on the node’s height.

This speeds up the tree traversal near the root node and at the

same time yields strong lower bounds near the leaf nodes. Our

third contribution is a lower bound for arbitrary time intervals

between an envelope and a time series. The lower bound holds

for envelopes and time series in full dimensionality as well as for

their piecewise aggregate approximation (PAA) representation. In

Section 4, we describe the details of our data structure. We compare

our approach against state-of-the-art methods for whole matching

1TSEIT is pronounced [ţaI
“
t], like the German word Zeit for time

1910 1920 1930 1940 1950 1960
Year

0.000000

0.000001

0.000002

0.000003

0.000004

0.000005

Fr
eq

ue
nc
y

reparations
battleship

Figure 1: DTW’s non-linear alignments between the usage

frequency of thewords łreparationsž and łbattleshipž in the

time interval [1910, 1960].

similarity search that we have modified to replace the whole time

series with the queried interval during query time. Section 5 shows

the superiority of our approach. TSEIT reduces the query execution

time for a data set of 5 million time series by up to 50 %.

2 RELATED WORK

This section describes related work in the field of kNN search for

time series. First, we discern interval-focused kNN search from

other similarity search problems. Second, we present three ideas

used in related work to accelerate time series similarity search. Fi-

nally, we explain our selection of reference points for the evaluation

later in the paper.

2.1 Types of Time Series kNN Search

Categories of related work in the field of time series kNN search are

whole matching, subsequence matching and interval-focused match-

ing [4]. A whole matching query kNN(k,Q) returns the k time

series with the smallest distance to the query time series Q over

the full time period, i. e., the full time series length. There are vari-

ous approaches for whole matching kNN search [6, 7, 15, 17, 24].

Whole matching is different from our problem, as one would have

to, say, build a whole matching kNN index for each window [i, j].

A subsequence matching query kNN(ϵ,M) returns all time series

containing a time series motif M , at any point in time. A time se-

ries motif is a pattern for time series [8]. Parameter ϵ defines the

maximal deviation of the subsequence from the motif. Again, there

are many approaches [9, 10, 12, 19, 21, 23, 27], and again, the prob-

lem is different from ours. An interval-focused matching query

kNN(k,Q, [i, j]) returns the k time series most similar to the query

time seriesQ where only the similarity in the range [i, j]matters [4].

This is the problem we address in this work.

2.2 Ideas to Accelerate Similarity Search

Due to the scarcity of work on interval-focused kNN, we have ana-

lyzed existing approaches from whole matching and subsequence

matching and now review three ideas to accelerate time series kNN

queries:

Spatial Access Methods A common technique to speed up

similarity search for time series is to index time series with

Efficient Interval-focused Similarity Search under Dynamic Time Warping SSTD ’19, August 19ś21, 2019, Vienna, Austria

a spatial search tree, e. g., an R-tree or one of its variants [1ś

3, 10ś12, 15, 20, 31]. Vanilla spatial search trees are not ideal

to handle time series for the following reasons. First, spatial

search trees poorly handle high dimensional spaces [32, 34].

Second, the usage of bounding rectangles restricts an R-tree

to metric distance measures [13], like the Euclidean distance.

Third, spanning bounding rectangles across time series data

points leads to hypercubes of vary large volumes and thus

insufficiently separate the elements. To avoid the problem

of high dimensional space indexing, some approaches ex-

tract time series features, e. g., wavelet coefficients, and index

the feature vectors instead of the time series using a spatial

tree [6, 7, 14, 16]. However, time series feature extraction ap-

proaches are unusable for interval-focused similarity search,

since they usually remove the time domain.

Data Partitioning When partitioning similar time series into

groups [24], a query starts with sequentially scanning the

group most similar to the query. It continues scanning the

groups in descending order of their similarity to the query

and stops when the remaining groups are less similar than

the best ones so far. This approach can achieve a high prun-

ing rate if the time series groups have significantly different

shapes. However, the number of partitions tends to grow

linearly with the time series. This makes this approach inef-

ficient for large data sets.

Lower Bounding Cascade Various approaches improve a se-

quential scan by checking a lower bound or a cascade of

lower bounds before computing the real distance [26, 30].

This works best for long time series, as it saves time by prun-

ing time series without computing its real distance. However,

since it relies on a sequential scan, it has to consider every

time series.

Based on this analysis, we conclude that any existing approach

that can (also) be used for interval-focused kNN only uses one of the

above ideas. Thus, we propose the first approach that hierarchically

partitions the time series and uses lower bounds to speed up the

scanning of candidate time series, and we study its performance.

2.3 Reference Points

In the experiments, our primary objective is to investigate whether

one of the above ideas is dominant, i. e., the main reason for perfor-

mance increases, or whether the combination of ideas is required.

To this end, we rely on a sequential scan as baseline. Further, we

use two state-of-the-art approaches: one applying only partitioning,

named TWIST [24], and one using only lower bounds, named UCR

Suite Cascading Lower Bounds [26]. As we describe in Section 4.4,

our own approach generalizes both approaches, i. e., it can also be

configured to mimic them.

3 BACKGROUND AND NOTATIONS

Based on the relatedwork, this section describes some fundamentals

and introduces our notation.

3.1 Time Series

A time series C is a sequence ⟨c1, . . . , ci , . . . , c j , . . . , cn⟩ of length

n > 0. C[i, j] denotes a subsequence of time series C beginning at

1870 1880 1890 1900 1910 1920 1930 1940 1950
Year

0.00045

0.00050

0.00055

0.00060

0.00065

0.00070

Fr
eq

ue
nc

y

time series
envelope
PAA envelope

Figure 2: A set of time series enclosed by an envelope.

element ci and ending at element c j . S is a set of time series that

contains |S | = N time series. All time series of set S have the same

length n. The Google Ngram corpus, our running example, has this

property.

