
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, MONTH YEAR 1

Cleaning Antipatterns in an SQL Query Log
Natalia Arzamasova, Martin Schäler, and Klemens Böhm

Abstract— Today, many scientific data sets are open to the public. For their operators, it is important to know what the users

are interested in. In this paper, we study the problem of extracting and analyzing patterns from the query log of a database. We

focus on design errors (antipatterns), which typically lead to unnecessary SQL statements. Such antipatterns do not only have a

negative effect on performance. They also introduce bias on any subsequent analysis of the SQL log. We propose a framework

designed to discover patterns and antipatterns in arbitrary SQL query logs and to clean antipatterns. To study the usefulness of

our approach and to reveal insights regarding the existence of antipatterns in real-world systems, we examine the SQL log of

the SkyServer project, containing more than 40 million queries. Among the top 15 patterns, we have found 6 antipatterns. This

result as well as other ones gives way to the conclusion that antipatterns might falsify refactoring and any other downstream

analyses.

Index Terms— SQL log analysis, patterns and antipatterns, data preprocessing

—————————— ——————————

 INTRODUCTION1

OWADAYS, various databases from different scien-
tific domains are publicly available. They typically

offer interfaces for declarative access, i.e., can be accessed
in a very broad variety of ways. For the operators of such
databases, it is very important to know what the users are
interested. However, due to the public availability of the
database, its owners cannot interact with all users to learn
their interests. On the other hand, the queries issued by a
user are a formal representation of his information needs.
In other words, a query log is a perfect source of infor-
mation to that end. However, analyzing such a log is
difficult.

For example, [1] describes an approach to detect user
interests based on the query log. They cluster queries,
using the overlap of the data space accessed as the dis-
tance measure. In their case study with SkyServer, there
were several clusters that domain experts could not ex-
plain. The queries in these clusters filter data by internal
IDs. These attributes do not have any meaning in astron-
omy. We conclude that those SQL statements are follow-
up queries of previous ones, i.e., they need to be consid-
ered in a context. Such follow-up queries appear to be fre-
quent in the log. They introduce negative effects, e.g.,
falsify analyses, as we are about to explain. In software
engineering, such an actuality is named antipattern [2].
An antipattern is a special case of a pattern [3]: while a
pattern is a common solution, an antipattern is a pattern

with a negative effect.

 Table 1 lists a sequence of SQL queries of Example 1.
a user. These statements reflect specific intentions of the
user, i.e., form patterns. The second, the third, and the
fourth query filter the tables using the same constant.
Without the first query, one cannot understand this
constant. Put differently, a join is computed outside of
the database. This is an occurrence of the Circuitous
Treasure Hunt (CTH) antipattern [4]. Next, the second
and the third query select different columns of the same
table. This is the Stifle antipattern [5].

 Suppose that one wants to find hotspots Example 2.
of user interests. Queries 2 and 3 by the same user refer
to the same data object, and a naive log-analysis scheme
would count two occurrences of interest in this object.
But it should not be overly controversial that these que-
ries represent the same information need, at least when
being issued right after each other. In other words, an
occurrence of the Stifle has falsified this analysis.

 Consider again Table 1. Queries 2 to 4 Example 3.
can only be understood together with Query 1. This is
because the Attribute id does not have any meaning
from the domain perspective. Thus, if queries are re-
written with antipatterns removed, the specific user in-
terest would be more obvious:
SELECT E.empId, E.name, E.surname,

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

N

TABLE 1
A series of statements from one user

Statements Result

1 SELECT E.empId FROM Employees E

WHERE E.department = ‘sales’

12

2 SELECT E.name, E.surname

FROM Employees E WHERE E.id = 12

John, Doe

3 SELECT E.birthday, E.phone

FROM Employees E WHERE E.id = 12

12.03.1985,

01259863448

4 SELECT count(orders)

FROM Orders OWHERE O.empId = 12

36

————————————————

 N. Arzamasova is with the Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany. E-mail: natalia.arzamasova@kit.edu.

 M. Schäler is with the Karlsruhe Institute of Technology (KIT), Karls-
ruhe, Germany. E-mail: martin.schaeler@kit.edu.

 K. Böhm is with the Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany. E-mail: klemens.boehm@kit.edu.

***Please provide a complete mailing address for each author, as
this is the address the 10 complimentary reprints of your paper
will be sent

Please note that all acknowledgments should be placed at the end of the paper,
before the bibliography (note that corresponding authorship is not noted in
affiliation box, but in acknowledgment section).

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, MONTH YEAR

E.birthday, E.phone, O.oCount

FROM Employees E INNER JOIN

(SELECT empId, count(orders) as oCount

FROM Orders GROUP BY empId) O

ON O.empId = E.empId

The topic of this paper is the detection of antipatterns
in an SQL query log. We have consciously decided to see
this as a general preprocessing step in the data-analysis
processing chain, i.e., subsequent log-analysis tasks like
user-interest identification or association-rule mining are
decoupled from it. This is in line with the general, com-
monly accepted perspective that there is a data cleaning
step that precedes more abstract, goal-oriented analyses.
Having said this, we nevertheless have conducted com-
bined experiments which reveal the usefulness of the
preprocessing proposed in this article, see Section 6.9
below. Of course, with any data cleaning, an analyst
needs to be aware of the fact that the cleaning has modi-
fied (biased) the original data. But that decoupling gives
way to more flexibility as well as effectiveness and effi-
ciency of the subsequent analyses. In other words, the
approach described here is a variant of data cleaning, and
we use the terms cleaning or solving for those rewrites.

A common method to detect antipatterns [4] requires
access to the software that generates the requests. Regard-
ing SQL antipatterns, this means that one would need to
have access to all systems working with the database.
This is practically impossible, for databases on the Web in
particular. That solution also does not help regarding
antipatterns in an already existing query log. As Example
1 has insinuated, one challenge when looking for SQL
antipatterns is the identification of dependencies among
subsequent queries. At first sight, a promising approach
is re-querying. For instance, to know for sure that State-
ments 2, 3 and 4 depend on Statement 1, one should run
the first statement again and inspect the result. However,
this is not viable, for the following reasons:

1. Performance aspect: Re-running a significant part
of a SQL log implies a huge load on the database.

2. Side effects aspect: The database will save these
‘re-run’ queries in the query log; this will bias any
subsequent log analysis.

3. Data persistence aspect: In the presence of modifi-
cations of the data set, the result of a re-issued
query does not have to be the same as the original
one.

4. Schema modification aspect: Because of database-
schema refactoring such as renaming of attributes,
old requests might even cause errors.

So when it comes to the design of a method that de-
tects patterns and solves antipatterns, we see a difficulty
in deciding what exactly should be rewritten.

 Consider Table 1 once more. If we did Example 4.
not have the information that all queries are from the
same user, or if the attribute had a meaning in a specific
domain, in contrast to ‘id’, it would be less clear if this
were indeed occurrences of CTH and the Stifle.

This suggests to first examine how distinct/how fre-
quent the clear cases are, and how far respective solutions
will take us. It also is unclear which antipatterns one
should focus on.

In this article we give answers to these questions by
means of an empirical study based on a large, freely
available query log. Our main steps and the core insights
are as follows:

1. We provide formal definitions classifying a query
load into normal queries, patterns, and antipat-
terns.

2. We describe our solution to detect and classify
patterns and antipatterns as well as to solve an-
tipatterns within a query log. While we confine
ourselves to the CTH and the Stifle, we have de-
signed a processing framework that can also ac-
commodate other antipatterns (see Section 5.4).

3. Our empirical study relies on the log of the Sky-
Server system, covering a time span of 7 years and
containing nearly 42 million queries.

4. In line with other research on data cleaning, our
core evaluation criterion is the plausibility of our
results (in contrast to result quality of any down-
stream analyses). For instance, the share of an-
tipatterns in the SkyServer log is significant (6 an-
tipatterns among the 15 most frequent patterns),
and after removing them, all patterns among the
40 most frequent ones do represent meaningful in-
formation needs.

5. We present evidence that the results of previous
studies of the SkyServer log (e.g., [6], [1]) would
have been different, had the log been cleared of
antipatterns.

Paper outline: Section 2 reviews processing query log
and some well-known database antipatterns. In Section 3
we focus on SQL antipatterns which affect a query log.
Section 4 provides definitions of pattern and antipatterns
for our context, as well as rewrite rules whenever possi-
ble. In Section 5, we describe our framework in detail.
Section 6 features the empirical study. Section 7 con-
cludes.

