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Abstract— Today, many scientific data sets are open to the public. For their operators, it is important to know what the users 

are interested in. In this paper, we study the problem of extracting and analyzing patterns from the query log of a database. We 

focus on design errors (antipatterns), which typically lead to unnecessary SQL statements. Such antipatterns do not only have a 

negative effect on performance. They also introduce bias on any subsequent analysis of the SQL log. We propose a framework 

designed to discover patterns and antipatterns in arbitrary SQL query logs and to clean antipatterns. To study the usefulness of 

our approach and to reveal insights regarding the existence of antipatterns in real-world systems, we examine the SQL log of 

the SkyServer project, containing more than 40 million queries. Among the top 15 patterns, we have found 6 antipatterns. This 

result as well as other ones gives way to the conclusion that antipatterns might falsify refactoring and any other downstream 

analyses. 

Index Terms— SQL log analysis, patterns and antipatterns, data preprocessing  

——————————      —————————— 

 INTRODUCTION1

OWADAYS, various databases from different scien-
tific domains are publicly available. They typically 

offer interfaces for declarative access, i.e., can be accessed 
in a very broad variety of ways. For the operators of such 
databases, it is very important to know what the users are 
interested. However, due to the public availability of the 
database, its owners cannot interact with all users to learn 
their interests. On the other hand, the queries issued by a 
user are a formal representation of his information needs. 
In other words, a query log is a perfect source of infor-
mation to that end. However, analyzing such a log is 
difficult. 

For example, [1] describes an approach to detect user 
interests based on the query log. They cluster queries, 
using the overlap of the data space accessed as the dis-
tance measure. In their case study with SkyServer, there 
were several clusters that domain experts could not ex-
plain. The queries in these clusters filter data by internal 
IDs. These attributes do not have any meaning in astron-
omy. We conclude that those SQL statements are follow-
up queries of previous ones, i.e., they need to be consid-
ered in a context. Such follow-up queries appear to be fre-
quent in the log. They introduce negative effects, e.g., 
falsify analyses, as we are about to explain. In software 
engineering, such an actuality is named antipattern [2]. 
An antipattern is a special case of a pattern [3]: while a 
pattern is a common solution, an antipattern is a pattern 

with a negative effect. 

 Table 1 lists a sequence of SQL queries of Example 1.
a user. These statements reflect specific intentions of the 
user, i.e., form patterns. The second, the third, and the 
fourth query filter the tables using the same constant. 
Without the first query, one cannot understand this 
constant. Put differently, a join is computed outside of 
the database. This is an occurrence of the Circuitous 
Treasure Hunt (CTH) antipattern [4]. Next, the second 
and the third query select different columns of the same 
table. This is the Stifle antipattern [5].  

 Suppose that one wants to find hotspots Example 2.
of user interests. Queries 2 and 3 by the same user refer 
to the same data object, and a naive log-analysis scheme 
would count two occurrences of interest in this object. 
But it should not be overly controversial that these que-
ries represent the same information need, at least when 
being issued right after each other. In other words, an 
occurrence of the Stifle has falsified this analysis. 

 Consider again Table 1. Queries 2 to 4 Example 3.
can only be understood together with Query 1. This is 
because the Attribute id does not have any meaning 
from the domain perspective. Thus, if queries are re-
written with antipatterns removed, the specific user in-
terest would be more obvious: 
SELECT E.empId, E.name, E.surname, 
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N 

TABLE 1  
A series of statements from one user 

# Statements Result 

1 SELECT E.empId FROM Employees E 

WHERE E.department = ‘sales’ 

12 

2 SELECT E.name, E.surname  

FROM Employees E WHERE E.id = 12 

John, Doe 

3 SELECT E.birthday, E.phone  

FROM Employees E WHERE E.id = 12 

12.03.1985, 

01259863448 

4 SELECT count(orders)  

FROM Orders OWHERE O.empId = 12 

36 
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E.birthday, E.phone, O.oCount 

FROM Employees E INNER JOIN  

(SELECT empId, count(orders) as oCount 

FROM Orders GROUP BY empId) O  

ON O.empId = E.empId 

The topic of this paper is the detection of antipatterns 
in an SQL query log. We have consciously decided to see 
this as a general preprocessing step in the data-analysis 
processing chain, i.e., subsequent log-analysis tasks like 
user-interest identification or association-rule mining are 
decoupled from it. This is in line with the general, com-
monly accepted perspective that there is a data cleaning 
step that precedes more abstract, goal-oriented analyses. 
Having said this, we nevertheless have conducted com-
bined experiments which reveal the usefulness of the 
preprocessing proposed in this article, see Section 6.9 
below.  Of course, with any data cleaning, an analyst 
needs to be aware of the fact that the cleaning has modi-
fied (biased) the original data. But that decoupling gives 
way to more flexibility as well as effectiveness and effi-
ciency of the subsequent analyses. In other words, the 
approach described here is a variant of data cleaning, and 
we use the terms cleaning or solving for those rewrites. 

A common method to detect antipatterns [4] requires 
access to the software that generates the requests. Regard-
ing SQL antipatterns, this means that one would need to 
have access to all systems working with the database. 
This is practically impossible, for databases on the Web in 
particular. That solution also does not help regarding 
antipatterns in an already existing query log. As Example 
1 has insinuated, one challenge when looking for SQL 
antipatterns is the identification of dependencies among 
subsequent queries. At first sight, a promising approach 
is re-querying. For instance, to know for sure that State-
ments 2, 3 and 4 depend on Statement 1, one should run 
the first statement again and inspect the result. However, 
this is not viable, for the following reasons: 

1. Performance aspect: Re-running a significant part 
of a SQL log implies a huge load on the database. 

2. Side effects aspect: The database will save these 
‘re-run’ queries in the query log; this will bias any 
subsequent log analysis. 

3. Data persistence aspect: In the presence of modifi-
cations of the data set, the result of a re-issued 
query does not have to be the same as the original 
one. 

4. Schema modification aspect: Because of database-
schema refactoring such as renaming of attributes, 
old requests might even cause errors. 

So when it comes to the design of a method that de-
tects patterns and solves antipatterns, we see a difficulty 
in deciding what exactly should be rewritten. 

 Consider Table 1 once more. If we did Example 4.
not have the information that all queries are from the 
same user, or if the attribute had a meaning in a specific 
domain, in contrast to ‘id’, it would be less clear if this 
were indeed occurrences of CTH and the Stifle. 

This suggests to first examine how distinct/how fre-
quent the clear cases are, and how far respective solutions 
will take us. It also is unclear which antipatterns one 
should focus on.  

In this article we give answers to these questions by 
means of an empirical study based on a large, freely 
available query log. Our main steps and the core insights 
are as follows: 

1. We provide formal definitions classifying a query 
load into normal queries, patterns, and antipat-
terns.  

2. We describe our solution to detect and classify 
patterns and antipatterns as well as to solve an-
tipatterns within a query log. While we confine 
ourselves to the CTH and the Stifle, we have de-
signed a processing framework that can also ac-
commodate other antipatterns (see Section 5.4). 

3. Our empirical study relies on the log of the Sky-
Server system, covering a time span of 7 years and 
containing nearly 42 million queries. 

4. In line with other research on data cleaning, our 
core evaluation criterion is the plausibility of our 
results (in contrast to result quality of any down-
stream analyses). For instance, the share of an-
tipatterns in the SkyServer log is significant (6 an-
tipatterns among the 15 most frequent patterns), 
and after removing them, all patterns among the 
40 most frequent ones do represent meaningful in-
formation needs.  

5. We present evidence that the results of previous 
studies of the SkyServer log (e.g., [6], [1]) would 
have been different, had the log been cleared of 
antipatterns.    

Paper outline: Section 2 reviews processing query log 
and some well-known database antipatterns. In Section 3 
we focus on SQL antipatterns which affect a query log.  
Section 4 provides definitions of pattern and antipatterns 
for our context, as well as rewrite rules whenever possi-
ble. In Section 5, we describe our framework in detail. 
Section 6 features the empirical study. Section 7 con-
cludes. 