3.2 Interval-focused k-Nearest Neighbor

Querying for the k nearest neighbors of a query time series Q

results in a set R ⊆ S of min(k, |S |) time series so that for any

two time series CR ∈ R and CS ∈ S \ R it holds that d(Q,CR) ≤

d(Q,CS) regarding a distance measured . This kNN variant is whole-

matching kNN. A generalization is the interval-focused kNN query,

defined as kNN(k,Q, [i, j]) [4]. The interval-focused kNN query

only considers the interval [i, j] within time series Q and C to

determine the distance. Obviously, kNN(k,Q, [1,n]) = kNN(k,Q).

3.3 Dynamic Time Warping Distance

The result of a kNN query depends on the distance measure d . In

this work, we focus on the dynamic time warping distance (DTW).

Equation 2 shows the definition of distance d(Q,C) between two

time series Q and C of lengthm and n using DTW [29].

DTW (Q,C) =
p
√
D(m,n) (1)

D(i, j) = |qi − c j |
p
+min




D(i − 1, j − 1)

D(i − 1, j)

D(i, j − 1)

(2)

where D(0, 0) = 0 and D(i, 0) = D(0, j) = ∞ for 1 ≤ i ≤ m and

1 ≤ j ≤ n. Figure 1 illustrates DTW’s non-linear alignments for the

usage frequencies of the words łreparationsž and łbattleshipž in

the Google Ngram corpus.

3.4 Lower Bound for a Group of Time Series

TSEIT organizes its time series in groups. This section says how we

represent time series groups and how to compute a lower bound on

a time series group. We describe (1) the idea of envelopes and define

them, (2) the segmentation of envelopes, and (3) a lower bound

distance for both an envelope and segmented envelope.

3.4.1 Time Series Envelope. An envelope E = ⟨e1, . . . , ei , . . . , en⟩

represents a set C of time series C = ⟨c1, . . . , ci , . . . , cn⟩. Enve-

lope E consists of elements ei = ⟨uei , lei ⟩ representing a so-called

SSTD ’19, August 19ś21, 2019, Vienna, Austria Jens Willkomm, Janek Bettinger, Martin Schäler, and Klemens Böhm

upper sequence uei = maxC ∈C(ci) and a lower sequence lei =

minC ∈C(ci) [15]. Figure 2 illustrates the idea.

3.4.2 Piecewise Aggregate Approximation. A piecewise aggregate

approximation (PAA) reduces the dimensionality of a time series,

i. e., the number of data points [14]. To do so, PAA creates segments

of a fixed size and aggregates all data points of a segment to one

data point, e. g., to the mean, min, or max value. We refer to the

PAA version of time series C with a fixed segment length of T as

CT . The DTW distance for two PAA time series CT and QT is a

lower bound for the DTW distance of the original time series C

and Q [30]. Thus, DTW(CT ,QT) ≤ DTW(C,Q).

3.4.3 Envelope PAA. Since an envelope consists of an upper and

a lower sequence, one can create a PAA version ET of an enve-

lope E. To receive a valid PAA envelope, one must aggregate the

upper sequence to the maximum and the lower sequence to the

minimum [24]. Equation 3 defines a PAA envelope.

ET = ⟨eT1 , . . . , e
T
i , . . . , e

T
t ⟩ (3)

eTi = ⟨ue
T
i , le

T
i ⟩ (4)

ueTi = max(ex , . . . , ey) (5)

leTi = min(ex , . . . , ey) (6)

where x = (i − 1) ·T + 1 is the start of a segment and y = i ·T the

end. Figure 2 illustrates an envelope and its coarse PAA variant.

3.4.4 Group Lower Bound. The lower bound for a group of time

series (LBG) is a lower bound of the DTW distance from a time

series Q to an envelope E, i. e., to all time series that envelope E

encloses [24]. It holds that LBG(Q, E) ≤ argminC ∈C DTW(Q,C).

LBG works as follows. For every point in time i , the data point qi
of time seriesQ can either be inside envelope E, i. e., lei ≤ qi ≤ uei ,

or outside of it, i. e., qi > uei or qi < lei . If data point qi is outside

the envelope, LBG adds the DTW distance from qi to the nearest

envelope border, i. e., either uei or lei . In turn, if data point qi
is inside the envelope, LBG adds a distance of 0 for point i . If

envelope E encloses a time series Q , a lower bound is 0. A proof is

in [24].

LBG is also a valid lower bound on the PAA representations

QT and ET of a time series Q and an envelope E [30]. It holds

that LBG(QT
, ET) ≤ LBG(Q, E). This may lead to a less tight lower

bound, but may speed up its calculation of the lower bound signifi-

cantly.

Equation 7 shows the definition of the LBG lower bound.

LBG(QT
, ET) =

p
√
D(m,n) (7)

D(i, j) = T · Dseд(q
T
i , e

T
j) +min




D(i − 1, j − 1)

D(i − 1, j)

D(i, j − 1)

(8)

Dseд(q
T
i , e

T
j) =




|lqTi − ue
T
j |
p if lqTi > ueTj

|leTj − uq
T
i |

p if leTj > uqTi

0 otherwise

(9)

where D(0, 0) = 0 and D(i, 0) = D(0, j) = ∞ for 1 ≤ i ≤ m and

1 ≤ j ≤ n.

inner node

leaf node leaf node

Figure 3: An example of a Time Series Envelopes Index Tree

with two leaf nodes and a single inner node.

Observe the following properties of LBG. First, a smaller segment

size T usually leads to a tighter lower bound. Second, Equation 7 is

also valid for the LBG calculation on the full dimensionality, i. e.,

segment size T = 1. Third, LBG is also a valid lower bound for the

DTW distance of two time series [30]. In this case, envelope E only

contains a single time series element. On a segment size of T = 1,

LBG leads to the exact DTW distance of two time series. Fourth,

LBG also works for different segment sizes for QT1 and ET2 when

substituting factor T withmin(T1,T2) in Equation 8 [30]. We will

use this property to implement interval-focused queries.