 RELATED WORK 2

In this section, we first look at work targeting query
logs. Then, we review approaches to detect and remove
antipatterns introduced by interaction with a database.
We also refer to related work in other sections of this
article, and this current section only deals with the rela-
tively few related approaches not addressed elsewhere.

 Processing Query Logs 2.1
Query-log analysis currently is a field of intensive

study. An elementary distinction is between web logs and
SQL logs. Studies on web-log processing such as [7] and
[8] tend to focus on understanding of the user behavior
through their information-seeking activities. [7] studies
web search engine optimization by mining past queries.
[8] proposes a context-aware query recommendation
approach by mining click-through and session data.

Studies of SQL logs mainly consider publically availa-
ble scientific databases. [1] analyzes the Sky Server log
with the aim of identifying user interests within the data
space. [6] uses the same use case to provide a recommen-

ARZAMASOVA ET AL.: CLEANING ANTIPATTERNS IN AN SQL QUERY LOG 3

dations system for SQL queries. [9], [10] and [11] are de-
tailed reports of the Sky Server user activities. They ana-
lyze both types of logs, SQL and web. The study provides
various statistics regarding the first five [9] and ten years
[10], [11] since SDSS SkyServer has gone online.

Another promising branch of SQL log analysis is diag-
nosing and repairing data errors caused by erroneous
updates. [12] works with a log of update queries, UP-
DATE, INSERT and DELETE statements, and a set of
known data errors to find and fix mistakes within a da-
taset. The processing of DML queries does not address
our specific problem – finding antipatterns. Nevertheless,
this study bears a connection to our work since it pro-
vides formal definition rules for discovering and solving
the errors. Overall, query log analysis has different re-
search threads, namely query recommendation, under-
standing user behavior and diagnosing errors. Our study
relates to all these objectives. Finding and fixing antipat-
terns in a query log is a preprocessing step for further
analysis, such as providing query recommendations [6] or
investigating user behavior [1] without bias.

 Review of Database Antipatterns 2.2
In the following, we briefly review research on data-

base antipatterns. [13] lists semantic errors in SQL que-
ries. Their insights stem from their experience while cor-
recting database exams. Some of the mistakes listed lead
to syntax errors. This work is orthogonal to ours. If a mis-
take is frequent, there might be a corresponding antipat-
tern, which could be solved or removed from the log. [14]
detects database design antipatterns by querying metadata
tables. Such antipatterns reflect errors in the database
schema, which is not the topic of our study. [15] proposes
a framework to detect object-relational mappings (ORM)
performance antipatterns. It is based on static code analy-
sis and a rule-based approach. The detection of DML bug
patterns is studied in [16]. DML queries, however, are not
in the focus of our paper. The reason is that we aim to
clean a query log of SELECT statements in order to facili-
tate further analyses on it (i.e., what do database users
find interesting in the database).

 FUNDAMENTALS 3

In this section we focus on two antipatterns, which in-
fluence analysis of an SQL query log. These are the Stifle
[17] and the Circuitous Treasure Hunt [18]. They are also
known to be the main reason for antipattern-related per-
formance degradations. Our explanation includes sugges-
tions for their detection and removal. We then point out
limitations of current solutions, motivating a new ap-
proach.

3.1.1 Stifle Antipattern
The Stifle antipattern consists of several queries con-

taining similar SQL statements [5]. The term similar does
not have a formal definition. However, examples are
queries being identical except for constants in the
WHERE clause, as in Example 1. Processing such queries
may be a bottleneck and has a negative impact on per-

formance. When analyzing a query log, the Stifle may
falsify results. For instance, as pointed out earlier, it blurs
the representation of user interests.

 The following code generating SQL Example 5.
statements illustrates the Stifle antipattern. Thus, every
Id in the itemList causes a request to Table T. In a log,
the Stifle manifests itself as a sequence of similar state-
ments.
for (int item: itemList)

{String sql =

"SELECT * FROM T WHERE Id = " + item;

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery(sql);}

A detection approach for the Stifle [17] is based on
measurements of a running instance of software. It as-
sumes that a high load is a high-probability indicator for
the presence of antipatterns. A specific indicator for the
Stifle is a large number of database calls per service and a
small average number of result rows per query. Thus, this
approach is based on general statistics and may not be
precise enough. [18] proposes heuristics for measure-
ment-based detection of several antipatterns on source-
code level. There, the Stifle antipattern is characterized by
many similar database requests. A Stifle is detected if two
or more database requests from one user for a service
exist. In addition, the requests need to have the same
structure, except for the values passed to the method
building or executing the query. Thus, this approach re-
quires access to the source code of the service. In addition,
it is based on comparing strings used in the source code
which then form the query. In summary, these detection
approaches are limited, and a more sophisticated ap-
proach having a more complete view on the actual query
load is necessary.

We now review methods to rewrite instances of the Sti-
fle antipattern. In software development this is called
refactoring. [12] proposes the Pack refactoring. Their idea is
to collect individual SQL statements and send them to the
database in one batch.

 The Pack refactoring for Example 5 is: Example 6.
String sql = "";

for (int item: itemList)

{sql = sql + "SELECT * FROM T WHERE Id = "

+ item + ";";}

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery(sql);

After the Pack refactoring one gets a single request
which consists of several SQL statements. This solution
removes the unnecessary network overhead, for any fu-
ture query. However, it still requires the same amount of
database resources. It does not alter the query log. We for
our part seek an approach that rewrites such queries in an
existing log to facilitate meaningful analyses.

3.1.2 Circuitous Treasure Hunt (CTH)
The Circuitous Treasure Hunt (CTH) antipattern [19]

has one similarity with the Stifle, as they both consist of
several database requests. However, the individual CTH
queries depend on each other. This means that a subse-
quent query requires the result of prior ones as input.

Similarly to the Stifle, a high database overhead is an

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, MONTH YEAR

indication for the CTH antipattern [17]. However, in or-
der to identify any CTH, either knowledge on the queries
or the ability to trace the information flow is required.
The detection of CTH in [18] is based on the source code
of an application. Consequently, a new approach is need-
ed to discover instances of the CTH in a database log.
However, this is not trivial. As Example 1 has shown,
without having the results of the first query one does not
see dependencies of a sequence of SQL statements with
certainty. The solving solution for CTH in [19] depends
on the stage of the software development when the an-
tipattern is discovered. If it is found early in the devel-
opment, the authors suggest re-organizing the database
schema. For distributed systems where one cannot do
this, it is possible to reduce the number of remote data-
base calls by using the Adapter pattern [20]. For designs
with large intermediate results, an alternative is to create
a new association that leads directly to the final result.

These solutions depend on a concrete case and are not
automatic. Furthermore, they prevent future CTH occur-
rences, but do not solve CTH occurrences in a log.

 PATTERNS AND ANTIPATTERNS 4

In our context, it is indispensable to have a rigid defini-
tion of ‘pattern’, to build a detection method. The notion
of pattern is important in the context of antipattern detec-
tion, because antipatterns are patterns with negative ef-
fects. This section also introduces certain properties of
patterns. We also need precise definitions of the Stifle and
CTH antipatterns, to facilitate their detection and auto-
matic solving. This section contains these definitions.

 Database Pattern 4.1
As pointed out in Example 1, we see a pattern as a se-

quence of queries which represents certain functionality.
Starting with the definition of patterns from software
engineering where this function is a pattern, we first de-
scribe properties of patterns in databases informally. This
discussion then leads to a formal definition of pattern that
is then used throughout this article.

4.1.1 Intuition
In software engineering, a pattern is a recurring solu-

tion schema to a standard problem deployed in a certain
context [4]. In this paper, a pattern is a sequence of SQL
queries in a query log.

 Think of the database of a shoe retailer. Example 7.
Buying a pair of shoes results in the following sequence
of steps that require interaction with the database:
1. Scan a barcode of the shoes.
2. Given the barcode, find the size and the model.
3. Write the purchase into the Sales table.
4. Decrease the count of the pairs currently available.
As shown below, Steps 2, 3 and 4 result in different

queries forming one pattern. As these steps refer to the
same business process, a common implementation is to
have a procedure bundling the steps in one transaction:

CREATE PROCEDURE BUY

(BARCODE IN NUMBER) AS BEGIN

 SELECT MODEL, SIZE into curr_model, curr_size

 FROM BarCodesInfo WHERE ID = BARCODE;

 INSERT INTO SALES (datetime, barcode, seller)

 VALUES (curr_time, BARCODE, curr_user);

 UPDATE InPresence SET count = count - 1

 WHERE model = curr_model and size = curr_size;

END BUY;

Now every sale will cause these three SQL requests oc-
curring consecutively. The only difference between occur-
rences is the parameter values, like the barcode. Summing
up, to be an instance of a pattern, a sequence of SQL re-
quests should

1. come one after another (in the log file).
2. have short time between them.
3. have a rather frequent occurrence.
4. be from the same user.
Regarding the last item, if the log does not contain in-

formation on the users, we assume that one user has is-
sued all queries. A consequence could be that we will
deem queries indeed coming from different users a pat-
tern. However, we hypothesize that this phenomenon
will be infrequent – it would mean that different users
issue roughly the same queries at about the same time.
Our case study will address this issue.