 RELATED WORK 2

In this section, we first look at work targeting query 
logs. Then, we review approaches to detect and remove 
antipatterns introduced by interaction with a database. 
We also refer to related work in other sections of this 
article, and this current section only deals with the rela-
tively few related approaches not addressed elsewhere. 

 Processing Query Logs 2.1
Query-log analysis currently is a field of intensive 

study. An elementary distinction is between web logs and 
SQL logs. Studies on web-log processing such as [7] and 
[8] tend to focus on understanding of the user behavior 
through their information-seeking activities. [7] studies 
web search engine optimization by mining past queries. 
[8] proposes a context-aware query recommendation 
approach by mining click-through and session data.  

Studies of SQL logs mainly consider publically availa-
ble scientific databases. [1] analyzes the Sky Server log 
with the aim of identifying user interests within the data 
space. [6] uses the same use case to provide a recommen-
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dations system for SQL queries. [9], [10] and [11] are de-
tailed reports of the Sky Server user activities. They ana-
lyze both types of logs, SQL and web. The study provides 
various statistics regarding the first five [9] and ten years 
[10], [11] since SDSS SkyServer has gone online. 

Another promising branch of SQL log analysis is diag-
nosing and repairing data errors caused by erroneous 
updates. [12] works with a log of update queries, UP-
DATE, INSERT and DELETE statements, and a set of 
known data errors to find and fix mistakes within a da-
taset. The processing of DML queries does not address 
our specific problem – finding antipatterns. Nevertheless, 
this study bears a connection to our work since it pro-
vides formal definition rules for discovering and solving 
the errors. Overall, query log analysis has different re-
search threads, namely query recommendation, under-
standing user behavior and diagnosing errors. Our study 
relates to all these objectives. Finding and fixing antipat-
terns in a query log is a preprocessing step for further 
analysis, such as providing query recommendations [6] or 
investigating user behavior [1] without bias.  

 Review of Database Antipatterns 2.2
In the following, we briefly review research on data-

base antipatterns. [13] lists semantic errors in SQL que-
ries. Their insights stem from their experience while cor-
recting database exams. Some of the mistakes listed lead 
to syntax errors. This work is orthogonal to ours. If a mis-
take is frequent, there might be a corresponding antipat-
tern, which could be solved or removed from the log. [14] 
detects database design antipatterns by querying metadata 
tables. Such antipatterns reflect errors in the database 
schema, which is not the topic of our study.  [15] proposes 
a framework to detect object-relational mappings (ORM) 
performance antipatterns. It is based on static code analy-
sis and a rule-based approach. The detection of DML bug 
patterns is studied in [16]. DML queries, however, are not 
in the focus of our paper. The reason is that we aim to 
clean a query log of SELECT statements in order to facili-
tate further analyses on it (i.e., what do database users 
find interesting in the database).  

 FUNDAMENTALS 3

In this section we focus on two antipatterns, which in-
fluence analysis of an SQL query log. These are the Stifle 
[17] and the Circuitous Treasure Hunt [18]. They are also 
known to be the main reason for antipattern-related per-
formance degradations. Our explanation includes sugges-
tions for their detection and removal. We then point out 
limitations of current solutions, motivating a new ap-
proach.  

3.1.1 Stifle Antipattern 
The Stifle antipattern consists of several queries con-

taining similar SQL statements [5]. The term similar does 
not have a formal definition. However, examples are 
queries being identical except for constants in the 
WHERE clause, as in Example 1. Processing such queries 
may be a bottleneck and has a negative impact on per-

formance. When analyzing a query log, the Stifle may 
falsify results. For instance, as pointed out earlier, it blurs 
the representation of user interests.  

 The following code generating SQL Example 5.
statements illustrates the Stifle antipattern. Thus, every 
Id in the itemList causes a request to Table T. In a log, 
the Stifle manifests itself as a sequence of similar state-
ments. 
for (int item: itemList) 

{String sql =  

"SELECT * FROM T WHERE Id = " + item; 

Statement stmt = conn.createStatement(); 

ResultSet rs = stmt.executeQuery(sql);} 

A detection approach for the Stifle [17] is based on 
measurements of a running instance of software. It as-
sumes that a high load is a high-probability indicator for 
the presence of antipatterns. A specific indicator for the 
Stifle is a large number of database calls per service and a 
small average number of result rows per query. Thus, this 
approach is based on general statistics and may not be 
precise enough. [18] proposes heuristics for measure-
ment-based detection of several antipatterns on source-
code level. There, the Stifle antipattern is characterized by 
many similar database requests. A Stifle is detected if two 
or more database requests from one user for a service 
exist. In addition, the requests need to have the same 
structure, except for the values passed to the method 
building or executing the query. Thus, this approach re-
quires access to the source code of the service. In addition, 
it is based on comparing strings used in the source code 
which then form the query. In summary, these detection 
approaches are limited, and a more sophisticated ap-
proach having a more complete view on the actual query 
load is necessary. 

We now review methods to rewrite instances of the Sti-
fle antipattern. In software development this is called 
refactoring. [12] proposes the Pack refactoring. Their idea is 
to collect individual SQL statements and send them to the 
database in one batch.  

 The Pack refactoring for Example 5 is:  Example 6.
String sql = ""; 

for (int item: itemList) 

{sql = sql + "SELECT * FROM T WHERE Id = "  

+ item + ";";} 

Statement stmt = conn.createStatement(); 

ResultSet rs = stmt.executeQuery(sql); 

After the Pack refactoring one gets a single request 
which consists of several SQL statements. This solution 
removes the unnecessary network overhead, for any fu-
ture query. However, it still requires the same amount of 
database resources. It does not alter the query log. We for 
our part seek an approach that rewrites such queries in an 
existing log to facilitate meaningful analyses. 

3.1.2 Circuitous Treasure Hunt (CTH) 
The Circuitous Treasure Hunt (CTH) antipattern [19] 

has one similarity with the Stifle, as they both consist of 
several database requests. However, the individual CTH 
queries depend on each other.  This means that a subse-
quent query requires the result of prior ones as input.  

Similarly to the Stifle, a high database overhead is an 
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indication for the CTH antipattern [17]. However, in or-
der to identify any CTH, either knowledge on the queries 
or the ability to trace the information flow is required. 
The detection of CTH in [18] is based on the source code 
of an application. Consequently, a new approach is need-
ed to discover instances of the CTH in a database log. 
However, this is not trivial. As Example 1 has shown, 
without having the results of the first query one does not 
see dependencies of a sequence of SQL statements with 
certainty. The solving solution for CTH in [19] depends 
on the stage of the software development when the an-
tipattern is discovered. If it is found early in the devel-
opment, the authors suggest re-organizing the database 
schema. For distributed systems where one cannot do 
this, it is possible to reduce the number of remote data-
base calls by using the Adapter pattern [20]. For designs 
with large intermediate results, an alternative is to create 
a new association that leads directly to the final result.  

These solutions depend on a concrete case and are not 
automatic. Furthermore, they prevent future CTH occur-
rences, but do not solve CTH occurrences in a log. 

 PATTERNS AND ANTIPATTERNS 4

In our context, it is indispensable to have a rigid defini-
tion of ‘pattern’, to build a detection method. The notion 
of pattern is important in the context of antipattern detec-
tion, because antipatterns are patterns with negative ef-
fects. This section also introduces certain properties of 
patterns. We also need precise definitions of the Stifle and 
CTH antipatterns, to facilitate their detection and auto-
matic solving. This section contains these definitions. 

 Database Pattern 4.1
As pointed out in Example 1, we see a pattern as a se-

quence of queries which represents certain functionality. 
Starting with the definition of patterns from software 
engineering where this function is a pattern, we first de-
scribe properties of patterns in databases informally. This 
discussion then leads to a formal definition of pattern that 
is then used throughout this article. 