3.5 Cascading Lower Bounds

Rakthanmanon et al. analyze and compare the runtimes and tight-

ness of lower bounds for the DTW distance [26]. To achieve a good

compromise between run time and pruning factor, they propose to

use two lower bounds in a cascade, as follows.

LB_KimFL(Q, C) was published by Kim et at. [16] and modi-

fied by Rakthanmanon et al. [26]. It is the Euclidean distance

for the first (F) and last (L) point of time seriesQ andC , since

these points always have an alignment of 0. Kim’s lower

bound has a run-time complexity of O(1). Thus, it is a very

fast lower bound that removes many time series in spite of

its looseness.

LB_Keogh(Q, C) was published by Keogh et al. [15]. It is the

Euclidean distance between a bounding envelope around

time seriesQ and time seriesC . Its run-time complexity is in

O(n), i. e., depends linearly on the length of the time series.

Thus, Keogh’s lower bound is cheaper than the quadratic

run-time of DTW, but prunes further candidate time series.

Rakthanmanon et al. use max(LB_Keoдh(Q,C), LB_Keoдh(C,Q))

as third step in their lower bound cascade [26], since LB_Keogh is

not commutative, i. e., LB_Keoдh(Q,C) , LB_Keoдh(C,Q).

4 OUR TSEIT APPROACH

In this section, we introduce our novel Time Series Envelopes Index

Tree (TSEIT) data structure. First, we focus on the tree structure

and, second, describe the operations.

Efficient Interval-focused Similarity Search under Dynamic Time Warping SSTD ’19, August 19ś21, 2019, Vienna, Austria

Algorithm 1: query(Q, k, [i, j])

Input: Q← query time series

k← desired number of results

[i, j]← query interval

Data: root← root node of TSEIT

L← a priority queue

R← a sorted list of tuples of ⟨DTW(Q ,C),C ⟩

bsf← the best-so-far distance

Result: A list with k elements having the lowest DTW distance to time
series Q

1 begin
2 L.enqueue(root)

3 while L.has_next() do
4 node← L.next()

5 T← 2node.height /* node’s segment size */

6 if bsf ≤ LBG(QT[i, j], node.ET[i, j]) then
7 break

8 if node.is_leaf_node() then
9 cands← seq_scan(node, Q[i, j], k, bsf)

10 R.insert(cands); R.set_size(k)

11 bsf← max(R.get_distances())

12 else
13 L.enqueue(node.get_child_nodes())

14 return R

4.1 Tree Structure

TSEIT is a search tree that stores time series envelopes in its nodes.

Envelopes seem to be a more suitable representation of time series

groups than rectangles. Figure 3 illustrates a Time Series Envelopes

Index Tree with two leaf nodes and one inner node. TSEIT is a

balanced tree that grows upwards, i. e., toards the root. Every node

stores an envelope that wraps all time series reachable by this node.

TSEIT distinguishes between two types of nodes: leaf nodes and

inner nodes including the root node. Leaf nodes hold envelopes

in full dimensionality, whereas inner nodes store PAA envelopes.

The envelopes of the inner nodes towards the root grow into two

directions: (1) They grow on the "domain axisW: The envelope

encloses the minimum and maximum of its child nodes. (2) They

grow on the time axis, i. e., the PAA segment size increases with

the tree height and thus the envelope dimensionality of higher

nodes decreases. In other words, we start from the root node with

a loose envelope that gets tighter every step downwards the tree

on the domain axis as well as on the time axis. Using envelopes

instead of bounding boxes is our solution to address the problem of

large-volume rectangles discussed in Section 2. Figure 3 illustrates

TSEIT’s envelope-growing behavior. We describe the PAA envelope

of inner nodes in the following.

4.1.1 PAA Envelope of Inner Node. Recall that leaf nodes store

envelopes in full dimensionality. This is equal to a PAA representa-

tion with a segment size of 1. In contrast, inner nodes at the same

height have the same dimensionality. Parent nodes double the PAA

segment size of their children. This is, inner nodes at height 1 have

envelopes with segment size 2, while the nodes one level up have en-

velopes with segment size 4 and so on. Since TSEIT grows upwards

and thus all its child nodes have the same depth, the PAA segment

size T of a node is a function of the node’s height h: T (h) = 2h .

1870 1880 1890 1900 1910 1920
Year

0.00045

0.00050

0.00055

0.00060

0.00065

0.00070

0.00075

Fr
eq

ue
nc

y

(u ⋅ T) - i
j - (v ⋅ T)

T u ⋅ T v ⋅ T

envelope
PAA envelope
query interval borders

Figure 4: A LBG computation that partially includes the PAA

segments at start and end of interval [i, j].

4.2 Interval-focused Query

To answer query(Q,k, [i, j]), TSEIT searches its leaf nodes in as-

cending order of the node’s lower bound toQ until the lower bound

distance is larger than the best-so-far distance. See Algorithm 1.

The following describes specifics of TSEIT’s query algorithm: (1)

tree traversal with PAA envelopes, (2) query an interval that differs

from PAA segment borders, and (3) scanning a leaf node.

4.2.1 Tree Traversal Based on PAA Envelopes. The tree traversal is

based on the LBG lower bound between query time series QT and

the node’s envelope ET (Line 6). QT and ET are PAA versions of

the query time series and the envelope of the current node. Line 5

specifies the PAA segment length used on the current tree level.

Note that the PAA version of the Envelope ET is already available.

Note also that we need to compute the PAA representations of

the query time series QT only once per query. The number of

necessary PAA representations depends on the height of the tree.

Using height based PAA representations has the following nice

properties: It speeds up the tree traversal, and the lower bounds

become more accurate towards the leaf nodes.