4.1.2 Similarity of SQL Queries
Given a query log, patterns are not known in advance,

but need to be discovered first. So, it is necessary to find
similar sequences of queries within the log. We define
similarity of a sequence of queries as follows:

Definition 1. Two sequences of SQL statements are
similar if they contain similar queries in the same or-
der.
We now define query similarity. Since a query is a re-

quest written in SQL, it seems promising to use methods
for the discovery of similar pieces of source code to iden-
tify similar queries [21]. Respective approaches from
software engineering like Code Clone Detection [22] rely
on syntax trees [23]. As Example 7 has shown, while the
structure of the queries remains the same (i.e., the inner
nodes of the syntax tree are identical) the parameters are
most likely different. Thus, one should not consider these
values when computing query similarity. We rely on the
notion of skeleton tree (or skeleton query [9], SQ). It is
obtained from a syntax tree by replacing all parameters in
the leaf nodes with placeholders.

Definition 2. 𝑆𝐹𝐶 (“Skeleton From-Clause”), 𝑆𝑊𝐶 and
𝑆𝑆𝐶 are skeletons of FROM, WHERE and SELECT
clauses in the corresponding 𝑆𝑄.

Definition 3. 𝑆𝐶, 𝐹𝐶 and 𝑊𝐶 are the SELECT-, the
FROM- and the WHERE-clause of the query.
This differentiation will let us introduce a more sophi-

sticated classification of patterns and antipatterns later.

Definition 4. A query template is a triple consisting
of skeleton subtrees (𝑆𝐹𝐶, 𝑆𝑊𝐶, 𝑆𝑆𝐶).

Definition 5. Two skeletons 𝑆𝑄1 and 𝑆𝑄2 are equal to
each other iff
(𝑆𝐹𝐶1 = 𝑆𝐹𝐶2) Ʌ (𝑆𝑊𝐶1 = 𝑆𝑊𝐶2) Ʌ (𝑆𝑆𝐶1 = 𝑆𝑆𝐶2)
In the following, we need a notion of similarity of que-

ries/their skeletons. At first sight, small deviations in

ARZAMASOVA ET AL.: CLEANING ANTIPATTERNS IN AN SQL QUERY LOG 5

structure seem tolerable. However, a pattern tends to be
created by one software application, i.e., the queries have
the same structure. In consequence, we start by focusing
on the case that query skeletons are equal, see Definition
6. Our case study will examine whether this definition is
adequate or should be refined.

Definition 6. Two queries are similar iff their skele-
tons are equal.

 Consider the following queries: Example 8.
SELECT a, b FROM T WHERE a = 0 AND b >= 3

SELECT a, b FROM T WHERE a = 10 AND b >= 5

A representation of the SQ for both queries then is:

SELECT a, b FROM T

WHERE a = < 𝑛𝑢𝑚 > AND b >= < 𝑛𝑢𝑚 >

4.1.3 Definition and Properties of a Pattern
We now define the notion of pattern in our context.

Definition 7. A pattern is a sequence of query tem-
plates (𝑆𝑄1, … , 𝑆𝑄𝑛). Thus, a pattern is a sequence of
query skeletons (𝑆𝑄1, … , 𝑆𝑄𝑛) =
((𝑆𝐹𝐶1, 𝑆𝑊𝐶1, 𝑆𝑆𝐶1), … , (𝑆𝐹𝐶𝑛 , 𝑆𝑊𝐶𝑛 , 𝑆𝑆𝐶𝑛))

Definition 8. An instance (𝑄1, … , 𝑄𝑛) of a pattern is a
sequence of queries in the query log such that
 𝑢𝑠𝑒𝑟(𝑄1) = 𝑢𝑠𝑒𝑟(𝑄2) = ⋯ = 𝑢𝑠𝑒𝑟(𝑄𝑛)
 𝑡𝑖𝑚𝑒(𝑄1) ≤ 𝑡𝑖𝑚𝑒(𝑄2) ≤ ⋯ ≤ 𝑡𝑖𝑚𝑒(𝑄𝑛)
 ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛, ∄𝑄𝑥 ∉ (𝑄1, … , 𝑄𝑛) 𝑤ℎ𝑒𝑟𝑒

𝑢𝑠𝑒𝑟(𝑄𝑥) = 𝑢𝑠𝑒𝑟(𝑄𝑖) Ʌ 𝑡𝑖𝑚𝑒(𝑄𝑖) ≤ 𝑡𝑖𝑚𝑒(𝑄𝑥) ≤ 𝑡𝑖𝑚𝑒(𝑄𝑖+1)

The last axiom states that there are no other requests
from the same user within time window
[𝑡𝑖𝑚𝑒(𝑄1); 𝑡𝑖𝑚𝑒(𝑄𝑛)].

Definition 9. The frequency of a pattern in a log is
the number of its instances occurring in the log.

Definition 10. The userPopularity of a pattern in a log
is the number of users who have submitted queries
being instances of the pattern.
Frequent patterns with low userPopularity are an im-

portant phenomenon. For instance, one might perceive
such patterns as bias when identifying hot spots of user
interests. One hypothesis that explains the occurrence of
such a pattern is that a database is copied piece by piece.
In our case study, we will examine how often such pat-
terns occur and discuss the phenomenon further.

 Definitions for Antipatterns 4.2
We now give a formal definition of the selected anti-

pattern types. In general, an antipattern is a pattern which
introduces negative consequences. Therefore, antipatterns
have all the properties described in Section 4.1.3. For each
selected antipattern, we provide a detection rule. If an
antipattern has a cleaning solution, we consider it solvable.

4.2.1 The Stifle Antipattern
Our literature review (see Section 3.1.1) has yielded the

following specific characteristics of the Stifle:

1. Small average number of result rows or (in case of
update statements) of rows affected,

2. High number of similar database queries.

The nature of the Stifle is that all its queries refer to one
object. Each query has few result rows, typically tuples
with a foreign-key relationship with this object, and the
queries cause repeated similar requests. Thus, applica-
tions create Stifle instances most likely using databases in
an object-oriented fashion similarly to the get() or
set() method. These methods refer to specific objects,
i.e., to rows in a database table identified by the same id.
Thus, we presume that the Stifle consists of one equality
predicate which filters data using an attribute which is a
key.

Definition 11. A Stifle antipattern is a pattern
(𝑆𝑄1, … , 𝑆𝑄𝑛) such that
 𝐶𝑃1 = 𝐶𝑃2 = ⋯ = 𝐶𝑃𝑛 = 1
 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑛 = ′𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦′

 filCol1, …, filColn are key attributes.

CP is a count of predicates, 𝜃 is the comparison opera-
tor in the predicate, and filCol is the filter column in the
predicate. Note that Definition 11 relies on a database
schema, to distinguish between key and non-key attrib-
utes. We could have omitted the third axiom in principle:
This would have simplified things, but with the potential
drawback of some false positives. Our solving scheme for
this antipattern depends on its form. We differentiate
between classes of the Stifle, based on the clause where
the queries differ. Such a difference may be either in the
WHERE, the FROM, or the SELECT clause. We now de-
scribe them, followed by our solution to clean the log.

 DW-Stifle 4.2.1.1
The first case is that the statements in an instance of a

pattern have equal SELECT and FROM clauses, but a
different WHERE clause. We refer to this as DW-Stifle
(‘different WHERE’ Stifle).

 The following is a DW-Stifle antipattern: Example 9.
SELECT name FROM Employee WHERE empId = 8;

SELECT name FROM Employee WHERE empId = 1;

Hence, DW-Stifle is a pattern with the same 𝑆𝐶, 𝐹𝐶 and
𝑆𝑊𝐶 but different values in the WHERE clause. The for-
mal definition is as follows:

Definition 12. A DW-Stifle is a Stifle (𝑆𝑄1, … , 𝑆𝑄𝑛) such
that
 𝑆𝐶1 = 𝑆𝐶2 = ⋯ = 𝑆𝐶𝑛
 𝐹𝐶1 = 𝐹𝐶2 = ⋯ = 𝐹𝐶𝑛
 𝑆𝑊𝐶1 = 𝑆𝑊𝐶2 = ⋯ = 𝑆𝑊𝐶𝑛
 𝑊𝐶1 ≠ 𝑊𝐶2 … ≠ 𝑊𝐶𝑛

Our cleaning solution is to compose one query with all
filtering conditions in the WHERE clause.