4.1.1 Intuition 
In software engineering, a pattern is a recurring solu-

tion schema to a standard problem deployed in a certain 
context [4]. In this paper, a pattern is a sequence of SQL 
queries in a query log.  

 Think of the database of a shoe retailer. Example 7.
Buying a pair of shoes results in the following sequence 
of steps that require interaction with the database: 
1. Scan a barcode of the shoes. 
2. Given the barcode, find the size and the model. 
3. Write the purchase into the Sales table. 
4. Decrease the count of the pairs currently available. 
As shown below, Steps 2, 3 and 4 result in different 

queries forming one pattern.  As these steps refer to the 
same business process, a common implementation is to 
have a procedure bundling the steps in one transaction: 

CREATE PROCEDURE BUY  

(BARCODE IN NUMBER) AS BEGIN 

  SELECT MODEL, SIZE into curr_model, curr_size 

  FROM BarCodesInfo  WHERE ID = BARCODE; 

  INSERT INTO SALES (datetime, barcode, seller) 

  VALUES (curr_time, BARCODE, curr_user); 

  UPDATE InPresence  SET count = count - 1 

  WHERE model = curr_model and size = curr_size; 

END BUY; 

Now every sale will cause these three SQL requests oc-
curring consecutively. The only difference between occur-
rences is the parameter values, like the barcode. Summing 
up, to be an instance of a pattern, a sequence of SQL re-
quests should 

1. come one after another (in the log file). 
2. have short time between them. 
3. have a rather frequent occurrence. 
4. be from the same user.  
Regarding the last item, if the log does not contain in-

formation on the users, we assume that one user has is-
sued all queries. A consequence could be that we will 
deem queries indeed coming from different users a pat-
tern. However, we hypothesize that this phenomenon 
will be infrequent – it would mean that different users 
issue roughly the same queries at about the same time. 
Our case study will address this issue. 

4.1.2 Similarity of SQL Queries 
Given a query log, patterns are not known in advance, 

but need to be discovered first. So, it is necessary to find 
similar sequences of queries within the log. We define 
similarity of a sequence of queries as follows: 

Definition 1. Two sequences of SQL statements are 
similar if they contain similar queries in the same or-
der.  
We now define query similarity. Since a query is a re-

quest written in SQL, it seems promising to use methods 
for the discovery of similar pieces of source code to iden-
tify similar queries [21]. Respective approaches from 
software engineering like Code Clone Detection [22] rely 
on syntax trees [23]. As Example 7 has shown, while the 
structure of the queries remains the same (i.e., the inner 
nodes of the syntax tree are identical) the parameters are 
most likely different. Thus, one should not consider these 
values when computing query similarity. We rely on the 
notion of skeleton tree (or skeleton query [9], SQ). It is 
obtained from a syntax tree by replacing all parameters in 
the leaf nodes with placeholders.  

Definition 2. 𝑆𝐹𝐶 (“Skeleton From-Clause”), 𝑆𝑊𝐶 and 
𝑆𝑆𝐶 are skeletons of FROM, WHERE and SELECT 
clauses in the corresponding 𝑆𝑄. 

Definition 3. 𝑆𝐶, 𝐹𝐶 and 𝑊𝐶 are the SELECT-, the 
FROM- and the WHERE-clause of the query. 
This differentiation will let us introduce a more sophi-

sticated classification of patterns and antipatterns later. 

Definition 4. A query template is a triple consisting 
of skeleton subtrees (𝑆𝐹𝐶, 𝑆𝑊𝐶, 𝑆𝑆𝐶). 

Definition 5. Two skeletons 𝑆𝑄1  and 𝑆𝑄2 are equal to 
each other iff 
(𝑆𝐹𝐶1 =  𝑆𝐹𝐶2) Ʌ (𝑆𝑊𝐶1 =  𝑆𝑊𝐶2) Ʌ (𝑆𝑆𝐶1 =  𝑆𝑆𝐶2) 
In the following, we need a notion of similarity of que-

ries/their skeletons. At first sight, small deviations in 
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structure seem tolerable. However, a pattern tends to be 
created by one software application, i.e., the queries have 
the same structure. In consequence, we start by focusing 
on the case that query skeletons are equal, see Definition 
6. Our case study will examine whether this definition is 
adequate or should be refined. 

Definition 6. Two queries are similar iff their skele-
tons are equal. 

 Consider the following queries: Example 8.
SELECT a, b FROM T WHERE a = 0 AND b >= 3 

SELECT a, b FROM T WHERE a = 10 AND b >= 5 

A representation of the SQ for both queries then is: 

SELECT a, b FROM T  

WHERE a = < 𝑛𝑢𝑚 > AND b >= < 𝑛𝑢𝑚 > 

4.1.3 Definition and Properties of a Pattern 
We now define the notion of pattern in our context. 

Definition 7. A pattern is a sequence of query tem-
plates (𝑆𝑄1, … , 𝑆𝑄𝑛). Thus, a pattern is a sequence of 
query skeletons (𝑆𝑄1, … , 𝑆𝑄𝑛) = 
((𝑆𝐹𝐶1, 𝑆𝑊𝐶1, 𝑆𝑆𝐶1), … , (𝑆𝐹𝐶𝑛 , 𝑆𝑊𝐶𝑛 , 𝑆𝑆𝐶𝑛)) 

Definition 8. An instance (𝑄1, … , 𝑄𝑛) of a pattern is a 
sequence of queries in the query log such that 
 𝑢𝑠𝑒𝑟(𝑄1) = 𝑢𝑠𝑒𝑟(𝑄2) = ⋯ = 𝑢𝑠𝑒𝑟(𝑄𝑛) 
 𝑡𝑖𝑚𝑒(𝑄1) ≤ 𝑡𝑖𝑚𝑒(𝑄2) ≤ ⋯ ≤ 𝑡𝑖𝑚𝑒(𝑄𝑛) 
 ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛, ∄𝑄𝑥 ∉ (𝑄1, … , 𝑄𝑛) 𝑤ℎ𝑒𝑟𝑒  

𝑢𝑠𝑒𝑟(𝑄𝑥) = 𝑢𝑠𝑒𝑟(𝑄𝑖)  Ʌ  𝑡𝑖𝑚𝑒(𝑄𝑖) ≤ 𝑡𝑖𝑚𝑒(𝑄𝑥) ≤ 𝑡𝑖𝑚𝑒(𝑄𝑖+1) 

The last axiom states that there are no other requests 
from the same user within time window 
[𝑡𝑖𝑚𝑒(𝑄1); 𝑡𝑖𝑚𝑒(𝑄𝑛)]. 

Definition 9. The frequency of a pattern in a log is 
the number of its instances occurring in the log.  

Definition 10. The userPopularity of a pattern in a log 
is the number of users who have submitted queries 
being instances of the pattern.  
Frequent patterns with low userPopularity are an im-

portant phenomenon. For instance, one might perceive 
such patterns as bias when identifying hot spots of user 
interests. One hypothesis that explains the occurrence of 
such a pattern is that a database is copied piece by piece. 
In our case study, we will examine how often such pat-
terns occur and discuss the phenomenon further.  

 Definitions for Antipatterns 4.2
We now give a formal definition of the selected anti-

pattern types. In general, an antipattern is a pattern which 
introduces negative consequences. Therefore, antipatterns 
have all the properties described in Section 4.1.3. For each 
selected antipattern, we provide a detection rule. If an 
antipattern has a cleaning solution, we consider it solvable. 

4.2.1 The Stifle Antipattern 
Our literature review (see Section 3.1.1) has yielded the 

following specific characteristics of the Stifle: 

1. Small average number of result rows or (in case of 
update statements) of rows affected, 

2. High number of similar database queries. 

The nature of the Stifle is that all its queries refer to one 
object. Each query has few result rows, typically tuples 
with a foreign-key relationship with this object, and the 
queries cause repeated similar requests. Thus, applica-
tions create Stifle instances most likely using databases in 
an object-oriented fashion similarly to the get() or 
set() method. These methods refer to specific objects, 
i.e., to rows in a database table identified by the same id. 
Thus, we presume that the Stifle consists of one equality 
predicate which filters data using an attribute which is a 
key.  