4.2.2 Query Interval Border Inside a PAA Segment. The approxi-

mation with PAA replaces all data points inside a segment with a

single data point. The query intervals i and j might lie inside a PAA

segment. We call these segments side segments. Figure 4 illustrates

a query whose interval borders lie inside a PAA segment. Including

the side segments to the lower bound invalidates the bound. Ex-

cluding the side segments leads to a less tight lower bound and thus

to a lower pruning rate. Therefore, we modify the lower bound to

partially include the side segments and thus keep the lower bound’s

tightness in arbitrary intervals. Inside the interval, the first PAA

border u = argmin1≤w ≤t (w ·T ≥ i) starts at position u ·T , and the

last PAA borderv = argmax1≤w ≤t (w ·T ≤ j) starts at positionv ·T .

We have to include segment u with size (u ·T) − i and segment v

with j − (v ·T). Equation 10 is a version of LBG lower bound that

includes side segments.

LBG(QT
, ET , [i, j]) =

p
√
D(v,v) (10)

SSTD ’19, August 19ś21, 2019, Vienna, Austria Jens Willkomm, Janek Bettinger, Martin Schäler, and Klemens Böhm

D(x,y) = lx ,y · Dseд(q
T
x , e

T
y) +min





D(x − 1,y − 1)

D(x − 1,y)

D(x,y − 1)

(11)

lx ,y =





(u ·T) − i if x < u or y < u

j − (v ·T) if x > v or y > v

T otherwise

(12)

Dseд(q
T
x , e

T
y) =




|lqTx − ue
T
y |

p if lqTx > ueTy

|leTy − uq
T
x |
p if leTy > uqTx

0 otherwise

(13)

where D(u − 1,u − 1) = 0 and D(x,u − 1) = D(u − 1,y) = ∞ for

1 ≤ x,y ≤ t .

4.2.3 Optimized Leaf Node Sequential Scan. If the lower bound

between a query time series and a node’s envelope is smaller than

the best-so-far distance, we need to sequentially scan a leaf node.

Since LBG computes a lower bound for all time series of this node,

we first compute a lower bound to the individual time series or

more precisely a cascade of lower bounds. Because of its good per-

formance [26], we use a cascade of the two lower bounds LB_KimFL

and LB_Keogh (cf. Section 3.5). This might already prune many

time series of the node. For the remaining time series, we need to

compute the true DTW distance.

4.3 Insert Operation

To insert a new time series, we search the tree for the leaf node

with the lowest insertion cost. This section describes: (1) TSEIT’s

insertion cost functions, (2) the node overflow handling, and (3)

TSEIT’s parameters.

4.3.1 Insertion Cost. Recall that the LBG results in a lower bound

of 0 if the time series completely lies between the upper and lower

sequence of the envelope (cf. Section 3.4). To maximize the lower

bound, TSEIT minimizes the size of the envelopes, i. e., the area

surrounded by the upper and lower sequence. TSEIT’s primary

insertion cost function is the enlargement of an envelope, i. e., the

area it will grow by after inserting the new time series. Equation 14

defines function enlargement(E,C) that returns the size envelope E

will grow when inserting time series C .

enlargement2(E,C) =

t∑

i=1




(ci − lei)
2 if ci > uei

(uei − ci)
2 if ci < lei

0 otherwise

(14)

If there are several envelopes with the same enlargement costs,

TSEIT picks the envelope with the least expansion. The expansion

of an envelope is the area between its upper and lower sequence.

See Equation 15.

expansion(ET) =

t∑

i=1

T ·
(
euTi − el

T
i

)
(15)

While function enlargement considers the growth of an envelope,

function expansion considers its total area. In other words, if two

envelopes do not need an enlargement, TSEIT chooses the smaller

envelope.

4.3.2 Node Overflow Treatment. If an overflow occurs to a node for

the first time, TSEIT reinserts time series of this node, to globally

minimize envelope expansion. If an overflow occurs the second

time, TSEIT splits this node. A node split aims to locally minimize

envelope expansion. Since its envelope wraps all time series of a

node, we initialize the split with the envelope’s upper and lower

sequence and minimize the sum of the expansion of the resulting

envelopes using k-means. We call this heuristic EnvelopeSplit.

4.3.3 TSEIT Parameters. Like any tree, TSEIT has parameters to

control the tree development. The first parameter pair sets the

minimal and maximal capacity of the leaf nodes. We call these

parameters minNodeSize and maxNodeSize. The second parameter

pair defines the minimal and maximal number of child nodes. We

call these parameters minNodeChildren and maxNodeChildren.

4.4 Generalizing Other Approaches

We design TSEIT as a generalization of two state-of-the-art ap-

proaches: TWIST [24] and UCR Suite Cascading Lower Bounds

(UCR) [26]. TSEIT can simulate the TWIST approach by setting the

maximal number of child nodes to infinity. This forces TSEIT to

always append new leaf nodes to the root and keep a tree height of

two. The leaf nodes simulate the partitions, and the traversal step

of the root node simulates the pruning of single partitions. TSEIT

can also simulate the UCR approach by setting TSEIT’s node size

to infinity. This prevents TSEIT from splitting the root and always

keeps a single node.

5 EXPERIMENTAL EVALUATION

In this section, we conduct three experiments to gain insights into

the benefits and drawbacks of TSEIT. We start with a micro bench-

mark (Experiment 1) systematically evaluating the influence of pa-

rameters, such as the maximum node size, on the response time. We

are primarily interested in the response-time robustness of different

parameters. In addition, we aim at revealing the most significant

parameters influencing the response time and finding a good param-

eter combination for the remaining experiments. In Experiment 2,

we compare the query performance of TSEIT the reference points.

The primary objective is to investigate whether TSEIT’s combined

usage of lower bounding and partitioning, i. e., our generalization,

results in significant performance improvements. To this end, we

examine how LBG and DTW computations are related to perfor-

mance differences of the approaches. In the final experiment, we

evaluate whether the build times of TSEIT are reasonable. Before

we start with the experiments, we describe the experimental setup

of all subsequent experiments.