 The cleaning solution for Example 9 is : Example 10.
SELECT empId, name FROM Employee WHERE empId IN (8, 1);

Compared to the solving solution in Example 6 we
now get one SQL statement instead of several ones.

 DS-Stifle 4.2.1.2
If an instance of the Stifle has a sequence of queries

with equal FROM and WHERE clause, it is a DS-Stifle
(‘different SELECT’ Stifle).

 A DS-Stifle instance is as follows: Example 11.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, MONTH YEAR

SELECT name FROM Employee WHERE empId=8;

SELECT address, phone FROM Employee WHERE empId=8;

Definition 13. A DS-Stifle is a Stifle (𝑆𝑄1, … , 𝑆𝑄𝑛) with
the following characteristics:
 𝑆𝑆𝐶1 ≠ 𝑆𝑆𝐶2 ≠ ⋯ ≠ 𝑆𝑆𝐶𝑛
 𝐹𝐶1 = 𝐹𝐶2 = ⋯ = 𝐹𝐶𝑛
 𝑊𝐶1 = 𝑊𝐶2 = ⋯ = 𝑊𝐶𝑛

To solve this, we union the SELECT clauses, as follows.

 The cleaning solution for Example 11 is : Example 12.
SELECT name, address, phoneNumber

FROM Employee WHERE empId = 8;

 DF-Stifle 4.2.1.3
Patterns with different FROM statements are named

DF-Stifle (‘different FROM’ Stifle). The formal definition
is as follows:

Definition 14. A DF-Stifle is a Stifle
(𝑆𝑄1, … , 𝑆𝑄𝑛) where
 𝑆𝐹𝐶1 ≠ 𝑆𝐹𝐶2 ≠ ⋯ ≠ 𝑆𝐹𝐶𝑛
 𝐹𝐶1 ≠ 𝐹𝐶2 ≠ ⋯ ≠ 𝐹𝐶𝑛
 𝑊𝐶1 = 𝑊𝐶2 = ⋯ = 𝑊𝐶𝑛

Inequality in the FROM clause could mean redundant
database design as we point out in Example 13. Thus,
Example 14 illustrates our solving scheme:

 The following queries select information Example 13.
on the same real-world object from different tables:
SELECT name FROM Employee WHERE empId = 8;

SELECT address FROM EmployeeInfo WHERE empId = 8;

 Example 14.
SELECT E.name, EI.address

FROM Employee as E INNER JOIN EmployeeInfo as EI

ON E.empId = EI.empId WHERE empId = 8;

At first sight, a large number of DS-Stifle instances
suggest a refactoring of the underlying tables or introduc-
ing one or several views.

 To cope with the situation illustrated in Example 15.
Example 14, the following view might seem helpful:
CREATE VIEW EmployeeView AS

SELECT E.name, EI.address FROM Employee as E

INNER JOIN EmployeeInfo as EI ON E.empId = EI.empId

Now one can access the view EmployeeView instead of
the underlying tables. However, this suggestion does not
address our specific problem, namely solving instances of
the antipattern in the log a posteriori. We use the method
as in Example 14 to solve instances of the DF-Stifle.

4.2.2 The Circuitous Treasure Hunt Antipattern
The distinctive feature of the CTH antipattern is de-

pendency of the queries. As re-querying is not feasible
(see Section 1) to identify dependencies in sequences of
SQL queries, we need a different approach to detect
CTHs. The sequence and structure of the individual que-
ries of a CTH contain hints that allow detecting CTH
candidates. In a CTH, the result of the first query is an
input parameter for a subsequent one. Hence, we require
that

 there are attributes in the SELECT clause of the first
query used in the WHERE clause of the other query,

 the second query features an equality predicate in the
WHERE clause, to refer to the tuple exclusively.

However, relying solely on these conditions could
yield false positives. Without re-querying one can only
detect candidates. So the following is a definition of ‘CTH
candidate’, not of (real) CTH.

Definition 15. A CTH candidate is a pattern
(𝑆𝑄1, … , 𝑆𝑄𝑛) such that:
 𝑆𝑄1 ≠ 𝑆𝑄2
 𝐶𝑃2 = ⋯ = 𝐶𝑃𝑛 = 1
 𝜃1 = … = 𝜃𝑛 = ′𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦′

Our respective detection method looks for patterns
which satisfy Definition 15. The decision whether a candi-
date is a real CTH requires domain knowledge. Our case
study will quantify the share of false positive CTHs which
our heuristics produces.

 IMPLEMENTATION 5

In this section, we describe the realization of our ap-
proach. We first give an overview of the architecture of
our framework that cleans antipatterns. We then intro-
duce the components of the processing pipeline in more
detail. There is a web page of our framework1 where one
can find its documentation, a test set and the source code.

The purpose of our framework is to analyze query
logs. Depending on the analysis target, we intend to find
query templates or patterns (series of query templates) with-
in the log, or identify and solve antipatterns. Fig. 1 shows
the respective workflow. Rectangular boxes stand for
input data, rounded boxes for processing steps, and gray
boxes for results. There are several results extracted from
a SQL log. In contrast, the log is the only input. This cur-
rent section is supposed to give the reader an impression
of the potential of our solution as well as an impression of
how to use it. It also describes parameters of our frame-
work. We now discuss some relevant details.

 Original Query Log 5.1
The original query log is the only input that is required.

Our approach does not need to have access to the data-
base and does not introduce any load overhead. We re-
quire the log to consist of SQL statements together with
their execution time. However, the more additional in-
formation is available, the better one can perform the
analysis. For example, if we can differentiate between
users who have issued queries, we can obtain the user
popularity of a pattern (see the discussion in 4.1.3). Nev-
ertheless, our framework is operational without this in-
formation as well.

 Deleting Duplicates 5.2
The first processing step is deleting duplicate queries.

We perceive duplicates as unintended errors. Conse-
quently, we record the number of duplicate removals in
the result statistics. This is because a large number of
them may indicate a refactoring of a particular applica-

1 https://dbis.ipd.kit.edu/2500.php

ARZAMASOVA ET AL.: CLEANING ANTIPATTERNS IN AN SQL QUERY LOG 7

tion.
We define duplicates as identical statements with a

small difference in time. From a conceptual point of view,
we argue that two identical statements executed by the
same user only stand for the same information need in
case the time difference is smaller than the threshold. We
propose setting the threshold to the minimum value,
allowing to find most of the duplicates. Section 6.2 will
discuss respective empirical results.

 Parsing Statements and Parsed Query Log 5.3
After deduplication, there may still be syntactically in-

correct query statements. In this step, we parse all queries
and build a syntax tree for each of them. If the parsing
finds syntax errors, the process will not consider the
statement any further. We also exclude non-select state-
ments. The parsing procedure also extracts the SELECT,
FROM and WHERE subtrees and their skeleton forms for
each statement. Table 2 contains an example of a parsed
log (without skeletons of FROM, WHERE and SELECT).
Each row of a parsed log also contains the link to a pat-
tern (from the Patterns block) and a query template (from
the Query templates) a statement belongs to. If a parsed
statement satisfies the definition of an antipattern
(Definition 11 to Definition 15), it is marked as an antipat-
tern of the respective type.

 Query Templates and Patterns 5.4
We compute statistics for each template and pattern

using the frequency and userPopularity properties
(Definition 9 and Definition 10, see Section 4.1.3). In addi-
tion to these attributes, a pattern has a property indicating
whether it is an antipattern and, if so, its type. As the next
step, instances of the Stifle need to be solved.

Our framework can be extended to accommodate oth-
er antipatterns. In the presence of a new antipattern, one
first comes up with its formal definition, often after a
literature review. Based on the definition, one provides a
detection rule and, if possible, a solving solution. For
instance, suppose that we want to extend our framework

with the “Searching nullable columns” (SNC) antipattern
[24]. An example of it is as follows:

SELECT * FROM Bugs WHERE assigned_to = NULL

SELECT * FROM Bugs WHERE assigned_to <> NULL

Since neither equality nor inequality return true when
comparing a value to a null value, one needs another
operation when searching for a null value, IS NULL or IS
NOT NULL. Hence, if this is the intention, the previous
statements should be rewritten as follows:

SELECT * FROM Bugs WHERE assigned_to IS NULL

SELECT * FROM Bugs WHERE assigned_to IS NOT NULL

We now provide a formal definition of SNC.