Definition 11. A Stifle antipattern is a pattern 
(𝑆𝑄1, … , 𝑆𝑄𝑛) such that 
 𝐶𝑃1 = 𝐶𝑃2 = ⋯ = 𝐶𝑃𝑛 = 1 
 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑛 = ′𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦′ 

 filCol1, …, filColn are key attributes. 

CP is a count of predicates, 𝜃 is the comparison opera-
tor in the predicate, and filCol is the filter column in the 
predicate. Note that Definition 11 relies on a database 
schema, to distinguish between key and non-key attrib-
utes. We could have omitted the third axiom in principle: 
This would have simplified things, but with the potential 
drawback of some false positives. Our solving scheme for 
this antipattern depends on its form. We differentiate 
between classes of the Stifle, based on the clause where 
the queries differ. Such a difference may be either in the 
WHERE, the FROM, or the SELECT clause. We now de-
scribe them, followed by our solution to clean the log. 

 DW-Stifle 4.2.1.1
The first case is that the statements in an instance of a 

pattern have equal SELECT and FROM clauses, but a 
different WHERE clause. We refer to this as DW-Stifle 
(‘different WHERE’ Stifle). 

 The following is a DW-Stifle antipattern: Example 9.
SELECT name FROM Employee WHERE empId = 8; 

SELECT name FROM Employee WHERE empId = 1; 

Hence, DW-Stifle is a pattern with the same 𝑆𝐶, 𝐹𝐶 and 
𝑆𝑊𝐶 but different values in the WHERE clause. The for-
mal definition is as follows: 

Definition 12. A DW-Stifle is a Stifle (𝑆𝑄1, … , 𝑆𝑄𝑛)  such 
that 
 𝑆𝐶1 =  𝑆𝐶2 = ⋯ =  𝑆𝐶𝑛 
 𝐹𝐶1 = 𝐹𝐶2 = ⋯ = 𝐹𝐶𝑛 
 𝑆𝑊𝐶1 =  𝑆𝑊𝐶2 = ⋯ =  𝑆𝑊𝐶𝑛 
 𝑊𝐶1  ≠  𝑊𝐶2 … ≠ 𝑊𝐶𝑛 

Our cleaning solution is to compose one query with all 
filtering conditions in the WHERE clause. 

 The cleaning solution for Example 9 is : Example 10.
SELECT empId, name FROM Employee WHERE empId IN (8, 1); 

Compared to the solving solution in Example 6 we 
now get one SQL statement instead of several ones. 

 DS-Stifle 4.2.1.2
If an instance of the Stifle has a sequence of queries 

with equal FROM and WHERE clause, it is a DS-Stifle 
(‘different SELECT’ Stifle).  

 A DS-Stifle instance is as follows: Example 11.
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SELECT name FROM Employee WHERE empId=8; 

SELECT address, phone FROM Employee WHERE empId=8; 

Definition 13. A DS-Stifle is a Stifle (𝑆𝑄1, … , 𝑆𝑄𝑛) with 
the following characteristics: 
 𝑆𝑆𝐶1 ≠  𝑆𝑆𝐶2 ≠ ⋯ ≠  𝑆𝑆𝐶𝑛 
 𝐹𝐶1 = 𝐹𝐶2 = ⋯ = 𝐹𝐶𝑛 
 𝑊𝐶1 =  𝑊𝐶2 = ⋯ =  𝑊𝐶𝑛 

To solve this, we union the SELECT clauses, as follows. 

 The cleaning solution for Example 11 is :  Example 12.
SELECT name, address, phoneNumber  

FROM Employee WHERE empId = 8; 

 DF-Stifle 4.2.1.3
Patterns with different FROM statements are named 

DF-Stifle (‘different FROM’ Stifle). The formal definition 
is as follows: 

Definition 14. A DF-Stifle is a Stifle 
(𝑆𝑄1, … , 𝑆𝑄𝑛) where 
 𝑆𝐹𝐶1 ≠  𝑆𝐹𝐶2 ≠ ⋯ ≠  𝑆𝐹𝐶𝑛 
 𝐹𝐶1 ≠ 𝐹𝐶2 ≠ ⋯ ≠ 𝐹𝐶𝑛 
 𝑊𝐶1 =  𝑊𝐶2 = ⋯ =  𝑊𝐶𝑛 

Inequality in the FROM clause could mean redundant 
database design as we point out in Example 13. Thus, 
Example 14 illustrates our solving scheme: 

 The following queries select information Example 13.
on the same real-world object from different tables: 
SELECT name FROM Employee WHERE empId = 8; 

SELECT address FROM EmployeeInfo WHERE empId = 8; 

  Example 14.
SELECT E.name, EI.address  

FROM Employee as E INNER JOIN EmployeeInfo as EI  

ON E.empId = EI.empId WHERE empId = 8; 

At first sight, a large number of DS-Stifle instances 
suggest a refactoring of the underlying tables or introduc-
ing one or several views.  

 To cope with the situation illustrated in Example 15.
Example 14, the following view might seem helpful: 
CREATE VIEW EmployeeView AS 

SELECT E.name, EI.address FROM Employee as E  

INNER JOIN EmployeeInfo as EI ON E.empId = EI.empId  

Now one can access the view EmployeeView instead of 
the underlying tables. However, this suggestion does not 
address our specific problem, namely solving instances of 
the antipattern in the log a posteriori. We use the method 
as in Example 14  to solve instances of the DF-Stifle.  

4.2.2 The Circuitous Treasure Hunt Antipattern 
The distinctive feature of the CTH antipattern is de-

pendency of the queries. As re-querying is not feasible 
(see Section 1) to identify dependencies in sequences of 
SQL queries, we need a different approach to detect 
CTHs. The sequence and structure of the individual que-
ries of a CTH contain hints that allow detecting CTH 
candidates. In a CTH, the result of the first query is an 
input parameter for a subsequent one. Hence, we require 
that  

 there are attributes in the SELECT clause of the first 
query used in the WHERE clause of the other query,  

 the second query features an equality predicate in the 
WHERE clause, to refer to the tuple exclusively. 

However, relying solely on these conditions could 
yield false positives. Without re-querying one can only 
detect candidates. So the following is a definition of ‘CTH 
candidate’, not of (real) CTH.  

Definition 15. A CTH candidate is a pattern 
(𝑆𝑄1, … , 𝑆𝑄𝑛) such that: 
 𝑆𝑄1 ≠ 𝑆𝑄2 
 𝐶𝑃2 = ⋯ = 𝐶𝑃𝑛 = 1 
 𝜃1 =  … =  𝜃𝑛 = ′𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦′ 

Our respective detection method looks for patterns 
which satisfy Definition 15. The decision whether a candi-
date is a real CTH requires domain knowledge. Our case 
study will quantify the share of false positive CTHs which 
our heuristics produces. 

 IMPLEMENTATION 5

In this section, we describe the realization of our ap-
proach. We first give an overview of the architecture of 
our framework that cleans antipatterns. We then intro-
duce the components of the processing pipeline in more 
detail. There is a web page of our framework1 where one 
can find its documentation, a test set and the source code.  

The purpose of our framework is to analyze query 
logs. Depending on the analysis target, we intend to find 
query templates or patterns (series of query templates) with-
in the log, or identify and solve antipatterns. Fig. 1 shows 
the respective workflow. Rectangular boxes stand for 
input data, rounded boxes for processing steps, and gray 
boxes for results. There are several results extracted from 
a SQL log. In contrast, the log is the only input. This cur-
rent section is supposed to give the reader an impression 
of the potential of our solution as well as an impression of 
how to use it. It also describes parameters of our frame-
work. We now discuss some relevant details. 