5.1 Experimental Setup

This section describes (1) technical details, (2) used data sets, and

(3) data preprocessing.

Technical Details. We run all our benchmarks on a machine hav-

ing an Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz and 126GB of

RAM. Our machine runs Ubuntu 16.04.4 LTS as operating system.

We implement all approaches in Java and execute them on a Open-

JDK 64-Bit Server VM in version 1.8.0_181. Our implementation

Efficient Interval-focused Similarity Search under Dynamic Time Warping SSTD ’19, August 19ś21, 2019, Vienna, Austria

ensures that all approaches, our TSEIT approach as well as the

competitors, keep all their data in memory.

Data Sets. To ensure generality of our findings, we rely on the

largest openly available temporal corpus, the Google Books Ngram

corpus [22].2 This corpus is available for 11 languages, reflecting

the evolution of the respective language for the last 200 years

comprehensively. This corpus is used frequently in the humanities.

For our experiments, we use the 2-gram data of the English, German,

and Spanish corpus. For each 2-gram, the corpus contains its usage

frequency starting at year 1800 and ending with year 2008.

Data Preprocessing. The raw data of the Ngram corpus has sev-

eral quality issues, such as OCR errors. To this end, we preprocess

the data as follows. We remove words from the data set that contain:

Special characters We filter words that contain special char-

acters, e. g., digits. For the definition of special characters,

we use the Java function java.lang.Character.isLetter().

Annotations The corpus offers semantic annotations of the

words, e. g., whether the word is used as noun or as verb.

We filter the annotated words and keep the ones without

annotation.

As final preprocessing step, we normalize the time series, to

remove the autocorrelation of the time series. Google provides the

corpus with the word’s absolute usage frequency. With a rising

number of published books the number of word usages also rises

every year, leading to autocorrelation. We remove this trend by

calculating the word’s relative usage, i. e., the share of the word

usage in the total usage of all words in this year.

5.2 Experiment 1: Parameter Influence

TSEIT is configurable by four parameters: Two specify the node size

and two specify a valid number of child nodes. In this subsection, we

have the following two objectives: First, we inspect the robustness

of the parameters and analyze their effect on the query run time.

Second, we aim to find the best parameter settings to benchmark

the query performance in Section 5.3.

5.2.1 Influence Analysis. We create data sets of different sizes by

randomly subsampling the English corpus. Figure 5 shows the

results of our analysis over data sets of different size.

5.2.2 Result Interpretation. Recollect that we have two interests:

(1) robustness of kNN query performance, and (2) finding the best

parameter settings used subsequently. The second item will also

result in first insights whether a combination of lower bounding

and partitioning minimizes the query time. For instance, in case the

best performance is achieved if the maximal node size is close to

the data set size, i. e., TSEIT behaves like UCR, it is lower bounding

that affects the performance. In contrast, in case every leaf node

contains a share of the elements, we see this as an indication that

lower bounding and partitioning are advantageous.

Parameter Robustness. The results clearly indicate that the most

relevant parameter for TSEIT’s query performance is maxNodeSize.

Since we find good values for this parameter independent of the

2The Google Books Ngram corpus is available under http://storage.googleapis.com/
books/ngrams/books/datasetsv2.html.

350K

400K

450K

Nu
m

be
r o

f D
TW

 c
om

pu
ta

tio
ns

1,
00

0,
00

0
el
em

en
ts

10
0,
00

0
el
em

en
ts

10
,0
00

el
em

en
ts

TSEIT

40K

50K

102 103 104

maxNodeSize

5K

6K

100 200 300 400 500
minNodeSize

Figure 5: The impact of TSEIT’s node size on the number of

required DTW computations.

size of the data set (even if the optimal values slightly increase

with the size of the data set), we conclude that TSEIT’s kNN query

performance is robust.

Optimized Parameter Setting. Based on the parameter influence

analysis, we found the following parameter setting to be most ef-

ficient on the considered data sets, and we therefore rely on it in

the subsequent experiments: We set the maximum node size to

1,000 time series and the minimum node size to 250 time series. We

set the valid number of node children from 1 to 3, i. e., we allow

a maximum of three child nodes per node. This optimized config-

uration reveals that TSEIT organizes its envelopes hierarchically,

without any degeneration yielding behavior like the one of TWIST

or UCR. This suggests that our generalization is superior to existing

approaches. We investigate this in detail as part of Experiment 2.

So we fix those parameter settings for all further experiments.

To have a fair comparison, we set TWIST’s partition size to TSEIT’s

node size. UCR is parameter free.

5.3 Experiment 2: kNN Query Performance

TSEIT’s main purpose is minimizing the response time of interval-

focused kNN queries. The prior experiment in Section 5.2 gives first

indications that our generalized approach is faster than approaches

optimizing a single pruning technique. We now examine the query

run times in more detail using the following setup.

5.3.1 Benchmark Setup. To provide reproducible, valid results, we

provide details of how we have implemented this benchmark. To

this end, we first describe the process to select the parameter values

of a query. We then specify our performance indicators.

Query Selection. An interval query kNN(k,Q, [i, j]) depends on

the number of neighbors to search k , the query time series Q , and

the interval [i, j]. This section specifies how we set these parame-

ters.

To have different result sizes, we uniformly vary parameter k

from 1 to 10. These sizes yield results interpretable by domain

experts, historians in our case. ParameterQ specifies the query time

series. Here, we select a random time series from the full corpus. To

simulate a real-world workload, we weight the probability of every

SSTD ’19, August 19ś21, 2019, Vienna, Austria Jens Willkomm, Janek Bettinger, Martin Schäler, and Klemens Böhm

time series with its usage frequency, i. e., more frequent words have

a proportionally higher probability to be selected. This reflects the

fact that a common word as a query is more likely than, say, a word

with a typo in reality. We also vary the start and end point of the

query interval [i, j] uniformly, i. e., even if the same time series is

selected by chance, the interval is most likely different. Since the

run time of DTW depends on the length of the time series and thus

the length of the interval query, we have to keep a fixed interval size

for our experiments. Otherwise, the interval length dominates the

query run time and thus disturbs the variance of our benchmarks.