Definition 16. A 𝑆𝑁𝐶 is a pattern (𝑆𝑄1) where
 𝑊𝐶1 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑠 𝑜𝑓 “𝑁𝑈𝐿𝐿”
 𝜃1 =′ 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦′ ∨ ′𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦′

The solving solution is rather straitforward: replace
" = 𝑁𝑈𝐿𝐿" with "𝐼𝑆 𝑁𝑈𝐿𝐿" and " <> 𝑁𝑈𝐿𝐿" or '"! = 𝑁𝑈𝐿𝐿"
with "𝐼𝑆 𝑁𝑂𝑇 𝑁𝑈𝐿𝐿".

Now one needs to include the new detection rule
based on Definition 16 in the parse step, as we have done
with antipatterns described in Section 4.2. Since there is a
solving solution as well, one can include it in the step
"Solve antipatterns". From now on, each SNC detected
will be solved.

 Solving Antipatterns, Clean Query Log and 5.5
Statistics

The approach iterates over the whole log, and for eve-
ry pattern detected, it checks whether it is an antipattern.
If so, it solves it, following the solving solutions described
earlier (e.g., Example 10 or Example 12). The procedure
returns a cleaned query log and statistical information
regarding antipatterns solved: how many of them have
been encountered in the query log, how many have been
solved. The following is an example of this procedure.

TABLE 2
A parsed query log

Statements Type

1 SELECT E.Id FROM Employees E

WHERE E.department = ‘sales’

CTH

2 SELECT E.name, E.surname

FROM Employees E WHERE E.id = 12

CTH,

DW-Stifle

3 SELECT E.name, E.surname

FROM Employees E WHERE E.id = 15

CTH,

DW-Stifle

4 SELECT E.name, E.surname

FROM Employees E WHERE E.id = 16

CTH,

DW-Stifle

TABLE 3
A clean query log

Statements Type

1 SELECT E.Id FROM Employees E

WHERE E.department = ‘sales’

CTH

2 SELECT E.name, E.surname

FROM Employees E WHERE E.id IN

(12, 15,16)

CTH

 Processing Steps Fig. 1.

Original Query Log

Delete duplicates

Pre-clean Query Log

Parse statements

Parsed Query Log Query templates

Patterns

Solve antipatterns

Clean Query Log Statistics

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, MONTH YEAR

 Table 2 contains a query log after pars-Example 16.
ing. Queries 2, 3 and 4 form a DW-Stifle antipattern,
which is solvable. The first four queries are CTH candi-
date.
In the next step, the instance of DW-Stifle is rewritten

as one request, as shown in Table 3.
In the example, Queries 2, 3 and 4 belong to both, DW-

Stifle and CTH. However, since we do not provide a solv-
ing solution for CTH, there is no conflict regarding what
to solve. If a certain subset of queries shows multiple
solvable antipatterns, we perform our solving procedure in
the order of queries occurring in the log. Put differently,
solving starts with the antipattern which appears in the
log first.

After one cleaning step, there can be further solvable
antipatterns. To check this, one needs to parse statements
again and possibly solve the antipatterns. In our case, the
experiments have not indicated any necessity to do so:
After the first cleaning, the number of solvable antipat-
terns contained in the log has been 0.09 %, which is negli-
gible.

 A CASE STUDY WITH SKYSERVER 6

This section reveals insights on the existence and fre-
quency of antipatterns in a real-world query log. The
particular objectives of our case study are:

1. Answer the question how many patterns or antipat-
terns are contained in a large real-world log;

2. Give meaning to the most popular patterns;
3. Hypothesize on the rationale behind patterns based

on their frequency and user popularity;
4. Determine the positive detection rate of the CTHs;
5. Study the importance of metadata (users IPs and

sessions) on pattern and antipattern detection.
6. Showcase the influence of cleaning antipatterns on

subsequent analyses.

 Appropriateness of the SkyServer Log for a 6.1
Case Study

We have used the SkyServer query log for our case
study, since it is a large scientific data set available to the
public, and, to our knowledge, it is the only one with this
characteristic. The log provides extensive information
regarding all requests. Besides the actual SQL statement
and its timestamp, it contains the user IP, a label of the
user session and the number of result rows. See
http://skyserver.sdss.org/log/en/traffic/sql.asp for a
description of the SQL log columns. The public availabil-
ity of this log allows for easy verification or extension of
our results by the scientific community. We analyze the
SkyServer log of SQL statements for five years from 2003
to 2008. It consists of 42 million queries from about 47
thousand users.

 Choosing the Duplicate Time Threshold 6.2
For our analysis, we need to choose a time threshold

for duplicate queries. We set this threshold by testing
several values with a sample data set of 105 queries (cf.
Table 4). Most duplicates are already identified when

using 1 second as the threshold. The difference between
the effect of this value and setting it to infinity is about
0.5%, which we deem insignificant. This means that du-
plicates indeed are requests not intended by the user, as
we have hypothesized in Section 5.2. Most duplicate que-
ries are submitted to the database within a second. We
conclude that they result from web-form reloads or from
errors in applications.

When increasing the duplicate time threshold, the
more identical queries from one user are classified as
duplicates, and the slower the procedure that removes
duplicates. Setting the threshold to infinity is not always
good, since two identical queries with a big time differ-
ence between them might not be a duplicate after all, but
reflect user intention. Since user behavior may differ be-
tween databases, each SQL log analysis may require its
own threshold value. Tests similar to the one just de-
scribed should allow to determine this value.

 General Results 6.3
From the 42 million queries of the raw log, we extract

40 million, which are not DML or DDL, and which do not
contain syntax error. After deleting duplicates, the log
contains 38.5 million queries (see Table 5). Our analysis of
the log indicates that our definition of query similarity
(Definition 5) is adequate: manual investigation of the
results has revealed that any query templates which are
structurally different from each other also feature differ-
ent requests. Overall, cleaning a log with our approach
has resulted in 27.5% size reduction. This is significant.
The number indicates that there is a large share of an-
tipatterns, and that our antipattern definitions are valid.
In more detail, we have uncovered 1018 distinct DW-
Stifles, 656 DS-Stifles and 487 DF-Stifles. Among 50 can-
didates for CTH, 28 turn out to be real ones (see Sec-
tion 6.9). The instances of the antipatterns cover about
7.5 million statements.

 To complete this current series of experiments, we
have conducted one experiment on how rewriting anti-
patterns influences the runtime of the queries. To do so,
we picked 10222 queries which form solvable antipatterns
(Stifles). After rewriting, only 254 queries remain a re-
duction by a factor of 40. Running the original 10222 que-
ries takes 4450 seconds, while the rewritten 254 queries
require 152 seconds, 29.27 times faster. This effect is due
to reduced network overhead and database resources.

Another benefit due to this size reduction is a de-
creased load for subsequent downstream analyses, see
Section 6.9.

TABLE 4
Experiments with threshold parameter

for deleting duplicates

threshold log size % of original size

Original Log 5,748,440 100

1 sec 5,515,737 95.95

2 sec 5,515,737 95.95

5 sec 5,512,468 95.89

10 sec 5,507,233 95.80

Non restricted 5,484,746 95.41

ARZAMASOVA ET AL.: CLEANING ANTIPATTERNS IN AN SQL QUERY LOG 9

 Effects of SQL Log Cleaning 6.4
To evaluate the effectiveness of cleaning antipatterns,

we compare the most popular patterns before and after
running cleaning procedure. Fig. 2 (a) tells us that there
are 9 antipatterns among the 30 most popular patterns. If
we consider only the top-15 patterns, we even find six of
them to be antipatterns. Table 6 shows the most frequent
ones. The frequency of discovered antipatterns highlights
the importance of cleaning the log. The solvable antipat-
terns (DS-Stifle, DF-Stifle and DW-Stifle) cover about
19.2% of the query log, a significant value. Furthermore,
discovering antipatterns in a query log in this case allows
detecting users who perform requests with such antipat-
terns. Operators of the database could then contact these
individuals and inform/train them accordingly.

As Table 6 has revealed, the most frequent antipattern
is DW-Stifle. All antipatterns filter the table photoPrimary
by the internal attribute objId, which is not a notion from
astronomy. Hence, we hypothesize that the antipatterns
cannot be interpreted as user intentions, while patterns
which are not antipatterns can. We will discuss this as-
sumption further in the next section. We observe that
those antipatterns do not have high user popularity –
most of them come from a few distinct IP addresses. We
conclude that the software generating the antipatterns is

proprietary and not part of the SkyServer infrastructure.