 Original Query Log 5.1
The original query log is the only input that is required. 

Our approach does not need to have access to the data-
base and does not introduce any load overhead. We re-
quire the log to consist of SQL statements together with 
their execution time. However, the more additional in-
formation is available, the better one can perform the 
analysis. For example, if we can differentiate between 
users who have issued queries, we can obtain the user 
popularity of a pattern (see the discussion in 4.1.3). Nev-
ertheless, our framework is operational without this in-
formation as well. 

 Deleting Duplicates 5.2
The first processing step is deleting duplicate queries. 

We perceive duplicates as unintended errors. Conse-
quently, we record the number of duplicate removals in 
the result statistics. This is because a large number of 
them may indicate a refactoring of a particular applica-

 

1 https://dbis.ipd.kit.edu/2500.php 
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tion.  
We define duplicates as identical statements with a 

small difference in time. From a conceptual point of view, 
we argue that two identical statements executed by the 
same user only stand for the same information need in 
case the time difference is smaller than the threshold. We 
propose setting the threshold to the minimum value, 
allowing to find most of the duplicates. Section 6.2 will 
discuss respective empirical results.  

 Parsing Statements and Parsed Query Log 5.3
After deduplication, there may still be syntactically in-

correct query statements. In this step, we parse all queries 
and build a syntax tree for each of them. If the parsing 
finds syntax errors, the process will not consider the 
statement any further. We also exclude non-select state-
ments. The parsing procedure also extracts the SELECT, 
FROM and WHERE subtrees and their skeleton forms for 
each statement. Table 2 contains an example of a parsed 
log (without skeletons of FROM, WHERE and SELECT). 
Each row of a parsed log also contains the link to a pat-
tern (from the Patterns block) and a query template (from 
the Query templates) a statement belongs to. If a parsed 
statement satisfies the definition of an antipattern 
(Definition 11 to Definition 15), it is marked as an antipat-
tern of the respective type. 

 Query Templates and Patterns 5.4
We compute statistics for each template and pattern 

using the frequency and userPopularity properties 
(Definition 9 and Definition 10, see Section 4.1.3). In addi-
tion to these attributes, a pattern has a property indicating 
whether it is an antipattern and, if so, its type. As the next 
step, instances of the Stifle need to be solved. 

Our framework can be extended to accommodate oth-
er antipatterns. In the presence of a new antipattern, one 
first comes up with its formal definition, often after a 
literature review. Based on the definition, one provides a 
detection rule and, if possible, a solving solution. For 
instance, suppose that we want to extend our framework 

with the “Searching nullable columns” (SNC) antipattern 
[24]. An example of it is as follows: 

SELECT * FROM Bugs WHERE assigned_to = NULL 

SELECT * FROM Bugs WHERE assigned_to <> NULL 

Since neither equality nor inequality return true when 
comparing a value to a null value, one needs another 
operation when searching for a null value, IS NULL or IS 
NOT NULL. Hence, if this is the intention, the previous 
statements should be rewritten as follows: 

SELECT * FROM Bugs WHERE assigned_to IS NULL 

SELECT * FROM Bugs WHERE assigned_to IS NOT NULL 

We now provide a formal definition of SNC. 

Definition 16. A 𝑆𝑁𝐶 is a pattern (𝑆𝑄1) where 
 𝑊𝐶1 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑠 𝑜𝑓 “𝑁𝑈𝐿𝐿” 
 𝜃1 =′ 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦′ ∨ ′𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦′ 

The solving solution is rather straitforward: replace 
" =  𝑁𝑈𝐿𝐿" with "𝐼𝑆 𝑁𝑈𝐿𝐿" and  " <>  𝑁𝑈𝐿𝐿" or '"! =  𝑁𝑈𝐿𝐿" 
with "𝐼𝑆 𝑁𝑂𝑇 𝑁𝑈𝐿𝐿". 

Now one needs to include the new detection rule 
based on Definition 16 in the parse step, as we have done 
with antipatterns described in Section 4.2. Since there is a 
solving solution as well, one can include it in the step 
"Solve antipatterns". From now on, each SNC detected 
will be solved.  

 Solving Antipatterns, Clean Query Log and 5.5
Statistics 

The approach iterates over the whole log, and for eve-
ry pattern detected, it checks whether it is an antipattern. 
If so, it solves it, following the solving solutions described 
earlier (e.g., Example 10 or Example 12). The procedure 
returns a cleaned query log and statistical information 
regarding antipatterns solved: how many of them have 
been encountered in the query log, how many have been 
solved. The following is an example of this procedure.  

TABLE 2  
A parsed query log 

# Statements Type 

1 SELECT E.Id FROM Employees E 

WHERE E.department = ‘sales’ 

CTH 

2 SELECT E.name, E.surname  

FROM Employees E WHERE E.id = 12 

CTH, 

DW-Stifle 

3 SELECT E.name, E.surname  

FROM Employees E WHERE E.id = 15 

CTH, 

DW-Stifle 

4 SELECT E.name, E.surname  

FROM Employees E WHERE E.id = 16 

CTH, 

DW-Stifle 

 

 

TABLE 3  
A clean query log 

# Statements Type 

1 SELECT E.Id FROM Employees E 

WHERE E.department = ‘sales’ 

CTH 

2 SELECT E.name, E.surname  

FROM Employees E WHERE E.id IN 

(12, 15,16) 

CTH 

 

 

 

 

 Processing Steps Fig. 1.

Original Query Log 

Delete duplicates 

Pre-clean Query Log 

Parse statements 

Parsed Query Log Query templates 

Patterns 

Solve antipatterns 

Clean Query Log Statistics  
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 Table 2 contains a query log after pars-Example 16.
ing. Queries 2, 3 and 4 form a DW-Stifle antipattern, 
which is solvable. The first four queries are CTH candi-
date. 
In the next step, the instance of DW-Stifle is rewritten 

as one request, as shown in Table 3. 
In the example, Queries 2, 3 and 4 belong to both, DW-

Stifle and CTH. However, since we do not provide a solv-
ing solution for CTH, there is no conflict regarding what 
to solve. If a certain subset of queries shows multiple 
solvable antipatterns, we perform our solving procedure in 
the order of queries occurring in the log. Put differently, 
solving starts with the antipattern which appears in the 
log first.  

After one cleaning step, there can be further solvable 
antipatterns.  To check this, one needs to parse statements 
again and possibly solve the antipatterns. In our case, the 
experiments have not indicated any necessity to do so: 
After the first cleaning, the number of solvable antipat-
terns contained in the log has been 0.09 %, which is negli-
gible.  

 A CASE STUDY WITH SKYSERVER 6

This section reveals insights on the existence and fre-
quency of antipatterns in a real-world query log. The 
particular objectives of our case study are: 

1. Answer the question how many patterns or antipat-
terns are contained in a large real-world log; 

2. Give meaning to the most popular patterns; 
3. Hypothesize on the rationale behind patterns based 

on their frequency and user popularity; 
4. Determine the positive detection rate of the CTHs; 
5. Study the importance of metadata (users IPs and 

sessions) on pattern and antipattern detection. 
6. Showcase the influence of cleaning antipatterns on 

subsequent analyses. 

 Appropriateness of the SkyServer Log for a 6.1
Case Study  

We have used the SkyServer query log for our case 
study, since it is a large scientific data set available to the 
public, and, to our knowledge, it is the only one with this 
characteristic. The log provides extensive information 
regarding all requests. Besides the actual SQL statement 
and its timestamp, it contains the user IP, a label of the 
user session and the number of result rows. See 
http://skyserver.sdss.org/log/en/traffic/sql.asp for a 
description of the SQL log columns. The public availabil-
ity of this log allows for easy verification or extension of 
our results by the scientific community. We analyze the 
SkyServer log of SQL statements for five years from 2003 
to 2008. It consists of 42 million queries from about 47 
thousand users.  