We choose an interval size of 150 years and set DTW’s warping

window to the same value.

Performance Indicators. Since our main objective is to minimize

the query run time, this is our main performance indicator. To

explain run time differences and to investigate whether our gener-

alization is the main reason for the observed differences, we rely

on two additional implementation-independent measures. The first

one quantifies the overhead of the data structure to search for el-

ements, by counting the LBG computations. The rationale is that

this computation is the only expensive operation in the traversal

(cf. Algorithm 1). The second one counts the distance computations

between the query and candidate time series to quantify the effect

of partitioning. For both additional indicators, we use the fraction

instead of the absolute count to obtain a number unbiased from the

size of the data set size that makes different sizes comparable. To

sum up, we use the following performance indicators.

Data Structure Search Costs (LBG) We investigate the aver-

age fraction of LBG computations necessary to search the

data structure, e. g., to traverse the index. A value of 100%

means that the approach needs as many LBG computations

as it contains time series. Fewer LBG computations means

lower costs to search the data structure and thus should

accelerate query processing. Note that, by definition, this

measure is 0 for the sequential scan and UCR. This is because

these approaches do not use this technique.

Necessary Distance Computations (DTW) We investigate

the average fraction of full DTW computations necessary

to find the nearest neighbors. A value of 100% means that

the exact distance to each other time series in the data set is

computed, i. e., the approach computes as many distances as

the sequential scan.

Query Wall-clock Time We measure the time from calling

the query routine until it returns. For statistical soundness,

we use the mean and variance of executing 100 randomly

selected query time series and intervals.

5.3.2 Benchmark Results. Figure 6 plots all performance indicators

depending on the number of time series, on three different language

corpora. We now describe these results.

LBG Computations. The first row of Figure 6 plots the mean

and the confidence band (95 %) of the share of LBG computations

necessary to answer a single query. Recall that UCR and the sequen-

tial scan do not do any LBG computation. We observe that TSEIT

performs very few LBG computations for all sizes of the data set

on all three corpora. The value is smaller than 0.4 % in any case.

In contrast, TWIST needs 8 to 10 times more LBG computations

than TSEIT. TWIST is inefficient for very small data sets, but gets

more efficient for larger ones. So we conclude that the working

of TSEIT with our optimized parameter settings is significantly

different from the one of TWIST. This is another indication that

both partitioning and lower bounding are required.

DTW Computations. The second row of Figure 6 plots the mean

and the confidence band (95 %) of the number of DTW distance

computations necessary to answer a query. Remember that a se-

quential scan computes for each query point Q the distance to all

points in the data set, i. e., has a value of 100 % for this measure. For

all other approaches, we observe that they compute only some of

the distances. The only exception are very small data sets, where

all approaches converge towards a sequential scan. For larger data

sets, we clearly see that the most DTW computations are required

after applying UCR. Interestingly, the graphs for TSEIT and TWIST

have a very similar shape. Observe the small number of distance

computations, which usually is between 10 and 20%. This saves a

lot of distance computations since there are up to 5 million time

series.

The results regarding this measure allow the following conclu-

sions. First, there is a significant difference between TSEIT and UCR:

UCR does not prune groups of irrelevant candidate time series. Sec-

ond, since TSEIT and TWIST rely on partitioning, both have few

DTW distance computations as an effect of LBG pruning. Since the

plots of the numbers of DTW computations required for TSEIT and

TWIST are very similar, a significant difference in the query run

times would mean that indeed lower bounding and partitioning are

required.

Query Run Time. The third row of Figure 6 plots the mean and

the confidence band (95 %) of the wall-clock time to answer a query.

As expected, the run time of the sequential scan grows linearly

with the size of the data set. We observe that, for any corpus and

size of the data set, all approaches outperform this baseline. On

the English corpus, TWIST is faster than UCR, while both have a

similar run time on the German and Spanish corpus. Our TSEIT

approach shows the best run time on all three corpora. On average,

it performs a query 50 % faster than TWIST or UCR.

We conclude that indeed the combination of lower bounding and

portioning results in the best response times. These times are not

observed for any competitor relying only on one of these techniques.

Considering the kNN query times, TWIST is second even if TSEIT

clearly outperforms it. To get the full picture, we examine the build

times of the index in the next experiment.

5.4 Experiment 3: Index Build Times

The purpose of studying the build time is to evaluate whether a

large build time is a counterargument for TSEIT. To this end, we

compare TSEIT’s build time to the one of the reference points. To

avoid biasing our results, we shuffle all time series before inserting

them, i. e., we insert them in a random order.

Figure 7 plots the build time of our TSEIT data structure as well

as of TWIST, contingent on the size of the data set. UCR and the

Sequential scan do not build any index, so they are not part of this

experiment. The results suggest that the build times of TWIST are

quadratic and might rather be an argument against this approach.

Efficient Interval-focused Similarity Search under Dynamic Time Warping SSTD ’19, August 19ś21, 2019, Vienna, Austria

0.0

0.5

1.0

1.5

2.0

2.5

3.0

LB
G

co
m

pu
ta

tio
ns

pe
r q

ue
ry

 [%
]

English corpus German corpus Spanish corpus

TSEIT
TWIST

UCR
SeqScan

0

20

40

60

80

100

DT
W

 c
om

pu
ta

tio
ns

pe
r q

ue
ry

 [%
]

0 1 2 3 4 5
Elements (in million)

0

50

100

150

200

Qu
er

y
tim

e
[s

]

0 1 2 3 4 5
Elements (in million)

0 1 2 3 4 5
Elements (in million)

Figure 6: The query performance measurements depending on the number of elements and different corpora.