 Interpretation of Patterns 6.5
In this section, we discuss the meaning of the most

popular patterns. We demonstrate that, unlike antipat-
terns, patterns represent user interests. This is an indica-
tion that we have curbed the extent of bias introduced by
antipatterns significantly.

Table 7 contains the most popular patterns in the que-
ry log after removing the antipatterns. All five patterns
perform spatial search, i.e., look for objects in some part
of the sky. These queries are meaningful for domain ex-
perts. In other words, pattern extraction reveals particular
ways users use the database. We find it remarkable that
the most popular patterns come from very few users.
None of the patterns created by the SkyServer Web inter-
face does fall in the top 5. Such patterns occur at rank 12
and 17. Rank is a position in a list of patterns sorted by
frequency. The most frequent pattern has rank 1; the next
one in popularity has rank 2, etc.

According to Fig. 2 (b), our study reveals a large num-
ber of frequently occurring patterns with low user popu-
larity. In particular, 23 out of the 40 most popular patterns
were run only by one user. The instances of these patterns
perform a sliding window search, i.e., consecutive re-
quests for certain objects with disjoint filtering conditions.
From now on, we refer to this as sliding window search
pattern (SWS pattern). We do not classify the SWS pattern
as an antipattern since it does not have a negative per-
formance effect. Our explanation why this pattern occurs
is that, due to SkyServer database restrictions, users’ ac-
cess data piece-wise, downloading a significant part of
the database.

Clearly, SWS detection depends on 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 and
𝑢𝑠𝑒𝑟𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 thresholds. We now briefly discuss the
effect of these parameters. In a nutshell, they reflect how
rigid one wants to be in SWS cleaning. If we set ‘frequen-
cy’ higher and ‘userPopularity’ lower, we will get rid only
of the most obvious SWS. Only patterns which are fre-
quent and are due to, say, one or two users will be filtered
out. Decreasing ‘frequency’ and increasing ‘userPopulari-
ty’ means more major cleaning. This is because patterns of
medium frequency which come from more users will be
labeled as SWS. Table 8 contains the numbers for our case
study. The 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 threshold is in relative terms (%). A
cell of a table indicates how much of the log we classify as
SWS with the respective 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 and 𝑢𝑠𝑒𝑟𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦

TABLE 5
Results overview

Property Value

Size of original query log 41,998,253

Count of Select queries 40,177,133 (95.9 %)

Size of log after deleting duplicates 38,529,871 (91.74%)

Final log size 30,454,778 (72.51%)

Count of patterns 176,110

Maximal pattern frequency 3,349,709

Count of distinct DW-Stifle 1,018

Count of queries in all DW-Stifle 6,326,863

Count of distinct DS-Stifle 6,562

Count of queries in all DS-Stifle 1,281,936

Count of distinct DF-Stifle 487

Count of queries in all DF-Stifle 212,103

Count of distinct candidate CTH 50

Count of queries in all candidate CTH 424,792

Count of distinct real CTH 28

Count of queries in real CTH 435,251

TABLE 6
The most popular antipatterns

Frequency Type First skeleton statement Second skeleton statement Distinct IPs

1 1,454,207 DW SELECT rowc_g, colc_g

FROM photoprimary WHERE objid=num

SELECT rowc_g, colc_g

FROM photoprimary WHERE objid=num

2

2 1,410,696 DW SELECT rowc_r, colc_r

FROM photoprimary WHERE objid=num

SELECT rowc_r, colc_r

FROM photoprimary WHERE objid=num

3

3 1,044,958 DW SELECT rowc_i, colc_i

FROM photoprimary WHERE objid=num

SELECT rowc_i, colc_i

FROM photoprimary WHERE objid=num

1

4 559,450 DS SELECT rowc_r, colc_r

FROM photoprimary WHERE objid=num

SELECT rowc_g, colc_g

FROM photoprimary WHERE objid=num

2

5 558,930 DS SELECT rowc_g, colc_g

FROM photoprimary WHERE objid=num

SELECT rowc_r, colc_r

FROM photoprimary WHERE objid=num

2

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, MONTH YEAR

thresholds. The numbers are in line with our explanation.
The discovery of SWS patterns is important for user-

interest finding. Queries within such a pattern do not
overlap in the area of the data space accessed. However,
instances of these patterns produce a specific uniform
noise, which one can exclude in subsequent analyses. An
alternative to exclusion is a union of the filtering condi-
tions, i.e., replacing all these queries with one that yields
the same result.

We think that SWS patterns also bog down prediction
quality of association-rule mining. Suppose that we want
to suggest the next query based on the previous one. If
the learning set contains SWS pattern queries, a query
recommendation system would suggest a query with a
disjoint filtering condition. However, this kind of be-
havior (sliding window search) is a “machine download”,
which does not require query-recommendation assist-
ance. Humans on the other hand would benefit from
query recommendation. [9] devotes attention to this issue.
However, their recommendations only consider the dura-
tion of user sessions, not the shape of queries. An exten-
sion taking SWS patterns into account could distinguish
humans and “bots” with more accuracy. In our future
work, we will study the influence of cleaning the learning
set on the quality of query recommendation.

 CTH Detection 6.6
Having discussed the automatic detection of the Stifle,

we now turn to CTH antipatterns. With our solution, we
discover 50 candidate antipatterns. As mentioned, the
decision whether such a pattern is a CTH requires do-
main knowledge. The number however is small, at least
in this current case, making respective intellectual effort
tolerable. Thus, we analyze those few patterns by hand

and conclude that 28 out of 50 are real CTH antipatterns.
We deem a CTH candidate a real antipattern if the deci-
sion regarding the next statement is predefined. The fol-
lowing example is an illustration.

 Consider an instance of two CTH candi-Example 17.
dates:

The instances of CTH Candidate 1 comply with Sky-
Server Web interface functionality: First, a user looks for
all tables in a database, and then choses table ‘Galaxy’
and query it. The time difference between two queries
indicates that the second query has not been issued before

TABLE 7
The most popular patterns

Frequency Coverage (%) Skeleton statements Description Distinct IPs

1 3,349,709 8.69 SELECT g.objid, …

FROM photoobjall as g

JOIN fgetnearbyobjeq(@ra,

@dec, @r) as gn on

g.objid=gn.objid left

outer join specobj s on

s.bestobjid=gn.objid

Gets objects within @r arcmins of an Equato-

rial point (@ra,@dec)

1

2 3,082,742 8.0 SELECT p.objid, …

FROM fgetobjfromrect(@ra1,

@dec1, @ra2, @dec2) n,

photoprimary p WHERE

n.objid=p.objid

and r between num and num

Gets objects from rectangle area with radius

between two values.

19

3 2,179,250 5.65 SELECT count(*) FROM pho-

toprimary

WHERE htmid>=@htm1 and

htmid<=@htm2

Gets the count of objects within a range of

spherical triangles (special search)

1

4 2,099,560 5.44 SELECT p.objId, …

FROM fgetnearbyobjeq((@ra,

@dec, @r) n, photoprimary

p

WHERE n.objid=p.objid

Get information about the objects within @r

arcmins of an Equatorial point (@ra,@dec)

1

5 674,071 1.75 SELECT ra, …

FROM fgetnearbyobjeq((@ra,

@dec, @r) n, photoprimary

p

WHERE n.objid=p.objid

Get information about the objects within one

fraction of a scan strip observed at one time

(limited by observing conditions). It is also

some sort of special search

1

TABLE 8
SWS coverage depending on frequency and user popu-

larity thresholds

Frequency
UserPopularity 10% 1% 0.1% 0.01%

1 8.7% 18.7% 31.2% 35.4%

2 8.7% 18.7% 36.0% 40.9%

4 8.7% 18.7% 40.3% 45.6%

8 8.7% 18.7% 40.7% 46.1%

16 8.7% 18.7% 41.0% 46.3%

TABLE 9
CTH candidate 1

Statements Time

1 SELECT name, type FROM

DBObjects WHERE type='U'

AND name NOT IN

('LoadEvents', 'QueryRe-

sults') ORDER BY name;

13.06.07 12.18.46 PM

2 SELECT description

FROM DBObjects

WHERE name='Galaxy’

13.06.07 12.19.13 PM

ARZAMASOVA ET AL.: CLEANING ANTIPATTERNS IN AN SQL QUERY LOG 11

the first one – the user apparently has reflected for a while
which table he/she is interested in.