 Choosing the Duplicate Time Threshold 6.2
For our analysis, we need to choose a time threshold 

for duplicate queries. We set this threshold by testing 
several values with a sample data set of 105 queries (cf. 
Table 4). Most duplicates are already identified when 

using 1 second as the threshold. The difference between 
the effect of this value and setting it to infinity is about 
0.5%, which we deem insignificant. This means that du-
plicates indeed are requests not intended by the user, as 
we have hypothesized in Section 5.2. Most duplicate que-
ries are submitted to the database within a second. We 
conclude that they result from web-form reloads or from 
errors in applications.  

When increasing the duplicate time threshold, the 
more identical queries from one user are classified as 
duplicates, and the slower the procedure that removes 
duplicates. Setting the threshold to infinity is not always 
good, since two identical queries with a big time differ-
ence between them might not be a duplicate after all, but 
reflect user intention. Since user behavior may differ be-
tween databases, each SQL log analysis may require its 
own threshold value. Tests similar to the one just de-
scribed should allow to determine this value.  

 General Results 6.3
From the 42 million queries of the raw log, we extract 

40 million, which are not DML or DDL, and which do not 
contain syntax error. After deleting duplicates, the log 
contains 38.5 million queries (see Table 5). Our analysis of 
the log indicates that our definition of query similarity 
(Definition 5) is adequate: manual investigation of the 
results has revealed that any query templates which are 
structurally different from each other also feature differ-
ent requests. Overall, cleaning a log with our approach 
has resulted in 27.5% size reduction. This is significant. 
The number indicates that there is a large share of an-
tipatterns, and that our antipattern definitions are valid. 
In more detail, we have uncovered 1018 distinct DW-
Stifles, 656 DS-Stifles and 487 DF-Stifles. Among 50 can-
didates for CTH, 28 turn out to be real ones (see Sec-
tion 6.9). The instances of the antipatterns cover about 
7.5 million statements. 

 To complete this current series of experiments, we 
have conducted one experiment on how rewriting anti-
patterns influences the runtime of the queries. To do so, 
we picked 10222 queries which form solvable antipatterns 
(Stifles). After rewriting, only 254 queries remain a re-
duction by a factor of 40. Running the original 10222 que-
ries takes 4450 seconds, while the rewritten 254 queries 
require 152 seconds, 29.27 times faster. This effect is due 
to reduced network overhead and database resources.  

Another benefit due to this size reduction is a de-
creased load for subsequent downstream analyses, see 
Section 6.9. 

TABLE 4  
Experiments with threshold parameter  

for deleting duplicates 

threshold log size % of original size 

Original Log 5,748,440 100 

1 sec 5,515,737 95.95 

2 sec 5,515,737 95.95 

5 sec 5,512,468 95.89 

10 sec 5,507,233 95.80 

Non restricted 5,484,746 95.41 
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 Effects of SQL Log Cleaning 6.4
To evaluate the effectiveness of cleaning antipatterns, 

we compare the most popular patterns before and after 
running cleaning procedure. Fig. 2 (a) tells us that there 
are 9 antipatterns among the 30 most popular patterns. If 
we consider only the top-15 patterns, we even find six of 
them to be antipatterns. Table 6 shows the most frequent 
ones. The frequency of discovered antipatterns highlights 
the importance of cleaning the log. The solvable antipat-
terns (DS-Stifle, DF-Stifle and DW-Stifle) cover about 
19.2% of the query log, a significant value. Furthermore, 
discovering antipatterns in a query log in this case allows 
detecting users who perform requests with such antipat-
terns. Operators of the database could then contact these 
individuals and inform/train them accordingly. 

As Table 6 has revealed, the most frequent antipattern 
is DW-Stifle. All antipatterns filter the table photoPrimary 
by the internal attribute objId, which is not a notion from 
astronomy. Hence, we hypothesize that the antipatterns 
cannot be interpreted as user intentions, while patterns 
which are not antipatterns can. We will discuss this as-
sumption further in the next section. We observe that 
those antipatterns do not have high user popularity – 
most of them come from a few distinct IP addresses. We 
conclude that the software generating the antipatterns is 

proprietary and not part of the SkyServer infrastructure. 

 Interpretation of Patterns  6.5
In this section, we discuss the meaning of the most 

popular patterns. We demonstrate that, unlike antipat-
terns, patterns represent user interests. This is an indica-
tion that we have curbed the extent of bias introduced by 
antipatterns significantly. 

Table 7 contains the most popular patterns in the que-
ry log after removing the antipatterns. All five patterns 
perform spatial search, i.e., look for objects in some part 
of the sky. These queries are meaningful for domain ex-
perts. In other words, pattern extraction reveals particular 
ways users use the database. We find it remarkable that 
the most popular patterns come from very few users. 
None of the patterns created by the SkyServer Web inter-
face does fall in the top 5. Such patterns occur at rank 12 
and 17. Rank is a position in a list of patterns sorted by 
frequency. The most frequent pattern has rank 1; the next 
one in popularity has rank 2, etc. 

According to Fig. 2 (b), our study reveals a large num-
ber of frequently occurring patterns with low user popu-
larity. In particular, 23 out of the 40 most popular patterns 
were run only by one user. The instances of these patterns 
perform a sliding window search, i.e., consecutive re-
quests for certain objects with disjoint filtering conditions. 
From now on, we refer to this as sliding window search 
pattern (SWS pattern). We do not classify the SWS pattern 
as an antipattern since it does not have a negative per-
formance effect. Our explanation why this pattern occurs 
is that, due to SkyServer database restrictions, users’ ac-
cess data piece-wise, downloading a significant part of 
the database. 

Clearly, SWS detection depends on 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 and 
𝑢𝑠𝑒𝑟𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 thresholds. We now briefly discuss the 
effect of these parameters. In a nutshell, they reflect how 
rigid one wants to be in SWS cleaning. If we set ‘frequen-
cy’ higher and ‘userPopularity’ lower, we will get rid only 
of the most obvious SWS. Only patterns which are fre-
quent and are due to, say, one or two users will be filtered 
out. Decreasing ‘frequency’ and increasing ‘userPopulari-
ty’ means more major cleaning. This is because patterns of 
medium frequency which come from more users will be 
labeled as SWS. Table 8 contains the numbers for our case 
study. The 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 threshold is in relative terms (%). A 
cell of a table indicates how much of the log we classify as 
SWS with the respective 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 and 𝑢𝑠𝑒𝑟𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 

TABLE 5  
Results overview 

Property Value 

Size of original query log 41,998,253 

Count of Select queries  40,177,133 (95.9 %) 

Size of log after deleting duplicates 38,529,871 (91.74%) 

Final log size 30,454,778 (72.51%) 

Count of patterns 176,110 

Maximal pattern frequency 3,349,709 

Count of distinct DW-Stifle 1,018 

Count of queries in all DW-Stifle 6,326,863 

Count of distinct DS-Stifle 6,562 

Count of queries in all DS-Stifle 1,281,936 

Count of distinct DF-Stifle 487 

Count of queries in all DF-Stifle 212,103 

Count of distinct candidate CTH 50 

Count of queries in all candidate CTH 424,792 

Count of distinct real CTH 28 

Count of queries in real CTH 435,251 

 

TABLE 6  
The most popular antipatterns 

# Frequency Type First skeleton statement Second skeleton statement Distinct IPs 

1 1,454,207 DW SELECT rowc_g, colc_g  

FROM photoprimary WHERE objid=num 

SELECT rowc_g, colc_g  

FROM photoprimary WHERE objid=num 

2 

2 1,410,696 DW SELECT rowc_r, colc_r  

FROM photoprimary WHERE objid=num 

SELECT rowc_r, colc_r  

FROM photoprimary WHERE objid=num 

3 

3 1,044,958 DW SELECT rowc_i, colc_i  

FROM photoprimary WHERE objid=num 

SELECT rowc_i, colc_i  

FROM photoprimary WHERE objid=num 

1 

4 559,450 DS SELECT rowc_r, colc_r  

FROM photoprimary WHERE objid=num 

SELECT rowc_g, colc_g  

FROM photoprimary WHERE objid=num 

2 

5 558,930 DS SELECT rowc_g, colc_g  

FROM photoprimary WHERE objid=num 

SELECT rowc_r, colc_r  

FROM photoprimary WHERE objid=num 

2 
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thresholds. The numbers are in line with our explanation. 
The discovery of SWS patterns is important for user-

interest finding. Queries within such a pattern do not 
overlap in the area of the data space accessed. However, 
instances of these patterns produce a specific uniform 
noise, which one can exclude in subsequent analyses. An 
alternative to exclusion is a union of the filtering condi-
tions, i.e., replacing all these queries with one that yields 
the same result. 