0 1 2 3 4 5
Elements (in million)

0

500

1000

1500

2000

2500

3000

In
se

rti
on

 ti
m

e
[s

]

TSEIT
TWIST

UCR
SeqScan

Figure 7: Build times for the English 2-gram corpus.

This is important as TWIST is second behind TSEIT according to

Experiment 2.

In contrast to TWIST, the build times for our TSEIT approach

appear to be linear. Building the TSEIT index for a data set of

5 million times series in less than 5 minutes is not constraining for

most purposes. Thus, our insertion benchmark reveals that TSEIT

also is suitable to index large sets of time series.

5.5 Summary

Based on Experiment 2, we conclude that TSEIT consistently results

in the lowest run times. This is because TSEIT is able to prune

large parts of the data by lower bounding and exclusion of child

nodes. On average, TSEIT traverses only small parts of the index,

indicated by the small number of LBG computations. Moreover,

due to partitioning, it also requires the fewest DTW computations.

Our results also indicate that TSEIT’s optimal configuration does

not converge towards TWIST or UCR.

Finally, studying the build times reveals that indexing even large

sets with millions of time series is not a problem for TSEIT. In

contrast, the quadratic costs of inserting a time series with the next

fastest approach (TWIST) might be problematic for various use

cases.

6 CONCLUSIONS

In this work, we address the problem of efficient interval-focused

similarity search for time series. We present the idea of hierarchi-

cally structured envelopes and, based on it, propose a novel tree-like

SSTD ’19, August 19ś21, 2019, Vienna, Austria Jens Willkomm, Janek Bettinger, Martin Schäler, and Klemens Böhm

data structure named TSEIT. TSEIT is a search tree with an envelope

for each node that wraps all time series of the sub-tree of the node.

Time series envelopes allow to search the tree given a time series

as similarity query and a time interval. Moreover, TSEIT combines

various pruning techniques from literature. We are first to systemat-

ically consider combinations of pruning techniques for time series.

Our evaluation systematically compares the performance with our

data structure to the ones of state-of-the-art approaches. The run

time of our reference points is either dominated by searching the

data structure or by distance computations. According to our exper-

iments, we achieve the best query performance with a compromise

between minimizing the costs of searching the data structure and

the number of distance computations. Our data structure features a

parameter to trade off these two aspects. All this reduces the query

times of TSEIT by up to 50 % in comparison to the reference points.

Future Work. Among others, our data structure allows users such

as historians or philosophers to study the similarity of word frequen-

cies using the Google Ngram corpus. These users are interested in

words whose frequencies change over time due to historical devel-

opments and events. The research described here is part of a larger

effort enabling philosophers to test their hypotheses empirically.

According to our experience, the DTW distance appears to be

sufficiently general regarding the Google Ngram corpus. It may

however turn out that users are interested in several distance mea-

sures for similarity search, e. g., to compare the results for different

measures. We plan to investigate how to evaluate interval-focused

kNN queries with several distance measures using a single index.

But the specifics of such an index currently are unclear.

REFERENCES
[1] R. Agrawal, C. Faloutsos, and A. Swami. 1993. Efficient similarity search in

sequence databases. In FODO ’93. Springer Berlin Heidelberg, 69ś84. https:
//doi.org/10.1007/3-540-57301-1_5

[2] R. Agrawal, K. Lin, H. Sawhney, and K. Shim. 1995. Fast Similarity Search in the
Presence of Noise, Scaling, and Translation in Time-Series Databases. In VLDB
’95. Morgan Kaufmann Publishers Inc., 490ś501.

[3] I. Assent, R. Krieger, F. Afschari, and T. Seidl. 2008. The TS-tree: efficient time
series search and retrieval. In EDBT ’08. ACM Press, 252ś263. https://doi.org/10.
1145/1353343.1353376

[4] J. Aßfalg, H.-P. Kriegel, P. Kröger, P. Kunath, A. Pryakhin, and M. Renz. 2007.
Interval-Focused Similarity Search in Time Series Databases. In DASFAA ’07.
Springer Berlin Heidelberg, 586ś597. https://doi.org/10.1007/978-3-540-71703-4_
50

[5] O. Brunner, W. Conze, and R. Koselleck (Eds.). 2004. Geschichtliche Grundbegriffe
1ś8. Klett-Cotta Verlag.

[6] F. Chan, A. Fu, and C. Yu. 2003. Haar wavelets for efficient similarity search of
time-series: with and without time warping. TKDE ’03 (2003), 686ś705. https:
//doi.org/10.1109/tkde.2003.1198399

[7] K.-P. Chan and A. Fu. 1999. Efficient time series matching by wavelets. In ICDE
’99. IEEE, 126ś133. https://doi.org/10.1109/icde.1999.754915

[8] B. Chiu, E. Keogh, and S. Lonardi. 2003. Probabilistic discovery of time series
motifs. In KDD ’03. ACM Press, 493ś498. https://doi.org/10.1145/956750.956808

[9] Y. Du, C. Jiang, W.-A. Tan, D. Lu, and D. Li. 2008. Effective Subsequence Matching
in Compressed Time Series. In ICPCA ’08. IEEE, 922ś926. https://doi.org/10.1109/
icpca.2008.4783742

[10] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. 1994. Fast subsequence
matching in time-series databases. In SIGMOD ’94. ACM Press, 419ś429. https:
//doi.org/10.1145/191839.191925

[11] A. Fu, E. Keogh, L. Lau, C. Ratanamahatana, and R. Wong. 2007. Scaling and
time warping in time series querying. The VLDB Journal (2007), 899ś921. https:
//doi.org/10.1007/s00778-006-0040-z

[12] M.-S. Gil, B.-S. Kim, M.-J. Choi, and Y.-S. Moon. 2015. Fast index construction for
distortion-free subsequence matching in time-series databases. In BIGCOMP ’15.
IEEE, 130ś135. https://doi.org/10.1109/35021bigcomp.2015.7072822