The queries in CTH Candidate 2 in contrast run direct-
ly one after another, with no time difference. The first
query performs returns the closest object for a certain
point; the second query then instantly asks for the object
the first query has returned. Even if the count of the sec-
ond queries is not equal to the number of rows the first
query has returned, this can only mean that there is some
logic deciding which objects from the first result are
fetched. This logic relies on the first result, so this indi-
cates a dependency between the two queries. Thus, this is
an instance of CTH.

We have distinguished between real CTHs and CTH
candidates, due to our rigid interpretation. A more gener-
ous interpretation results in more true CTHs. While it
seems reasonable to evaluate a CTH detection method
objectively by measuring precision and recall, this is not
feasible in our case. These metrics require a ground truth,
i.e., false positive and false negative CTHs must be
known. To get there, one would have to interview thou-
sands of SkyServer users on their exact intentions, make
sure that their answers are clear (even though many of
them might not be trained well enough to this end) etc.
Thus, all we can claim based on our study is that our
detection method can identify CTHs within a query log.

Fig. 2 (d) shows false positives and real CTHs, depend-
ing on their frequency and user popularity. In this visual-
ization, we observe a dependency between user populari-
ty and the property of being a CTH. However, this is not
an indicator for real CTH for sure: Widely used software
could introduce instances of the CTH as well.

 Feedback from Domain Experts 6.7
In order to assess the usefulness of our results, we

have conducted an experiment with domain experts. We
have provided the list of the most popular patterns and
antipatterns and have asked the experts to explain their
meaning. They did not have any information from our
side regarding whether we consider a pattern an antipat-
tern. We also had not explained to them what antipatterns
are. The experts have stated that all patterns (not antipat-
terns) are meaningful from their point of view. They also
deem antipatterns follow-up queries, where a user has
first obtained objIDs (see Table 6) with a previous query
and asks for more data. This is exactly what CTH does,
and this has been our hypothesis as well. The fact that,
based on our results, the domain experts have come to the

same conclusion independently proves that our frame-
work is indeed able to find antipatterns in a real-world
query log.

 Reduced Information in the Log 6.8
Not every SQL log contains all the information that is

part of the SkyServer log. Therefore, our framework only
requires SQL statements with timestamps as input. In this
section, we study the result quality with this minimum
input. More specifically, we compare the results with two
input data sets:

1. SkyServer query log with user-session information
2. SkyServer query log containing only SQL requests

and timestamps.
We expect insignificant changes in pattern frequency,

for the following reason. The statements belonging to one
occurrence of a pattern have a very small time difference
and therefore come one after another in time order any-
way. Fig. 2 (c) shows the most popular patterns and an-
tipatterns with those two different inputs. All in all, the
patterns keep their frequency of occurrence without user-
session information. It means that, with high probability,
requests from one user with a small time difference
would come one after another. So, results seem to be
meaningful for a query log which standard tools can col-
lect. In terms of log size after cleaning, the difference is
insignificant as well: The count of queries in the result set
for the experiment with minimal input data is 0.36% less
than for the original.

However, without information regarding users, our
approach bears certain limitations. For instance, it is im-
possible to find patterns which have low user popularity
and perform sliding window search. This means that we
cannot reliably detect and remove this specific noise.

To conclude, we now discuss the options if there are
no timestamps in the query log. Our processing requires
timestamps only for duplicate detection. Otherwise, exact
timestamps are not necessary. On the other hand, we still
need information according to which we can order the
requests by time. (A pattern is a sequence of statements,
not a set.) Statements within antipatterns must be or-
dered; this is essential for their identification.

 Effects on Downstream Analysis 6.9
Even though it is not the core topic of this article, we

now present some insights into the influence of the clean-
ing on subsequent analyses. To this end, we extract 1.3
million queries from the log and reproduce the experi-
ment described in [1]. It detects user interests based on
the log. They cluster queries, using the overlap of the data
space accessed by two queries as their distance measure.
More specifically, the bigger the overlap, which ranges
from 0 to 1, the smaller is the distance. Queries with a
distance smaller than a threshold go to the same cluster.
We run the experiments with different threshold values
from 0.1 to 0.9 with a step of 0.1, using three variants of
that sample:

1. Raw query log (1.3 million queries)

TABLE 10
CTH candidate 2

Statements Time

1 SELECT * FROM

dbo.fGetNearestObjEq

(145.38708,0.12532,0.1);

18.09.07 11.25.00 AM

2 SELECT plate, fiberID,

mjd, SpecObjID

FROM SpecObjAll

WHERE SpecObjID

=75094094447116288

18.09.07 11.25.00AM

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, MONTH YEAR

2. Removal query log, obtained from the raw query
log by removing antipatterns (0.89 million que-
ries).

3. Clean query log, obtained from the raw query log
by cleaning antipatterns (1 million queries).

In the case of cleaning, we do not delete antipatterns
from a log, but rewrite them, as discussed in Section 4.2.
Hence, the removal log is smaller than the clean one.

Fig. 3 shows the results. Varying the threshold value
(from 0.1 to 0.9) has little impact on the number of clus-
ters. This is because the distance metric which calculates
the overlap of two queries very often yields 0 (queries are

identical) and 1 (queries do not have any overlap). The
number of occurrences of other distance values has been
very low in our experiments. The clusters in the raw log
are too numerous to be analyzed individually. For exam-
ple, for threshold value 0.9 there are 1393 of them. Most of
them also are relatively small. The log without antipat-
terns (“removal”) yields bigger and at the same time few-
er clusters. This happens for the following reason: When
removing antipatterns, we filter out a lot of small clusters
formed by them. Hence, for the removal log we have got
a number of clusters which one can analyze manually and
interpret as user interests (51 clusters for threshold value

 (a) The most popular patterns before and after cleaning the log; (b) Frequency and user popularity of the patterns; (c) The experi-Fig. 2.
ments with and without user session information; (d) Possible and real CTH antipatterns

 Results of an experiment on query clustering Fig. 3.

0

600

1200

1800

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
lu

st
er

's
 c

o
u
n
t

threshold

Clusters' count

Raw Cleaning Removal

0

6000

12000

18000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v
er

ag
e

cl
u
st

er
's

 s
iz

e

threshold

Average clusters' size

0

2000

4000

6000

8000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
u
n
ti

m
e

threshold

Runtime, (s)

0.E+0

1.E+6

2.E+6

3.E+6

4.E+6

0 5 10 15 20 25 30

F
re

q
u
en

cy

Rank (according to frequency)

Before

Patterns Antipatterns

0.E+0

1.E+6

2.E+6

3.E+6

4.E+6

0 5 10 15 20 25 30

F
re

q
u
en

cy

Rank (according to frequency)

After

Patterns

(a)

2^10

2^12

2^14

2^16

2^18

2^20

2^22

1 16 256 4,096

F
re

q
u
en

cy

Users' popularity

Low users' popularity

High users' popularity

(b)

0.E+0

1.E+6

2.E+6

3.E+6

4.E+6

1 2 3 4 5 6 7 8 9 10

F
re

q
u
en

cy

Rank for the experiment with FI

(according to frequency)

Pat. with FI Antipat. with FI

Pat. without FI Antipat. without FI

(c)

128

512

2048

8192

32768

131072

524288

0 10 20 30 40 50

F
re

q
u
en

cy

Rank (according to frequency)

1

4

16

64

256

1024

4096

0 10 20 30 40 50

U
se

r
p

o
p

u
la

ri
ty

Rank (according to frequency)

False CTH True CTH

(d)

ARZAMASOVA ET AL.: CLEANING ANTIPATTERNS IN AN SQL QUERY LOG 13

0.9). We have carried out such an analysis and conclude
that most clusters do reflect an area of user interest, as
they refer to certain locations in the sky. We have found
all clusters from the removal log in the raw log as well as
in the cleaned log, see the middle gray dots in Fig. 4 (a, b).
This indicates that removing antipatterns indeed is a way
to get rid of noise that does not hamper subsequent pro-
cessing. From the performance point of view, cleaning or
removing of antipatterns is significant as well: The
runtime curve of Fig. 3 indicates that the smallest log
(“removal”) gives way to the best time. This time, howev-
er, does not change linearly with the number of points,
because clustering requires comparing one object (query)
to the other ones. The complexity of the procedure in the
worst case is 𝑂(𝑛2).

The experiments with the cleaned log show that clus-
ters with DS-Stifle instances are smaller. This is line with
our prediction, i.e., 0. Fig. 4 (c) graphs the sizes of the top
20 biggest DS-Clusters in the clean and in the raw log.
Clusters in the raw log are approximately two times big-
ger. For instance, the biggest DS-Cluster in the raw log
consists of statements like:

1. SELECT text FROM DBObjects

WHERE name='photoobjall';

2. SELECT description FROM DBObjects

WHERE name='photoobjall';

Most queries in the clean log in turn consist of state-
ments like:

SELECT text, description FROM DBObjects

WHERE name='photoobjall';

We for our part conclude that both removal and clean-
ing improve the quality of the data, and that the process
as a whole is meaningful.