We think that SWS patterns also bog down prediction 
quality of association-rule mining. Suppose that we want 
to suggest the next query based on the previous one. If 
the learning set contains SWS pattern queries, a query 
recommendation system would suggest a query with a 
disjoint filtering condition. However, this kind of be-
havior (sliding window search) is a “machine download”, 
which does not require query-recommendation assist-
ance. Humans on the other hand would benefit from 
query recommendation. [9] devotes attention to this issue. 
However, their recommendations only consider the dura-
tion of user sessions, not the shape of queries. An exten-
sion taking SWS patterns into account could distinguish 
humans and “bots” with more accuracy. In our future 
work, we will study the influence of cleaning the learning 
set on the quality of query recommendation. 

 CTH Detection 6.6
Having discussed the automatic detection of the Stifle, 

we now turn to CTH antipatterns. With our solution, we 
discover 50 candidate antipatterns. As mentioned, the 
decision whether such a pattern is a CTH requires do-
main knowledge. The number however is small, at least 
in this current case, making respective intellectual effort 
tolerable. Thus, we analyze those few patterns by hand 

and conclude that 28 out of 50 are real CTH antipatterns. 
We deem a CTH candidate a real antipattern if the deci-
sion regarding the next statement is predefined. The fol-
lowing example is an illustration. 

 Consider an instance of two CTH candi-Example 17.
dates: 

The instances of CTH Candidate 1 comply with Sky-
Server Web interface functionality: First, a user looks for 
all tables in a database, and then choses table ‘Galaxy’ 
and query it. The time difference between two queries 
indicates that the second query has not been issued before 

TABLE 7  
The most popular patterns 

# Frequency Coverage (%) Skeleton statements Description Distinct IPs 

1 3,349,709 8.69 SELECT  g.objid, …  

FROM  photoobjall as g  

JOIN  fgetnearbyobjeq(@ra, 

@dec, @r) as gn on 

g.objid=gn.objid left 

outer join specobj s on 

s.bestobjid=gn.objid 

Gets objects within @r arcmins of an Equato-

rial point (@ra,@dec) 

1 

2 3,082,742 8.0 SELECT p.objid, …  

FROM fgetobjfromrect(@ra1, 

@dec1, @ra2, @dec2) n, 

photoprimary p WHERE 

n.objid=p.objid  

and r between num and num 

Gets objects from rectangle area with radius 

between two values.  

19 

3 2,179,250 5.65 SELECT count(*) FROM pho-

toprimary  

WHERE htmid>=@htm1 and 

htmid<=@htm2 

Gets the count of objects within a range of 

spherical triangles (special search) 

1 

4 2,099,560 5.44 SELECT p.objId, …  

FROM fgetnearbyobjeq((@ra, 

@dec, @r) n, photoprimary 

p  

WHERE n.objid=p.objid 

Get information about the objects within  @r 

arcmins of an Equatorial point (@ra,@dec) 

1 

5 674,071 1.75 SELECT ra, …  

FROM fgetnearbyobjeq((@ra, 

@dec, @r) n, photoprimary 

p  

WHERE n.objid=p.objid 

Get information about the objects within one 

fraction of a scan strip observed at one time 

(limited by observing conditions). It is also 

some sort of special search 

1 

 

 

TABLE 8  
SWS coverage depending on frequency and user popu-

larity thresholds 

Frequency 
UserPopularity 10% 1% 0.1% 0.01% 

1 8.7% 18.7% 31.2% 35.4% 

2 8.7% 18.7% 36.0% 40.9% 

4 8.7% 18.7% 40.3% 45.6% 

8 8.7% 18.7% 40.7% 46.1% 

16 8.7% 18.7% 41.0% 46.3% 

 

TABLE 9  
CTH candidate 1 

# Statements Time 

1 SELECT name, type FROM 

DBObjects WHERE type='U'  

AND name NOT IN 

('LoadEvents', 'QueryRe-

sults') ORDER BY name; 

13.06.07 12.18.46 PM 

 

2 SELECT description 

FROM DBObjects  

WHERE name='Galaxy’ 

13.06.07 12.19.13 PM 
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the first one – the user apparently has reflected for a while 
which table he/she is interested in. 

The queries in CTH Candidate 2 in contrast run direct-
ly one after another, with no time difference. The first 
query performs returns the closest object for a certain 
point; the second query then instantly asks for the object 
the first query has returned. Even if the count of the sec-
ond queries is not equal to the number of rows the first 
query has returned, this can only mean that there is some 
logic deciding which objects from the first result are 
fetched. This logic relies on the first result, so this indi-
cates a dependency between the two queries. Thus, this is 
an instance of CTH. 

We have distinguished between real CTHs and CTH 
candidates, due to our rigid interpretation. A more gener-
ous interpretation results in more true CTHs. While it 
seems reasonable to evaluate a CTH detection method 
objectively by measuring precision and recall, this is not 
feasible in our case. These metrics require a ground truth, 
i.e., false positive and false negative CTHs must be 
known. To get there, one would have to interview thou-
sands of SkyServer users on their exact intentions, make 
sure that their answers are clear (even though many of 
them might not be trained well enough to this end) etc. 
Thus, all we can claim based on our study is that our 
detection method can identify CTHs within a query log.   

Fig. 2 (d) shows false positives and real CTHs, depend-
ing on their frequency and user popularity. In this visual-
ization, we observe a dependency between user populari-
ty and the property of being a CTH. However, this is not 
an indicator for real CTH for sure: Widely used software 
could introduce instances of the CTH as well. 

 Feedback from Domain Experts 6.7
In order to assess the usefulness of our results, we 

have conducted an experiment with domain experts. We 
have provided the list of the most popular patterns and 
antipatterns and have asked the experts to explain their 
meaning. They did not have any information from our 
side regarding whether we consider a pattern an antipat-
tern. We also had not explained to them what antipatterns 
are. The experts have stated that all patterns (not antipat-
terns) are meaningful from their point of view. They also 
deem antipatterns follow-up queries, where a user has 
first obtained objIDs (see Table 6) with a previous query 
and asks for more data. This is exactly what CTH does, 
and this has been our hypothesis as well. The fact that, 
based on our results, the domain experts have come to the 

same conclusion independently proves that our frame-
work is indeed able to find antipatterns in a real-world 
query log. 

 Reduced Information in the Log 6.8
Not every SQL log contains all the information that is 

part of the SkyServer log. Therefore, our framework only 
requires SQL statements with timestamps as input. In this 
section, we study the result quality with this minimum 
input. More specifically, we compare the results with two 
input data sets: 

1. SkyServer query log with user-session information 
2. SkyServer query log containing only SQL requests 

and timestamps. 
We expect insignificant changes in pattern frequency, 

for the following reason. The statements belonging to one 
occurrence of a pattern have a very small time difference 
and therefore come one after another in time order any-
way. Fig. 2 (c) shows the most popular patterns and an-
tipatterns with those two different inputs. All in all, the 
patterns keep their frequency of occurrence without user-
session information. It means that, with high probability, 
requests from one user with a small time difference 
would come one after another. So, results seem to be 
meaningful for a query log which standard tools can col-
lect. In terms of log size after cleaning, the difference is 
insignificant as well:  The count of queries in the result set 
for the experiment with minimal input data is 0.36% less 
than for the original. 