[13] A. Guttman. 1984. R-trees: A Dynamic Index Structure for Spatial Searching. In
SIGMOD ’84. ACM Press, 47ś57. https://doi.org/10.1145/602259.602266

[14] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. 2001. Dimensionality
Reduction for Fast Similarity Search in Large Time Series Databases. Knowledge
and Information Systems (2001), 263ś286. https://doi.org/10.1007/pl00011669

[15] E. Keogh and C. Ratanamahatana. 2005. Exact indexing of dynamic time warping.
Knowledge and Information Systems (2005), 358ś386. https://doi.org/10.1007/
s10115-004-0154-9

[16] S.-W. Kim, S. Park, and W. Chu. 2001. An index-based approach for similarity
search supporting time warping in large sequence databases. In ICDE ’01. IEEE
Computer Society, 607ś614. https://doi.org/10.1109/icde.2001.914875

[17] F. Korn, H. Jagadish, and C. Faloutsos. 1997. Efficiently supporting ad hoc
queries in large datasets of time sequences. In SIGMOD ’97. ACM Press, 289ś300.
https://doi.org/10.1145/253260.253332

[18] M. Krawczak and G. Szkatula. 2010. Time series envelopes for classification. In
IS ’10. IEEE, 156ś161. https://doi.org/10.1109/is.2010.5548371

[19] A.-J. Li, Y.-H. Liu, Y.-J. Qi, and S.-W. Luo. 2002. An approach for fast subsequence
matching through KMP algorithm in time series databases. In ICMLC ’02. IEEE,
1292ś1295. https://doi.org/10.1109/icmlc.2002.1167412

[20] Q. Li, B. Moon, and I. Lopez. 2004. Skyline index for time series data. TKDE ’04
(2004), 669ś684. https://doi.org/10.1109/tkde.2004.14

[21] S.-H. Lim, H. Park, and S.-W. Kim. 2007. Using multiple indexes for efficient
subsequence matching in time-series databases. Information Sciences (2007),
5691ś5706. https://doi.org/10.1016/j.ins.2007.07.004

[22] Y. Lin, J.-B. Michel, E. Aiden, J. Orwant, W. Brockman, and S. Petrov. 2012. Syn-
tactic annotations for the Google Books Ngram Corpus. In ACL ’12. Association
for Computational Linguistics, 169ś174.

[23] X.-Y. Liu and C.-L. Ren. 2013. Fast subsequence matching under time warping in
time-series databases. In ICMLC ’13. IEEE, 1584ś1590. https://doi.org/10.1109/
icmlc.2013.6890855

[24] V. Niennattrakul, P. Ruengronghirunya, and C. Ratanamahatana. 2010. Ex-
act indexing for massive time series databases under time warping distance.
Data Mining and Knowledge Discovery (2010), 509ś541. https://doi.org/10.1007/
s10618-010-0165-y

[25] N. Olsen. 2012. History in the Plural: An Introduction to the Work of Reinhart
Koselleck. Berghahn Books.

[26] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J.
Zakaria, and E. Keogh. 2012. Searching and mining trillions of time series
subsequences under dynamic time warping. In KDD ’12. ACM Press, 262ś270.
https://doi.org/10.1145/2339530.2339576

[27] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J.
Zakaria, and E. Keogh. 2013. Addressing Big Data Time Series: Mining Trillions
of Time Series Subsequences Under Dynamic Time Warping. TKDD ’13 (2013),
1ś31. https://doi.org/10.1145/2513092.2500489

[28] J. Ritter, K. Gründer, and G. Gabriel (Eds.). 1971. Historisches Worterbuch der
Philosophie (13 Volume Set) (German Edition). Schwabe.

[29] H. Sakoe and S. Chiba. 1978. Dynamic programming algorithm optimization
for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal
Processing (1978), 43ś49. https://doi.org/10.1109/tassp.1978.1163055

[30] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. 2005. FTW: fast similarity search
under the time warping distance. In PODS ’05. ACM Press, 326ś337. https:
//doi.org/10.1145/1065167.1065210

[31] R. Schneider and H.-P. Kriegel. 1991. The TR*-tree: A new representation of
polygonal objects supporting spatial queries and operations. In CG ’91. Springer
Berlin Heidelberg, 249ś263.

[32] M. Schäler, A. Grebhahn, R. Schröter, S. Schulze, V. Köppen, and G. Saake. 2013.
QuEval: beyond high-dimensional indexing à la carte. VLDB Endowment (2013),
1654ś1665. https://doi.org/10.14778/2556549.2556551

[33] E. Vidal, F. Casacuberta, J. Benedi, M. Lloret, and H. Rulot. 1988. On the verifi-
cation of triangle inequality by dynamic time-warping dissimilarity measures.
Speech Communication (1988), 67ś79. https://doi.org/10.1016/0167-6393(88)
90022-2

[34] R.Weber, H.-J. Schek, and S. Blott. 1998. A Quantitative Analysis and Performance
Study for Similarity-Search Methods in High-Dimensional Spaces. In VLDB ’98.
Morgan Kaufmann Publishers Inc., 194ś205.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Types of Time Series kNN Search
	2.2 Ideas to Accelerate Similarity Search
	2.3 Reference Points

	3 Background and Notations
	3.1 Time Series
	3.2 Interval-focused k-Nearest Neighbor
	3.3 Dynamic Time Warping Distance
	3.4 Lower Bound for a Group of Time Series
	3.5 Cascading Lower Bounds

	4 Our TSEIT approach
	4.1 Tree Structure
	4.2 Interval-focused Query
	4.3 Insert Operation
	4.4 Generalizing Other Approaches

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experiment 1: Parameter Influence
	5.3 Experiment 2: kNN Query Performance
	5.4 Experiment 3: Index Build Times
	5.5 Summary

	6 Conclusions
	References