 Threats to Validity 6.10
Regarding threats to validity, our goal is studying va-

lidity of our framework. Recall that three variants of the
query log are the input of the clustering procedure. The
experiment with the raw data, the query log as is, is the
baseline. The framework (pre-processing) is a treatment
and can be seen as an independent variable. The depend-

ent variable is the clustering result. Since we use the same
clustering algorithm with the same parameters for each
dataset (raw, clean, removal), it is only the treatment that

explains the difference in the results. Hence, the experi-
ment has high internal validity.

External validity is the degree to which the results of
an experiment can be generalized. To discuss this aspect
fully, one would need to perform our processing on an-
other SQL query log. Unfortunately, to the best of our
knowledge, there is only one query log publically availa-
ble – Sky Server data, which we are using for our current
study already. To overcome this and prove that we have
not arrived at our results by accident, we can try different
samples of the query log and cluster them. We have per-
formed such experiments and conclude that, for all da-
tasets samples, clustering raw data yields much more
clusters, with small average size. Put differently, the base-
line experiment always returns noisy results compared to
experiments with a clean or a removal log. A further in-
vestigation of external validity – hunt for another case
study – is part of future research.

 CONCLUSIONS 7

Knowing how a big database is used is highly im-
portant for its owner. Analyzing the SQL log and finding
patterns is one promising approach in order to reveal
such information. Antipatterns however might falsify
such analyses; discovering antipatterns in the log is bene-
ficial for refactoring and post-processing. To our
knowledge, finding database antipatterns in SQL query
logs has not been studied before systematically. In this
paper, we have proposed a solution for the detection of
patterns and for solving antipatterns in such a log. To this
end, we have formalized the notion of pattern in the cur-
rent context. Next, we have provided rules for detecting
and – if possible – solving antipatterns. Properties of pat-
terns and antipatterns allow the discovery of certain
kinds of user behavior, as a case study on the SkyServer
query log has demonstrated. All in all, our approach is
capable to detect and classify patterns in a query log. The

 (a, b) Clusters’ sizes for experiments with raw, clean and removal data; (c) DS-Clusters’ sizes for cleaned and raw log. Threshold = Fig. 4.
0.9

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

0 350 700 1050 1400

C
lu

st
er

's
 s

iz
e

Cluster's rank (according to size)

Raw data clusters

Removal data clusters

(a)

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

0 70 140 210 280 350 420

C
lu

st
er

's
 s

iz
e

Cluster's rank (according to size)

Cleaned data clusters

Removal data clusters

(b)

0

900

1800

2700

3600

4500

0 5 10 15 20

C
lu

st
er

's
 s

iz
e

DS-Cluster's rank (according to

size of Cleaned log)

DS-Cluster in cleaned log
DS-Cluster in raw log

(c)

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, MONTH YEAR

results show a significant number of instances of antipat-
terns within the log. Moreover, it is feasible to remove the
most frequently occurring antipatterns. The remaining
patterns refer to real user information needs. All this
highlights the importance of the approach as a general
preprocessing step for any subsequent SQL log analysis.

Regarding the influence of cleaning the learning set on
the quality of query recommendation, our outline for
future work is as follows:
1. We hypothesize that sliding-window search (SWS)

bogs down the quality of queries recommended.
Namely, since SWS comes from robots, the queries
might differ in nature from ones formulated by mor-
tal users. When including SWS in the learning set, we
will generate recommendations which rely on SWS as
well.

2. Clearly, queries suggested by a recommender system
must not contain antipatterns. We would like to
study the rate of recommended queries containing
antipatterns if the recommender is trained on the
original log. We then would like to do the same with
the cleaned log. If the rate now is much smaller, then
our approach obviously is more useful compared to
the outcome that it is not.

REFERENCES

[1] H. V. Nguyen et al., "Identifying User Interests within the Data

Space – a Case Study with SkyServer," in EDBT, Brussels, 2015.

[2] W. Brown, AntiPatterns: refactoring software, architectures, and

projects in crisis, Wiley, 1998.

[3] Gamma, Erich, Design patterns: elements of reusable object-

oriented software, Pearson Education India, 1995.

[4] B. Dudney et al., J2EE antipatterns, Wiley, 2003.

[5] M. Fowler et al., Refactoring: Improving the Design of Existing

Code, Addison-Wesley, 1999.

[6] J. Akbarnejad et al., "SQL QueRIE recommendations," VLDB

Endowment, vol. 3, no. 2, 2010.

[7] F. Silvestri, " Mining query logs: Turning search usage data into

knoweledge," Found. Trends Inf, Retr., Vols. 4(1-2), 2010.

[8] H. Cao, "Context-Aware Query Suggestion by Mining Click-

Through," in KDD, 2008.

[9] V. Singh et al., "SkyServer Traffic Report—The First Five Years,"

Microsoft Research, 2006.

[10] M. Jordan Raddick et al., "Ten Years of SkyServer I: Tracking

Web and SQL e-Science Usage," Computing in Science and

Engineering, vol. 16(4), 2014.

[11] M. Jordan Raddick et al., "Ten Years of SkyServer II: How

Astronomers and the Public Have Embraced e-Science,"

Computing in Science and Engineering, vol. 16(4), 2014.

[12] X.Wang, A. Meliou, E. Wu, "QFix: Diagnosing errors through

query histories," eprint arXiv:1601.07539, 2016.

[13] S. Brass et al., "Semantic errors in SQL queries: A quite

complete list," Journal of Systems and Software, vol. 79, no. 5,

2006.

[14] E. Eessaar, "On Query-Based Search of Possible Design Flaws

of SQL Databases," Springer, vol. 313, 2014.

[15] T-H. Chen et al., "Detecting Performance Anti-patterns for

Applications Developed using Object-Relational Mapping," in

ICSE, 2014.

[16] T-H Chen et al., "Detecting problems in the database access

code of large scale systems: an industrial experience report," in

ICSE, 2016.

[17] A. Wert et al., "Automatic Detection of Performance Anti-

patterns in Inter-component Communications," in QoSA, 2014.

[18] C. Trubiani, A. Koziolek, "Detection and solution of software

performance antipatterns in Palladio architectural models," in

ICPE, 2011.

[19] C. Smith, L. Williams, "Software performance antipatterns," in

WOSP, 2000.

[20] F. Buschmann et al., Stal: Pattern-Oriented Software

Architecture - A System of Patterns, John Wiley & Sons, 1996.

[21] I.D. Baxter et al., "Clone Detection Using Abstract Syntax

Trees," in ICSM, 1998.

[22] S. Schulze, S. Apel, C. Kästner, "Code clones in feature-

oriented software product lines," in GPCE, 2010.

[23] J. Jones, "Abstract Syntax Tree Implementation Idioms," 2010.

[24] B. Karwin, SQL Antipatterns. Avoiding the Pitfalls of Database

Programming, Pragmatic Bookshelf, 2010.

[25] D. Burleson, V. Tropashko, SQL Design Patterns: Expert Guide

to SQL Programming, Rampant TechPress, 2007.

Natalia Arzamasova has received her di-
ploma degree from Chuvash State University
(Russia), worked as a software engineer in
Vocord Software Company, creating automat-
ic enterprise databases, services and user
interface. Currently she is working in Karls-
ruhe Institute of Technology (KIT), Germany,
on her Ph.D. Her research interests include
query log analysis.

Martin Schäler received his Master de-
gree from Otto-von-Guericke University Mag-
deburg, Germany, in 2010. Afterwards he
was employed as a research assistant and
scientific coordinator at the same university,
receiving his Ph.D. degree in 2014. Since
August 2015 he is a post-doctoral researcher
at the databases and information systems
group of Karlsruhe Institute of Technology
(KIT), Germany. His research interests in-
clude multi-dimensional access methods,
hardware-sensitive database tuning and

provenance.

Klemens Böhm is full professor (chair of
databases and information systems) at
Karlsruhe Institute of Technology (KIT),
Germany, since 2004. Prior to that, he has
been affiliated with University of Magde-
burg, Germany, ETH Zurich, Switzerland,
and GMD – Forschungszentrum Informa-
tionstechnik GmbH, Darmstadt, Germany.
Current research topics at his chair are
knowledge discovery and data mining in big
data, data privacy and workflow manage-

ment.