However, without information regarding users, our 
approach bears certain limitations. For instance, it is im-
possible to find patterns which have low user popularity 
and perform sliding window search. This means that we 
cannot reliably detect and remove this specific noise.  

To conclude, we now discuss the options if there are 
no timestamps in the query log. Our processing requires 
timestamps only for duplicate detection. Otherwise, exact 
timestamps are not necessary. On the other hand, we still 
need information according to which we can order the 
requests by time. (A pattern is a sequence of statements, 
not a set.) Statements within antipatterns must be or-
dered; this is essential for their identification. 

 Effects on Downstream Analysis 6.9
Even though it is not the core topic of this article, we 

now present some insights into the influence of the clean-
ing on subsequent analyses. To this end, we extract 1.3 
million queries from the log and reproduce the experi-
ment described in [1]. It detects user interests based on 
the log. They cluster queries, using the overlap of the data 
space accessed by two queries as their distance measure. 
More specifically, the bigger the overlap, which ranges 
from 0 to 1, the smaller is the distance. Queries with a 
distance smaller than a threshold go to the same cluster. 
We run the experiments with different threshold values 
from 0.1 to 0.9 with a step of 0.1, using three variants of 
that sample:  

1. Raw query log (1.3 million queries) 

TABLE 10  
CTH candidate 2 

# Statements Time 

1 SELECT * FROM  

dbo.fGetNearestObjEq 

(145.38708,0.12532,0.1); 

18.09.07 11.25.00 AM 

 

2 SELECT plate, fiberID, 

mjd, SpecObjID  

FROM SpecObjAll  

WHERE SpecObjID 

=75094094447116288 

18.09.07 11.25.00AM 
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2. Removal query log, obtained from the raw query 
log by removing antipatterns (0.89 million que-
ries). 

3. Clean query log, obtained from the raw query log 
by cleaning antipatterns (1 million queries). 

In the case of cleaning, we do not delete antipatterns 
from a log, but rewrite them, as discussed in Section 4.2. 
Hence, the removal log is smaller than the clean one. 

Fig. 3 shows the results. Varying the threshold value 
(from 0.1 to 0.9) has little impact on the number of clus-
ters. This is because the distance metric which calculates 
the overlap of two queries very often yields 0 (queries are 

identical) and 1 (queries do not have any overlap). The 
number of occurrences of other distance values has been 
very low in our experiments. The clusters in the raw log 
are too numerous to be analyzed individually. For exam-
ple, for threshold value 0.9 there are 1393 of them. Most of 
them also are relatively small. The log without antipat-
terns (“removal”) yields bigger and at the same time few-
er clusters. This happens for the following reason: When 
removing antipatterns, we filter out a lot of small clusters 
formed by them. Hence, for the removal log we have got 
a number of clusters which one can analyze manually and 
interpret as user interests (51 clusters for threshold value 

 

 (a) The most popular patterns before and after cleaning the log; (b) Frequency and user popularity of the patterns; (c) The experi-Fig. 2.
ments with and without user session information; (d) Possible and real CTH antipatterns 

 

 Results of an experiment on query clustering Fig. 3.
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0.9). We have carried out such an analysis and conclude 
that most clusters do reflect an area of user interest, as 
they refer to certain locations in the sky. We have found 
all clusters from the removal log in the raw log as well as 
in the cleaned log, see the middle gray dots in Fig. 4 (a, b). 
This indicates that removing antipatterns indeed is a way 
to get rid of noise that does not hamper subsequent pro-
cessing. From the performance point of view, cleaning or 
removing of antipatterns is significant as well: The 
runtime curve of Fig. 3 indicates that the smallest log 
(“removal”) gives way to the best time. This time, howev-
er, does not change linearly with the number of points, 
because clustering requires comparing one object (query) 
to the other ones. The complexity of the procedure in the 
worst case is 𝑂(𝑛2).  

The experiments with the cleaned log show that clus-
ters with DS-Stifle instances are smaller. This is line with 
our prediction, i.e., 0. Fig. 4 (c) graphs the sizes of the top 
20 biggest DS-Clusters in the clean and in the raw log. 
Clusters in the raw log are approximately two times big-
ger. For instance, the biggest DS-Cluster in the raw log 
consists of statements like: 

1. SELECT text FROM DBObjects  

WHERE name='photoobjall'; 

2. SELECT description FROM DBObjects  

WHERE name='photoobjall'; 

Most queries in the clean log in turn consist of state-
ments like: 

SELECT text, description FROM DBObjects  

WHERE name='photoobjall'; 

We for our part conclude that both removal and clean-
ing improve the quality of the data, and that the process 
as a whole is meaningful. 

 Threats to Validity 6.10
Regarding threats to validity, our goal is studying va-

lidity of our framework. Recall that three variants of the 
query log are the input of the clustering procedure. The 
experiment with the raw data, the query log as is, is the 
baseline. The framework (pre-processing) is a treatment 
and can be seen as an independent variable. The depend-

ent variable is the clustering result. Since we use the same 
clustering algorithm with the same parameters for each 
dataset (raw, clean, removal), it is only the treatment that 

explains the difference in the results. Hence, the experi-
ment has high internal validity.  

External validity is the degree to which the results of 
an experiment can be generalized. To discuss this aspect 
fully, one would need to perform our processing on an-
other SQL query log. Unfortunately, to the best of our 
knowledge, there is only one query log publically availa-
ble – Sky Server data, which we are using for our current 
study already. To overcome this and prove that we have 
not arrived at our results by accident, we can try different 
samples of the query log and cluster them.  We have per-
formed such experiments and conclude that, for all da-
tasets samples, clustering raw data yields much more 
clusters, with small average size. Put differently, the base-
line experiment always returns noisy results compared to 
experiments with a clean or a removal log. A further in-
vestigation of external validity – hunt for another case 
study – is part of future research. 

 CONCLUSIONS 7

Knowing how a big database is used is highly im-
portant for its owner. Analyzing the SQL log and finding 
patterns is one promising approach in order to reveal 
such information. Antipatterns however might falsify 
such analyses; discovering antipatterns in the log is bene-
ficial for refactoring and post-processing. To our 
knowledge, finding database antipatterns in SQL query 
logs has not been studied before systematically. In this 
paper, we have proposed a solution for the detection of 
patterns and for solving antipatterns in such a log. To this 
end, we have formalized the notion of pattern in the cur-
rent context. Next, we have provided rules for detecting 
and – if possible – solving antipatterns. Properties of pat-
terns and antipatterns allow the discovery of certain 
kinds of user behavior, as a case study on the SkyServer 
query log has demonstrated. All in all, our approach is 
capable to detect and classify patterns in a query log. The 

 

 (a, b) Clusters’ sizes for experiments with raw, clean and removal data; (c) DS-Clusters’ sizes for cleaned and raw log. Threshold = Fig. 4.
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results show a significant number of instances of antipat-
terns within the log. Moreover, it is feasible to remove the 
most frequently occurring antipatterns. The remaining 
patterns refer to real user information needs. All this 
highlights the importance of the approach as a general 
preprocessing step for any subsequent SQL log analysis. 

Regarding the influence of cleaning the learning set on 
the quality of query recommendation, our outline for 
future work is as follows:  
1. We hypothesize that sliding-window search (SWS) 

bogs down the quality of queries recommended. 
Namely, since SWS comes from robots, the queries 
might differ in nature from ones formulated by mor-
tal users. When including SWS in the learning set, we 
will generate recommendations which rely on SWS as 
well. 

2. Clearly, queries suggested by a recommender system 
must not contain antipatterns. We would like to 
study the rate of recommended queries containing 
antipatterns if the recommender is trained on the 
original log. We then would like to do the same with 
the cleaned log. If the rate now is much smaller, then 
our approach obviously is more useful compared to 
the outcome that it is not. 
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